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ABSTRACT

Learning solution operators for partial differential equations (PDEs) on arbitrary geometries
remains a major challenge. Traditional spectral methods are limited to regular domains, while ex-
isting neural approaches often struggle to capture global spatiotemporal structures efficiently. We
introduce the Graph Spectral Neural Operator (GSNO), a geometry-adaptive framework that com-
bines graph spectral decompositions for spatial learning with real-valued Fourier transforms for
temporal modeling. By learning a joint space–time spectral kernel, GSNO enables globally coher-
ent and mesh-invariant operator learning without domain warping or heavy graph convolutional
overhead. Across a variety of steady and time-dependent PDE problems, GSNO demonstrates
improved accuracy compared to well-known neural operators on irregular geometries, along
with reduced runtimes. These results suggest GSNO as a scalable and resolution-robust spectral
operator, capable of generalizing to higher resolutions on complex geometries and contributing
to scientific machine learning for physical systems.

1 INTRODUCTION

Many problems in science and engineering involve solving complex partial differential equations (PDEs) repeatedly
for varying parameters. This is common in applications such as fluid dynamics, structural analysis, and geophysical
modeling. These systems often require fine spatial and temporal resolution to capture multiscale dynamics, leading
to extremely high computational costs. For instance, simulating unsteady flow in fractured porous media or tracking
pollutant transport in irregular terrain may require solving forward PDE models thousands of times, which becomes
infeasible using classical solvers (Palais & Palais, 2009).

Conventional solvers vs. data-driven approaches. Classical numerical techniques such as the finite difference
method (FDM), finite volume method (FVM), and finite element method (FEM) rely on discretizing the domain
and solving resulting algebraic equations to approximate PDE solutions (LeVeque, 2007; Quarteroni et al., 2010).
Although these methods are known for their precision, they are often computationally intensive, especially as the
resolution increases. Using coarse grids can reduce cost but typically sacrifices accuracy, while finer grids deliver
better results at the expense of speed and scalability (Blechschmidt & Ernst, 2021). In contrast, data-driven models
take a different route by learning a direct mapping from input parameters to solutions, using training data (Rudy
et al., 2017; Grady et al., 2023; Xiao et al., 2024). Once trained, these models can produce predictions for new inputs
with significantly less computational effort, often achieving speedups of several orders of magnitude over traditional
solvers (Raissi et al., 2019; Kovachki et al., 2023; Raissi et al., 2017). Recent advances in machine learning
have accelerated this trend by introducing Neural Operators (NOs)—models designed to learn mappings between
infinite-dimensional function spaces. Unlike classical neural networks, which operate on fixed grids and struggle
to generalize across resolutions, neural operators are mesh-invariant and can generalize to unseen discretizations.
Popular frameworks such as DeepONets (Lu et al., 2021; Wang et al., 2021), Fourier Neural Operators (FNO) (Li
et al., 2021), and Wavelet Neural Operators (WNO) (Tripura & Chakraborty, 2023) demonstrate the potential of
this approach. FNO, in particular, enables efficient spectral learning via the Fast Fourier Transform and achieves
state-of-the-art accuracy on several benchmark PDEs.

Limitations on irregular domains. Despite these successes, most neural operator architectures are designed
for structured, grid-based domains. This significantly limits their applicability to real-world problems involving
irregular geometries or unstructured meshes. Many engineering applications fundamentally require unstructured
meshes to accurately represent complex geometries. Examples include modeling propagating cracks in structural
analysis, capturing precise airfoil contours in aerodynamics, and simulating patient-specific anatomies in biomedical
applications - cases where regular grid approximations would fail to capture critical physical details.

Related work for irregular geometries. Several recent methods have extended the neural operator framework
to accommodate PDEs on irregular domains and unstructured meshes. The Multipole Graph Kernel Network
(MGKN) (Li et al., 2020) introduces a graph-based operator learning framework that generalizes across irregular
spatial domains. By constructing graphs over unstructured point clouds and applying a learned multipole kernel,
MGKN captures both local and global interactions without relying on fixed meshes or uniform discretization.
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However, MGKN is designed primarily for spatial operators and does not include an explicit temporal modeling
component. The Geometry-aware Fourier Neural Operator (Geo-FNO) (Li et al., 2023) learns a geometric mapping
to warp irregular domains into a structured latent grid, enabling conventional Fourier layers to operate in the latent
space. This allows spectral learning on unstructured geometries. However, the method assumes the existence
of a smooth and globally consistent mapping (a diffeomorphism) between the physical and latent domains. In
domains with sharp boundaries, holes, or complex topologies, this assumption fails, leading to distortions and
loss of critical geometric information. The Coordinate-based Radial-basis Latent operator (CORAL) (Serrano
et al., 2023) proposes a mesh-free operator learning framework that represents functions using coordinate-based
implicit neural networks. By embedding input–output mappings in a continuous latent space, CORAL approximates
function values without requiring structured meshes, offering strong flexibility and resolution generalization.
However, by abstracting away the underlying spatial structure, CORAL cannot leverage geometry-aware priors
such as graph Laplacians or spectral bases. This limits its ability to capture long-range spatial dependencies and
reduces generalization to unseen mesh topologies. The General Neural Operator Transformer (GNOT) (Hao
et al., 2023) is a transformer-based framework targeting three key challenges: irregular meshes, multiple input
functions, and multi-scale solution behavior. It introduces heterogeneous normalized attention (HNA) to provide a
unified interface for encoding diverse inputs such as boundary conditions, source terms, and global parameters. In
addition, GNOT employs a geometric gating mechanism inspired by domain decomposition, which softly partitions
the domain into subregions and routes information through specialized subnetworks. While these mechanisms
enhance flexibility and multi-scale modeling capacity, the approach relies heavily on learned gating and attention,
increasing computational cost and reducing interpretability. Furthermore, GNOT does not employ an explicit
spectral formulation in either space or time, instead depending on large-scale attention blocks to approximate
operator mappings. This limits the integration of physics-informed priors and makes performance sensitive to
training scale and data availability. The Spatio-Spectral Graph Neural Operator (Sp2GNO) (Sarkar & Chakraborty,
2025) combines graph neural networks with Laplacian-based spectral filtering to capture both local and global
spatial dependencies on irregular meshes. Its spatial representation is built on learnable GNN layers operating on a
k-NN graph, making it heavily dependent on a complex, trainable architecture rather than a principled geometric
prior. More critically, Sp2GNO does not include a temporal spectral module. Instead, time is handled implicitly
through stacked or recurrent GNN iterations, which restricts the model’s ability to capture long-range temporal
correlations and global frequency-domain structure. This autoregressive design also introduces error accumulation
and prevents direct modeling of spatiotemporal interactions in the spectral domain. The Transformer-based solver
(Transolver) (Wu et al., 2024) introduces Physics-Attention, which replaces pointwise attention with a grouping
mechanism that clusters mesh points into learnable “slices” and encodes them as physics-aware tokens. This design
improves efficiency by capturing global correlations without the quadratic cost of standard attention. However,
the representation depends entirely on the learned slicing procedure, which enforces that similarity in the feature
space corresponds to physical states. This dependence makes the method sensitive to design choices and obscures
fine-scale structures when grouping is misaligned. Moreover, Transolver does not incorporate an explicit spectral
operator in space or time, relying solely on token attention to approximate long-range dependencies. This reliance
restricts robustness in multi-scale PDEs and excludes the physics-informed guarantees provided by spectral methods.
The AMG framework (Li et al., 2025) introduces a multi-graph neural operator designed for PDEs on arbitrary
geometries. It constructs three complementary graph types: a local graph to capture fine-scale details, a global graph
for long-range interactions, and a physics graph to encode domain-specific physical attributes. These are integrated
through a Graph Former architecture with dynamic graph attention, enabling adaptive multi-scale and physics-aware
modeling. While effective across structured and unstructured meshes, AMG depends heavily on attention across
multiple learned graph types, which increases computational complexity and reduces interpretability relative to
parameter-free spectral operators. Moreover, although the physics graph introduces a useful inductive bias, it is
not derived from explicit spectral principles, limiting the framework’s ability to provide the physics-grounded
guarantees offered by spectral-domain methods.

Our contributions. We propose the Graph Spectral Neural Operator (GSNO), a unified neural operator architecture
that performs explicit spectral learning across both space and time on irregular domains. In contrast to prior methods
that rely on heavy graph neural networks, learned embeddings, or coordinate transformations, GSNO employs a
parameter-free graph Laplacian basis constructed from Delaunay-triangulated point clouds. This yields a geometry-
adaptive representation without additional learnable complexity. GSNO operates directly in the spectral domain by
combining Laplacian eigenvectors for space with a real-valued FFT for time, learning a single complex-valued
kernel to capture global spatiotemporal dependencies. A lightweight residual branch complements this design
to refine local interactions, achieving a balance between expressivity and efficiency. This architecture provides
three major advances. First, it achieves efficiency and scalability by removing recurrent temporal modules and
learned spatial embeddings, leading to higher accuracy with fewer parameters and reduced training cost. Second, it
delivers superior performance across a wide range of PDE benchmarks, consistently reaching state-of-the-art
results while remaining robust to irregular geometries and multi-scale dynamics. Third, it ensures zero-shot
generalization, naturally transferring across unseen meshes, resolutions, and discretizations without the need for
retraining. Collectively, these contributions establish GSNO as the first operator framework to unify space–time
spectral learning on arbitrary geometries, setting a new standard for principled, efficient, and mesh-invariant PDE
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modeling. A detailed comparison of the designs and key differences of GSNO from other state-of-the-art models
for problems on irregular, non-rectangular domains are presented in Appendix G.

2 METHODOLOGY

We present the Graph Spectral Neural Operator (GSNO), a neural operator architecture for learning solution
operators of parametric partial differential equations (PDEs) on irregular domains. GSNO builds upon the general
neural operator framework by incorporating spectral representations in both space and time: a graph Fourier
transform for spatial decomposition on unstructured meshes, and a classical Fourier transform for temporal
dynamics. Notably, the spatial graph structure is constructed from a Delaunay triangulation of the input mesh,
and its associated spectral basis is precomputed and reused throughout training and inference for computational
efficiency.

2.1 NEURAL OPERATOR FRAMEWORK

Let D ⊂ Rd be a bounded spatial domain. We define input and output function spaces as separable Banach spaces
A = A(D;Rda) and U = U(D;Rdu). The goal is to learn a nonlinear operator G† : A → U , such as the solution
operator of a parametric PDE. Given training pairs {(aj , uj)}Nj=1 with aj ∼ µ and uj = G†(aj), we learn a
parametric model

Gθ : A → U , θ ∈ Θ, (1)
by minimizing an empirical loss over the data.

Neural operators are typically formulated as iterative architectures of the form:

vt+1(x) = σ (Wvt(x) + (Kϕvt)(x)) , t = 0, . . . , T − 1, (2)

where vt : D → Rdv is a hidden representation, W : Rdv → Rdv is a pointwise linear map, σ is a nonlinear
activation function (e.g., GELU), and Kϕ is a learnable global operator defined over function spaces. The input
a(x) is lifted to v0(x) = P (a(x)), and the final output is u(x) = Q(vT (x)), where P and Q are neural networks
Kovachki et al. (2023); Behroozi et al. (2025).

2.2 GRAPH SPECTRAL NEURAL OPERATOR (GSNO)

GSNO instantiates the general neural operator framework by defining Kϕ through a spectral convolution over the
joint spatial and temporal frequency domains. It is designed to handle both time-dependent and time-independent
PDEs on irregular domains, where discretization points are nonuniform or unstructured. Let the spatial domain
D ⊂ Rd be discretized as a point cloud {xi}Ni=1. For time-dependent problems, we consider input fields observed
over an initial time window of length Tin, with the goal of predicting the solution over a future horizon of
length Tout. The input signal is a spatiotemporal function a : {xi} × [0, Tin] → Rda , and the target output is
u : {xi} × [Tin, Tin + Tout] → Rdu . For time-independent PDEs, the formulation reduces to a purely spatial
mapping, where the input field is a : {xi} → Rda and the output is u : {xi} → Rdu . In both settings, GSNO learns
a parametric operator that maps the input field a to the corresponding solution u, leveraging spectral representations
over both space and time. The spatial structure is encoded via a fixed graph Laplacian constructed from a Delaunay
triangulation of the input mesh, enabling mesh-invariant modeling across irregular domains.

2.2.1 GRAPH CONSTRUCTION AND LAPLACIAN SPECTRAL BASIS

We represent the point cloud as an undirected geometric graphG = (V,E) with V = {xi} and edgesE constructed
from a Delaunay triangulation. Compared to k-nearest neighbor graphs, Delaunay triangulation produces well-
shaped, isotropic edge connectivity and avoids arbitrary metric-based thresholds, leading to better geometric fidelity
in the learned graph Laplacian.

We define a symmetric weight matrix A ∈ RNs×Ns using a Gaussian kernel:

Aij =

{
exp

(
−∥xi−xj∥2

σ2

)
, if (xi, xj) ∈ E,

0, otherwise,
(3)

and compute the normalized graph Laplacian:

L̃ = I −D−1/2AD−1/2, Dii =
∑
j

Aij . (4)

Here, Ns is the number of spatial nodes. The eigendecomposition of L̃ gives:

L̃ = ΦΛΦ⊤, (5)
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where Φ ∈ RNs×Ns is orthonormal and Λ = diag(λ1, . . . , λNs
) are the eigenvalues. We truncate to the first

ks eigenvectors Φks ∈ RNs×ks to obtain the spatial Fourier basis. This basis is precomputed once and reused
throughout training and inference.

The graph Fourier transform of a spatial function f ∈ RNs×dv is:

f̂ = Φ⊤
ksf, f ≈ Φks f̂ . (6)

A key advantage of GSNO is that this construction naturally extends across dimensions. In 2D, we rely on Delaunay
triangulation, while in 3D we use Delaunay tetrahedralization to form the graph and compute the Laplacian. The
resulting eigenbasis provides a geometry-aware spectral representation in both cases. Thus, GSNO avoids the added
complexity of volumetric meshing and 3D boundary handling, while retaining the same spectral decomposition
framework. This enables a unified design that scales from irregular 2D surfaces to complex 3D volumes without
architectural changes.

2.2.2 SPECTRAL OPERATOR OVER GRAPH SPACE AND TEMPORAL FREQUENCIES

At the heart of GSNO lies the operator Kϕ, which performs learned convolution in the joint space-time frequency
domain. This construction enables the model to capture long-range dependencies in both space and time while
operating on irregular geometries. The operator works by projecting features into a spectral domain defined by the
eigenbasis of a graph Laplacian (for space) and the discrete Fourier basis (for time), applying a learnable kernel in
that domain, and mapping the result back to physical space-time.

Let vt ∈ RNs×T×dv denote the latent representation at a GSNO layer, where T is the number of time steps and, dv
is the number of channels.

The full process of applying the joint spectral operator Kϕ is outlined below.

1. Graph Fourier Transform (Spatial Projection): We begin by projecting vt into the spatial frequency domain
using a truncated eigenbasis Φks ∈ RNs×ks , obtained from the eigendecomposition of the normalized graph
Laplacian. This gives:

v̂s(ks, t, c) =

Ns∑
i=1

Φ⊤
ks(i, ks) · vt(i, t, c) which yields v̂s = Φ⊤

ksvt ∈ Rks×T×dv (7)

2. Temporal Fourier Transform: We then apply the real-valued Discrete Fourier Transform (DFT) along the
temporal axis:

v̂st(ks, kt, c) =

T−1∑
t=0

v̂s(ks, t, c) · e−2πi·t·kt/T v̂st = Ft(v̂s) ∈ Cks×kt×dv (8)

where kt = ⌊T/2⌋+ 1 denotes the number of retained temporal frequency modes.

3. Spectral Convolution: In the joint space-time frequency domain, a learnable spectral kernel Rϕ ∈
Cks×kt×dv×dv is applied to mix channels via a linear transformation at each frequency pair:

v̂′st(ks, kt, l) =

dv∑
j=1

Rϕ(ks, kt, j, l) · v̂st(ks, kt, j), (9)

resulting in the transformed tensor v̂′st ∈ Cks×kt×dv .

4. Inverse Temporal Fourier Transform: We return to the spatial spectral domain by applying the inverse
Fourier transform along time:

v̂′s(ks, t, l) =
1

T

kt−1∑
kt=0

v̂′st(ks, kt, l) · e2πi·t·kt/T or compactly v̂′s = F−1
t (v̂′st) ∈ Rks×T×dv (10)

5. Inverse Graph Fourier Transform (Spatial Reconstruction): Finally, the result is projected back to spatial
domain using the truncated eigenbasis, reconstructing the updated latent representation:

v′(xi, t, l) =

ks∑
ks=1

Φks(i, ks) · v̂′s(ks, t, l), v′ = Φks · v̂′s ∈ RNs×T×dv . (11)

The spectral operator Kϕ combines these operations:

(Kϕvt)(x) := Φks · F−1
t

(
Rϕ · Ft(Φ⊤

ksvt)
)
, (12)

where Rϕ governs interactions in the compressed joint frequency domain, forming the backbone of GSNO’s
spatiotemporal modeling on irregular geometries.
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Figure 1: Overview of the GSNO architecture. (a) The input coefficient a(x, t) is lifted into a high-dimensional space and passed throughN GSNO layers. Each
layer combines spatial graph Fourier transforms and temporal FFTs to model global dynamics, followed by a projection to obtain u(x, t). (b) Inside each GSNO
layer: input v(x, t) is projected into space-time spectral domains, modulated by a learnable kernelRϕ, then reconstructed via inverse transforms. A local branch
W captures fine-scale features before merging.

2.2.3 GSNO LAYER UPDATE RULE

Each GSNO layer updates latent features via two complementary paths:

• A spectral path that models non-local dependencies through joint graph–temporal frequency convolution.
• A spatial path that applies a localized residual map using a 1× 1 convolution.

Given vℓ ∈ RN×T×dv , the next representation is

vℓ+1 = σ

 W (vℓ)︸ ︷︷ ︸
Local Residual

+Φks F−1
t

(
Rϕ · Ft(Φ⊤

ksvℓ)
)︸ ︷︷ ︸

Spectral Operator Kϕvℓ

 , (13)

where W is a learnable 1×1 convolution, σ a GELU activation, Φks ∈ RN×ks the truncated Laplacian eigenbasis,
Ft and F−1

t temporal Fourier transforms, and Rϕ ∈ Cks×kt×dv×dv the learnable spectral kernel.

This architecture captures global interactions through the low-rank operator Kϕ, while the residual branch W (vℓ)
ensures local adaptivity on irregular meshes. As visualized in Figure 1, the two branches are fused and passed
through a nonlinear activation, balancing spectral expressivity with spatial detail. Spectral decomposition is a one-
time, offline pre-processing step, performed once per mesh. We build the Laplacian from a Delaunay triangulation
and compute the first ks eigenvectors with iterative solvers such as LOBPCG, avoiding full diagonalization. The
basis is saved and reused across training and inference, unlike learnable graphs that recompute edge weights every
iteration. Hence, per-epoch cost scales only with ks and kt, not the full resolution Ns. This design yields high
efficiency and scalability, as confirmed by GSNO’s superior runtimes across benchmarks.

3 NUMERICAL EXPERIMENTS

We evaluate GSNO on six PDE systems spanning steady-state and time-dependent regimes: (i) steady-state
Darcy flow; (ii) Euler equations over a 2D Airfoil, posed here as a single-step temporal forecast (one input
step predicts the next); (iii) steady-state flow around the Shape-Net 3D car; (iv) unsteady Burgers’ equation; (v)
unsteady Navier–Stokes in vorticity form; and (vi) unsteady Shallow Water equations. Full descriptions of each
PDE—including domain geometry, mesh specifications, initial-condition sampling, and data preprocessing—are
provided in Appendices B.1–B.6. We benchmark GSNO against state-of-the-art neural-operator architectures;
Classical numerical solvers (FEM/FDM), as well as publicly available datasets from the literature, are used solely
to provide ground-truth training and evaluation data and are not treated as competing methods. Inputs and outputs
are normalized using min–max scaling. Spectral configurations, channel widths, batch sizes, and other training
hyperparameters—along with sensitivity analyses of key settings—are detailed in Appendix F. All experiments
were run on a single NVIDIA V100 GPU (32 GB).

Benchmarks. We evaluate GSNO against seven neural-operator baselines—DeepONet, MGKN, CORAL, Geo-
FNO, AMG, Sp2GNO, GNOT, and Transolver—spanning diverse operator-learning strategies on irregular
domains. All baselines are retrained on our datasets using identical training splits, mesh configurations, and
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Figure 2: Selected results from PDE benchmarks solved using GSNO. Ground truth (top) and GSNO predictions (bottom) are shown for each case. Additional
samples and temporal generalization results are provided in Appendix C. (a) Darcy flow: steady-state pressure field u(x, y) on a mesh with Ns = 1184. (b)
Burgers’ equation: velocity field u(x, y) at final time step t = 1.00, evaluated on a mesh withNs = 1168. (c) Navier–Stokes: stream function ψ(x, y) at
t = 10.0; GSNO was trained on a mesh withNs = 972 and evaluated zero-shot on a finer mesh withNs = 1903. (d) 2D Airfoil: Pressure field on a mesh with
Ns = 5233 (e) Shallow water: predicted evolution of water height h(x, y, t) over 30 seconds in a realistic lake basin; GSNO was trained onNs = 1832 and
evaluated zero-shot onNs = 3663.

optimizer settings. Hyperparameters follow the original papers, with light tuning for a fair comparison on our
irregular benchmarks. Hyperparameters and training settings for the baseline models are provided in Appendix G.2.

3.1 FORWARD PDE BENCHMARKS

Tables 1 and 2 provide a comprehensive summary of relative L2 errors across all benchmark settings: the former
reports steady-state PDEs, and the latter summarizes time-dependent PDEs. For clarity, the best result is shown
in bold and the second best is underlined. Promotion denotes the relative error reduction with respect to the
second-best model, 1 − EGSNO

E2nd-best
(reported as a percentage where indicated). Figure 2 presents selected visual

comparisons of GSNO predictions against ground truth to be discussed below, with more comprehensive set of
results provided in Appendix C.

Table 1: Relative L2 error of models on steady-state PDEs at fixed resolution. In these steady-state cases, the model directly predicts the solution from the input
field. (For more error metrics, see Appendix C.)

Model (a) Darcy Flow (Ns = 1184) (b) 2D-Airfoil (Ns = 5233) (c) Shape-Net 3D Car (Ns = 32186)

Hydraulic head Density Pressure Velocity_x Velocity_y Pressure Velocity magnitude

CORAL 0.0664 0.0650 0.0610 0.0365 0.0410 0.1680 0.1750
Geo-FNO 0.0548 0.0580 0.0550 0.0320 0.0360 0.1560 0.1620
MGKN 0.0242 0.0500 0.0480 0.0215 0.0260 0.1350 0.1420
DeepONet 0.0312 0.0400 0.0370 0.0290 0.0310 0.1400 0.1480
AMG 0.0172 0.0021 0.0020 0.0014 0.0018 0.0878 0.0919
SP2GNO 0.0150 0.0030 0.0028 0.0022 0.0025 0.1005 0.1102
GNOT 0.0118 0.0054 0.0049 0.0040 0.0040 0.1199 0.1206
Transolver 0.0142 0.0036 0.0032 0.0028 0.0035 0.0993 0.1208
GSNO 0.0083 0.0012 0.0012 0.0009 0.0008 0.0712 0.0759

Promotion (vs 2nd-best) ↓29.66% ↓42.86% ↓40.00% ↓35.71% ↓55.56% ↓18.91% ↓17.41%

Darcy Flow. We evaluate steady-state Darcy flow on a triangular domain with a notch (Figure B.4a), discretized
via a Delaunay triangular mesh with Ns nodes. The task is to learn the solution operator mapping the diffusion
coefficient field a ∈ RNs to the hydraulic head u ∈ RNs , i.e., Gθ : RNs → RNs . GSNO achieves the lowest
relative L2 error (0.0083), representing a threefold reduction over the next best model, GNOT (0.0118), and a
29.6% improvement in error reduction (Table 1a). Qualitatively, GSNO captures the elevated hydraulic head around
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Table 2: Relative L2 error of models on time-dependent PDEs at fixed resolution. For these cases, the model takes Tin input steps to predict the next Tout steps. (For
more error metrics, see Appendix C.)

Model
(a) Burgers’ Equation (Ns = 1168) (b) Navier–Stokes Equation (Ns = 1244) (c) Shallow Water Equation (Ns = 1830)

Temporal Config: Tin → Tout

1→50 3→48 5→46 10→41 1→50 3→48 5→46 10→41 1→50 3→48 5→46 10→41

Velocity magnitude Vorticity (ω) Water height (h)

CORAL 0.1542 0.1308 0.1052 0.0966 0.1654 0.1412 0.1148 0.1070 0.1784 0.1534 0.1238 0.1162
Geo-FNO 0.1968 0.1718 0.1564 0.1410 0.2056 0.1790 0.1614 0.1512 0.2112 0.1848 0.1650 0.1526
MGKN 0.0876 0.0686 0.0612 0.0562 0.0964 0.0770 0.0654 0.0606 0.1128 0.0876 0.0724 0.0668
DeepONet 0.1146 0.1004 0.0894 0.0846 0.1250 0.1096 0.0958 0.0916 0.1284 0.1128 0.0982 0.0904
AMG 0.0812 0.0694 0.0570 0.0540 0.1060 0.0780 0.0580 0.0540 0.1210 0.0890 0.0692 0.0630
GNOT 0.1301 0.1232 0.0907 0.0855 0.1876 0.1326 0.0912 0.0844 0.2150 0.1534 0.1093 0.0995
SP2GNO 0.1054 0.0998 0.0736 0.0695 0.1533 0.1081 0.0744 0.0689 0.1752 0.1250 0.0891 0.0810
Transolver 0.0806 0.0763 0.0564 0.0534 0.1189 0.0836 0.0575 0.0534 0.1354 0.0965 0.0689 0.0625
GSNO 0.0221 0.0213 0.0156 0.0148 0.0336 0.0237 0.0164 0.0152 0.0375 0.0268 0.0193 0.0174

Promotion (vs 2nd-best) ↓72.58% ↓68.95% ↓72.34% ↓72.28% ↓65.15% ↓69.22% ↓71.48% ↓71.54% ↓66.76% ↓69.41% ↓71.99% ↓72.16%

the notch and the no-flow effect along irregular boundaries (Figures 2a and C.5). Across mesh resolutions, GSNO
maintains consistent gains, with error reductions of up to 8× compared to competing methods (Figure C.6). Finally,
GSNO also provides the fastest per-epoch training on steady-state PDEs, with runtime speedups of up to 6×
(Figure C.7). Resource usage for this Darcy setup—inference time per batch and peak GPU memory during training
and inference—is summarized in Table H.25, where GSNO attains the fastest inference while keeping memory
comparable to the most efficient baselines.

2D Airfoil. We evaluate GSNO on unsteady compressible Euler flow around a 2D airfoil (Figure B.4b). The
irregular domain is discretized with an unstructured mesh containing Ns = 5233 nodes. The task is one-step
prediction: given the flow state at time t, including density, velocity, and pressure fields, the operator predicts
the next state at t+1. Formally, Gθ : RNs → RNs . As summarized in Table 1b, GSNO achieves the lowest
relative L2 errors across all state variables: 0.0012 for density, 0.0012 for pressure, 0.0009 for ux, and 0.0008 for
uy. Compared to AMG model, the second-best baseline, this corresponds to error reductions of 42.9%, 40.0%,
35.7%, and 55.6%, respectively. Qualitatively, GSNO accurately reconstructs the near-field flow features, including
pressure distribution along the airfoil surface and velocity separation in the wake (Figurs 2d and C.8). These
results highlight GSNO’s ability to generalize to highly irregular meshes and to simultaneously recover multiple
flow variables with high fidelity. In addition to accuracy, GSNO demonstrates superior efficiency: it records the
fastest per-epoch training time of 24s, outperforming Transolver (27s) and GNOT (36s), and delivering speedups of
up to 7.5× relative to AMG (181s) (Table C.5).

Shape-Net 3D Car. On ShapeNet car meshes (∼32k unstructured points), the model maps geometry (coordinates,
signed distance, normals) to time-averaged velocity and pressure. Figure C.9 illustrates streamlines of the velocity
field from both the ground truth and GSNO prediction. The close alignment of flow patterns indicates that GSNO
accurately captures the aerodynamic behavior around the car, showing strong qualitative agreement with the
reference solution. As shown in Table 1c, GSNO delivers the best accuracy on ShapeNet Car, with relative L2

errors of 0.0712 for pressure and 0.0759 for velocity magnitude. This marks improvements of 18.9% and 17.4%
over the second-best baseline, AMG. Beyond accuracy, GSNO is also the most efficient: it has the fastest per-epoch
training time of 24s, against Transolver (27s) and GNOT (36s), and achieves up to a 7.5× speedup over AMG
(181s) (Table C.6).

Burgers’ Equation. We evaluate the two-dimensional, time-dependent Burgers’ equation on a flower-shaped
domain with a central hole (Figure B.4c), simulated over 51 time steps. The velocity field [u, v] ∈ RNs×T×2 is
predicted jointly, where the operator Gθ : RNs×Tin×2 → RNs×Tout×2 maps the first Tin sequences to the next Tout
snapshots. GSNO consistently outperforms all baselines across temporal configurations. In the most challenging
split, Tin=1 → Tout=50, GSNO attains 0.0221 versus 0.0806 for the second-best model, Transolver (Table 2a), i.e.,
over a 72% reduction. For Tin=5 → Tout=46, GSNO further lowers the error to 0.0156, maintaining error rates
below 0.022 across all splits. Qualitatively, GSNO captures nonlinear transport and dissipation of both velocity
components within the complex hollowed-out domain (Figures 2b and C.10). In multi-resolution tests, it achieves
up to 10× lower error than competing methods (Figure C.11). Moreover, GSNO provides the fastest per-epoch
training despite temporal complexity, with runtime speedups of up to 3.5× (Figure C.12).

Navier-Stokes Equations. For the incompressible 2D Navier-Stokes equations, we consider an elliptical domain
with a triangular cutout (Figure B.4e). The task is to predict the vorticity field ω ∈ RNs×T×1, where the operator
Gθ : RNs×Tin×1 → RNs×Tout×1 transforms the first Tin input snapshots into forecasts of the following Tout
snapshots. Across all temporal splits, GSNO yields the most accurate predictions (Table 2b). For instance, in
the long-horizon case of Tin=10 → Tout=41, GSNO achieves an error of 0.0152, whereas the next best method,
Transolver, records 0.0534—over 71% higher. These quantitative gains are matched by qualitative fidelity: GSNO
reconstructs the roll-up of vortical structures and the onset of flow separation with high accuracy (Figures 2c
and C.13). Its resolution generalization is also notable, delivering errors up to an order of magnitude lower than
baselines on finer meshes (Figure 3a). Finally, in terms of efficiency, GSNO completes each training epoch up
to 5× faster than competing operators (Figure 3b). The computational profile for this NSE setup, summarized in

7



406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

Under review as a conference paper at ICLR 2026

Table H.26, shows that GSNO achieves the fastest inference while maintaining a memory footprint on par with the
most efficient baselines.

Shallow Water Equations. We test GSNO on the 2D Shallow Water Equations in conservative form, a standard
model for flood inundation, applied to an irregular mesh extracted from Lake Union (Figure B.4f). The mesh
contains Ns = 3663 nodes, and the simulation covers 30 seconds. The operator is tasked with advancing the water
height field from initial conditions h ∈ RNs×Tin to future states h ∈ RNs×Tout , i.e., Gθ : RNs×Tin → RNs×Tout .
Across all temporal settings, GSNO delivers the most accurate results (Table 2c). In the long-horizon case of
Tin=10 → Tout=41, it achieves a relative error of 0.0174, whereas the second-best model, Transolver, records
0.0625—corresponding to a 72% improvement. Beyond raw numbers, GSNO reliably captures the propagation of
wavefronts and their reflections against the irregular shoreline geometry (Figure 2e). Its advantage persists under
mesh refinement, with errors up to 9× lower than baselines (Figure C.16). In terms of efficiency, GSNO also trains
substantially faster, providing per-epoch speedups of up to 3.5× (Figure C.17).
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(a) Accuracy vs. spatial resolution. All models are trained and evaluated on the same temporal setup Tin = 5 → Tout = 46 and tested across increasing mesh
resolutions. Left: relative L2 error. Right: model-wise error ratio with respect to GSNO.
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(b) Training runtime per epoch. All models are trained and evaluated on the same mesh resolution (Ns = 1244) and tested across different temporal configurations.
Left: runtime in seconds. Right: slowdown factor relative to GSNO.

Figure 3: Performance comparison of neural operator models on the 2D Navier–Stokes equation using GSNO and baselines.

3.2 ZERO-SHOT SUPER-RESOLUTION

GSNO supports zero-shot generalization across spatial resolutions through its spectral formulation. The key
lies in using a geometry-aware Fourier basis Φks ∈ RNs×ks , derived from the eigendecomposition of the graph
Laplacian. During training, latent features vt ∈ RNs×T×dv are projected into this basis via v̂s = Φ⊤

ks
vt, allowing

GSNO to operate in the frequency domain. The spectral operator acts on this compressed representation as
(Kϕvt)(x) = Φks F−1

t (Rϕ · Ft(Φ⊤
ks
vt)), where Rϕ is a learnable spectral kernel and Ft is the temporal Fourier

transform. Since this formulation depends only on the spectral representation, not on explicit coordinates, GSNO
naturally generalizes to new meshes. At inference, we recompute the Laplacian and its eigenbasis Φtest

ks
, reusing

the trained kernel Rϕ without retraining. This makes GSNO inherently mesh-invariant and resolution-adaptive.
Unlike methods that rely on coordinate encodings or grid mappings, GSNO ensures consistent behavior across
discretizations. Figures 2(e) and C.13 demonstrate that GSNO trained on a coarse mesh with Ns = 1832 for the
shallow water equations and Ns = 972 for the Navier–Stokes equations generalizes effectively to finer meshes
with Ns = 3663 and Ns = 1903, respectively, without re-training. These results confirm GSNO’s capability for
zero-shot super-resolution across mesh resolutions.

3.3 BAYESIAN INVERSE PROBLEM FOR GSNO

We address the inverse problem of recovering the unknown Darcy coefficient field a(x, y) from a single observed
solution uobs. To this end, we employ a function-space Markov Chain Monte Carlo (MCMC) method Geyer (1992);
Geyer & Thompson (1995), specifically the Metropolis–Hastings algorithm Chib & Jeliazkov (2001), to sample
from the posterior distribution over admissible coefficient fields. The forward map a 7→ u is approximated by a
trained GSNO model, enabling fast and differentiable surrogate evaluations. The posterior is constructed using a
Gaussian prior on a and a data misfit term based on the squared error between GSNO predictions and the observed
solution. We perform 5,000 MCMC iterations, discarding the first 500 as burn-in, resulting in 5,000 forward passes
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through GSNO—completed within minutes on GPU. Appendix D provides the full explanation and visualization of
the posterior distribution.

3.4 COMPONENT-WISE ABLATION ANALYSIS

To assess the contribution of each architectural component, we perform ablation experiments on steady-state (Darcy
Flow) and time-dependent (Burgers’) PDEs. Results show that removing the spectral kernel, residual path, or
temporal FFT increases error and runtime. The largest degradation occurs when replacing the Laplacian eigenbasis
with a random orthonormal basis, resulting in more than 5× increase in error on both steady and dynamic PDEs.
This confirms that GSNO’s use of a geometry-aware spectral basis is not just a design choice, but a critical enabler
of generalization on irregular domains. It validates our hypothesis that spectral locality and mesh fidelity are
essential for robust operator learning beyond Euclidean settings. Full ablation Results are reported in Appendix E.

4 FURTHER DISCUSSION AND CONCLUSION

The performance of GSNO across a diverse set of PDE benchmarks highlights the benefits of leveraging problem
structure through spectral representations. Rather than relying on mesh-specific encodings or densely parameterized
architectures, GSNO operates in a compact space-time frequency domain aligned with the underlying discretization.
This formulation enables not only high accuracy and scalability, but also flexible deployment across resolutions and
geometries—without requiring model reconfiguration. In the following, we interpret these outcomes through the
lens of spectral learning, compression-based efficiency, and resolution-adaptive generalization.

Spectral Learning Enables Accurate Operator Approximation. GSNO consistently demonstrates high predictive
accuracy across all evaluated benchmarks, validating the strength of its joint space-time spectral formulation. Unlike
coordinate-based multilayer perceptrons or graph message-passing architectures, GSNO projects spatial inputs onto
a truncated graph Laplacian basis Φks , and applies a real-valued temporal Fourier transform to decompose dynamic
behavior. This results in a compact and structured representation over which the learnable spectral kernel Rϕ
performs coherent filtering. The approach captures long-range spatial and temporal dependencies while preserving
the geometric and physical characteristics of the solution. As demonstrated in Figures 2, C.5, C.10, and C.13,
GSNO produces smooth and physically consistent predictions on complex and irregular domains, across both
steady and unsteady PDE types.

Efficient Training via Low-Rank Spectral Compression.

GSNO’s computational efficiency stems from its spectral operating domain and low-rank design. Instead of
repeatedly working on the full-resolution mesh of size Ns, GSNO performs a one-time, offline pre-processing
step to construct the graph Laplacian and compute only the first ks low-frequency eigenvectors using the Locally
Optimal Block Preconditioned Conjugate Gradient method. This truncated spectral basis is then stored and
reused throughout training and inference, ensuring that the per-epoch cost depends only on ks and kt—not on
the full input resolution Ns. By projecting inputs into a compact spectral subspace, GSNO filters a reduced set
of spatial and temporal modes, avoiding the burden of high-resolution spatial convolutions and the depth cost
of stacked message-passing layers. This spectral compression substantially lowers memory usage and compute
requirements, while still retaining the dominant physical modes needed for accurate predictions. Empirical
benchmarks (Figures C.7, C.12, and C.15) confirm that GSNO achieves faster per-epoch runtimes—up to 2–3×
speedups over state-of-the-art baselines—while matching or surpassing their accuracy. This combination of low-
rank design, one-time preprocessing, and mode compression makes GSNO both scalable and practical, enabling
deployment to large-scale or resource-constrained PDE learning tasks without sacrificing fidelity.

Generalization Across Mesh Resolutions. A key strength of GSNO lies in its inherent capacity for resolution-
independent inference. Rather than relying on coordinate encodings or mesh-specific graph constructions, GSNO
learns directly in a spectral basis derived from the normalized graph Laplacian. During inference, the graph
structure and its spectral basis can be recomputed for new spatial discretizations, while the learned spectral kernel
Rϕ remains fixed. This decoupling enables zero-shot generalization to unseen meshes without any retraining or
finetuning. As discussed in Section 3.2 and illustrated in Figures C.6, C.11, C.14, and C.16, GSNO maintains
strong accuracy across a wide range of mesh resolutions, demonstrating robustness and adaptability in both linear
and nonlinear PDE regimes.

Conclusion. GSNO illustrates how joint space-time spectral modeling can offer a unified and scalable framework
for learning solution operators across a wide range of PDE systems. By operating in a frequency domain that
decouples spatial and temporal structure, the model avoids the limitations of coordinate-dependent and mesh-
specific methods. This enables consistent performance without architecture-specific modifications, making GSNO
well-suited for deployment in scientific workflows involving hybrid solvers, resolution-varying simulations, or
surrogate-based acceleration. The results across accuracy, training efficiency, and generalization indicate that
space-time spectral operators provide a principled foundation for reliable and adaptable operator learning in
physics-driven applications.
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APPENDICES

A TABLE OF NOTATIONS

The definitions of key mathematical symbols used throughout this work are summarized in Table A.3.

Table A.3: Summary of notations used in the GSNO methodology.

Notation Meaning

D ⊂ Rd Spatial domain
A,U Input/output function spaces
a ∈ A Input field (e.g., coefficients, initial conditions)
u ∈ U Output field (e.g., PDE solution)
G† True PDE solution operator
Gθ Learnable neural operator with parameters θ
vt ∈ RNs×T×dv Latent representation at layer t
W Learnable pointwise (local) linear operator
Kϕ Learnable global spectral operator
σ Nonlinear activation function (e.g., GELU)
Ns Number of spatial nodes
T Number of temporal steps
Tin, Tout Number of input and output time steps
Φks ∈ RNs×ks Truncated graph Laplacian eigenbasis
v̂s ∈ Rks×T×dv Spatial graph Fourier transform of latent features
v̂st ∈ Cks×kt×dv Joint spatiotemporal Fourier representation
ks Number of retained spatial frequency modes
kt Number of retained temporal frequency modes
Ft,F−1

t Temporal Fourier transform and its inverse
Rϕ ∈ Cks×kt×dv×dv Learnable spectral convolution kernel
A ∈ RNs×Ns Graph adjacency matrix (Gaussian-weighted)
D ∈ RNs×Ns Degree matrix
L̃ ∈ RNs×Ns Normalized graph Laplacian
Λ ∈ RNs×Ns Diagonal matrix of Laplacian eigenvalues
f̂ Graph Fourier coefficients of a signal f

B PDE SETUP AND DATA GENERATION

B.1 2D DARCY FLOW

We consider the steady-state Darcy flow equation defined on an irregular domain shaped like a triangle with a single
notch (see Figure B.4a). The PDE is given by:

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where u(x) denotes the hydraulic head (solution field), and the forcing term is fixed as f(x) = 1.

The spatially-varying diffusion coefficient a(x) is drawn from a pushforward Gaussian random field distribution,
a ∼ ψ#N (0, (−∆ + 9I)−2), where ψ is a nonlinear transformation to ensure positivity, and the Laplacian is
defined with zero Neumann boundary conditions. The GRF is discretized on unstructured triangular meshes
generated using PyMesh. We solve the equation using a generalized finite difference method (GFDM) on multiple
mesh resolutions. This setup enables us to assess the model’s performance under complex geometries and varying
spatial discretization scales. We curated 1,000 samples, allocated 600/200/200 to train/validation/test, and trained
for 1,000 epochs.

B.2 EULER EQUATIONS OVER A 2D AIRFOIL

We model subsonic/transonic flow past a two–dimensional airfoil (see Figure B.4b) using the compressible Euler
equations on an unstructured mesh (Li et al., 2023). The governing system is

∂tρ+∇· (ρu) = 0,

∂t(ρu) +∇· (ρu⊗u+ p I) = 0,

where ρ is density, u ∈ R2 is velocity, and p is pressure.

The dataset is generated on irregular, unstructured meshes and evolved for 10 time steps. It contains 10,000 training
samples and 1,000 samples each for validation and testing. For each sample, the targets are the solution fields
{ρ, p, ux, uy} defined on the provided mesh.
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(b) 

 
(a) (c) 

 
 

(d) (e) 

  

(f) 
 
Figure B.4: Geometries used in the PDE benchmarks. Layout: (a) Darcy—triangle with a notch; (b) 2D Airfoil; (c) Shape-Net 3D Car (3D case; shown as a
representative 2D cross-sectional slice for visualization); (d) Burgers—six-petal flower with a circular hole; (e) Navier–Stokes—ellipse with a triangular hole; (f)
Shallow Water—Lake Union domain with a zoomed view of the southern inlet. All domains feature irregular boundaries and are discretized using unstructured
triangular meshes.
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B.3 SHAPE-NET 3D CAR

We utilize the Car dataset (see Figure B.4c) introduced by Umetani & Bickel (2018), which sources its base
geometries from the ShapeNet Car category (Chang et al., 2015). Consistent with the procedure in Umetani &
Bickel (2018), these geometries were manually modified to remove tires, spoilers, and side mirrors. The dataset
was generated by obtaining time-averaged pressure and velocity fields from simulations of the Reynolds-Averaged
Navier-Stokes (RANS) equations. These simulations incorporated a k–ϵ turbulence model, were stabilized using
SUPG, and solved with a finite element method. A fixed inlet velocity of 20 m/s (72 km/h) was used, resulting in an
approximate Reynolds number of 5× 106. Each individual simulation required roughly 50 minutes to complete,
with car surfaces discretized into 3.7k mesh points. From an initial pool of 889 instances, we selected the 611
water-tight shapes. This final dataset was then divided into 500 instances for training and 111 for validation.

B.4 2D BURGERS’ EQUATION

We study the two-dimensional vector-valued Burgers’ equation defined on an irregular domain shaped like a
six-petal flower with a circular hole at its center (see Figure B.4d). The domain is embedded in the unit square and
subject to no-slip boundary conditions, enforcing both velocity components to vanish along the boundary:

∂tu(x, t) + u(x, t) · ∇u(x, t) = ν∆u(x, t), x ∈ Ω, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω,

where x = (x, y) denotes spatial coordinates and u(x, t) = (u(x, t), v(x, t)) is the velocity vector field. The
viscosity is set to ν = 0.2. Spatial discretization is carried out using a generalized finite difference method (GFDM)
over unstructured triangular meshes generated with PyMesh. Temporal integration is performed using a fourth-order
adaptive Runge–Kutta scheme implemented through the torchdiffeq package. The initial condition u0(x) is
sampled componentwise from a Gaussian random field with distribution µ = N (0, 625(−∆+25I)−2), where the
Laplacian is defined with zero Neumann boundary conditions. The PDE is solved across multiple mesh resolutions
to evaluate the model’s generalization performance under varying discretization levels.

The Burgers’ system was simulated for T = 1.0s physical minutes, generating 51 temporal snapshots to capture
nonlinear transport and dissipation. We prepared a dataset of 1,000 samples, divided into 600 for training, 200 for
validation, and 200 for testing, and trained all models for 1,000 epochs.

B.5 2D NAVIER–STOKES EQUATION

We study the two-dimensional incompressible Navier–Stokes equations in vorticity–stream function formulation,
defined on an irregular domain shaped like an ellipse with a triangular hole (see Figure B.4e). The governing
equations are:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ Ω, t ∈ (0, T ],

−∆ψ(x, t) = w(x, t), x ∈ Ω,

u(x, t) = ∇⊥ψ(x, t) =

(
∂ψ

∂y
, −∂ψ

∂x

)
, x ∈ Ω,

w(x, 0) = w0(x), x ∈ Ω.

ν here is the viscosity. No-slip boundary conditions are imposed by enforcing u = 0 and ∂w
∂n = 0 on ∂Ω. The initial

vorticity w0(x) is sampled from a Gaussian random field with law N (0, (−∆+ 49I)−2.5), where the Laplacian
is equipped with zero Neumann boundary conditions. Spatial discretization is performed using a generalized
finite difference method (GFDM) on unstructured triangular meshes generated via PyMesh. Time integration is
carried out using a fourth-order adaptive Runge–Kutta scheme via the torchdiffeq package, consistent with
the Burgers experiment.

The external forcing term is defined as:

f(x) = 0.1 (sin(2π(x+ y)) + cos(2π(x− y))) .

The Navier–Stokes solver was run for T = 10s minutes of physical time, with 51 solution snapshots saved to
resolve vortical dynamics and flow separation. From this, we generated a dataset of 1,000 samples, partitioned into
600 for training, 200 for validation, and 200 for testing, and trained all models for 1,000 epochs.

B.6 2D SHALLOW WATER EQUATIONS

We consider the two-dimensional nonlinear Shallow Water Equations (SWE) in conservative form, defined over
an irregular domain shaped like the Lake Union (see Figure B.4f). The SWE system models the evolution of
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water surface height and horizontal momentum under gravity and is widely used for simulating wave propagation,
including tsunami and flood inundation scenarios. The governing equations are:

∂th(x, t) +∇ · (hv)(x, t) = 0, x ∈ Ω, t ∈ (0, T ],

∂t(hvx)(x, t) +∇ ·
(
hv2x +

1

2
gh2, hvxvy

)
(x, t) = 0, x ∈ Ω, t ∈ (0, T ],

∂t(hvy)(x, t) +∇ ·
(
hvxvy, hv

2
y +

1

2
gh2

)
(x, t) = 0, x ∈ Ω, t ∈ (0, T ],

where h denotes the fluid height, v = (vx, vy) is the velocity field, and g = 8.81 is the gravitational acceleration.
The state variables are collectively represented as u = [h, hu, hv]⊤, and the system is solved using a finite volume
method with Rusanov flux.

The shallow water simulation setup mimics the propagation of surface gravity waves initiated by a localized
disturbance—an abstraction often used to model real-world scenarios such as tsunami generation from undersea
earthquakes or landslides. The simulation begins with a quiescent water column and introduces a spatially localized
Gaussian perturbation in the height field:

h(x, 0) = hbase + max_field · exp
(
− (x− xc)

2 + (y − yc)
2

2σ2

)
,

hu(x, 0) = 0, hv(x, 0) = 0, x ∈ Ω,

where (xc, yc) ∈ Ω denotes the center of the perturbation—randomly sampled for each instance—and σ controls
the spread of the Gaussian. We use fixed values hbase = 5.0, max_field = 1.0, and σ = 20. This setup leads to
outward-propagating circular wavefronts, reminiscent of the early stages of tsunami evolution in enclosed basins or
coastal zones.

Reflective (wall) boundary conditions are applied on ∂Ω, enforcing zero normal velocity at the domain boundary:

vinv = v − 2(v · n)n,

where n is the outward unit normal vector. This condition ensures zero penetration and free-slip behavior,
making it appropriate for modeling wave reflection against rigid coastal boundaries or natural terrain features.
The SWE system is discretized on an unstructured triangular mesh containing 3,663 nodes, representing the
Lake Union geometry (see Figure B.4f). A finite volume method is used to solve the conservative form of the
equations, with Rusanov flux applied at each face. Reflective wall boundary conditions are enforced on all domain
boundaries. Temporal integration is performed using a fourth-order adaptive Runge–Kutta scheme implemented via
the torchdiffeq package. The simulation spans over 30 physical minutes, during which 51 solution snapshots
are saved to capture the wave propagation dynamics. This configuration allows us to simulate wave propagation and
reflection in a closed, irregular lake. The dataset includes multiple Gaussian-perturbed initial conditions sampled on
varying mesh resolutions, enabling mesh-invariant surrogate modeling and resolution-aware prediction benchmarks.
For this problem, we generated a dataset of 1,000 samples, divided into 600 for training, 200 for validation, and
200 for testing, and trained all models for 1,000 epochs.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS FOR DARCY FLOW

Figure C.5 shows a sample prediction for the steady-state Darcy flow problem, comparing the input field, ground
truth, and GSNO output. Figure C.6 reports the resolution-based generalization performance, highlighting GSNO’s
accuracy gains over baselines. Figure C.7 presents the training efficiency of all models across varying mesh
resolutions.
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Table C.4: Comparison of neural operator models on Darcy Flow (Ns = 1184).

Model Relative L2 Error RMSE MAE

CORAL 0.0664 4.82 × 10−4 3.38 × 10−4

Geo-FNO 0.0548 3.97 × 10−4 2.91 × 10−4

MGKN 0.0242 1.74 × 10−4 1.43 × 10−4

DeepONet 0.0312 2.60 × 10−4 2.04 × 10−4

AMG 0.0172 1.29 × 10−4 9.83 × 10−5

SP2GNO 0.0150 1.12 × 10−4 8.92 × 10−5

GNOT 0.0118 8.86 × 10−5 6.74 × 10−5

Transolver 0.0142 1.07 × 10−4 8.11 × 10−5

GSNO (Ours) 0.0083 1.84 × 10−5 1.62 × 10−5

0.0 0.5 1.0
x

0.0

0.5

1.0

y

a(x, y)

0.0 0.5 1.0
x

0.0

0.5

1.0

y

Ground Truth u(x,y)

0.0 0.5 1.0
x

0.0

0.5

1.0

y

Predicted u(x,y)

Figure C.5: Steady-state Darcy flow simulation on an irregular triangular domain with a notch. The first column shows the input diffusion field a(x, y), the second
column shows the ground truth hydraulic head u, and the third column presents GSNO predictions. The model is trained and tested on a mesh withNs = 1184
points, highlighting GSNO’s ability to accurately recover the solution from heterogeneous input fields.
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Figure C.6: Resolution-based generalization comparison for the steady-state Darcy flow problem. Left: Relative L2 error across increasing mesh resolutions for
all models. Right: Performance gap with respect to GSNO, shown as the ratio of each model’s error to GSNO’s at the same resolution. All models are trained
and evaluated on identical unstructured meshes. GSNO demonstrates superior predictive accuracy across all resolutions, with error reductions of up to 8× over
competing methods.
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Figure C.7: Training efficiency of neural operator models on Darcy Flow across increasing spatial resolutions. Left: Average runtime per epoch (in seconds) across
six mesh resolutions from 298 to 3421 nodes. Right: Slowdown relative to GSNO, computed as the ratio of each model’s runtime to GSNO’s at the same resolution.
GSNO consistently achieves the fastest per-epoch training, showcasing its efficiency on steady-state PDEs.

C.2 ADDITIONAL RESULTS FOR EULER EQUATIONS OVER A 2D AIRFOIL

Figure C.8 shows a qualitative one-step example for the 2D Airfoil. Table C.5 reports the corresponding quantitative
metrics—training time (s/epoch) and errors (Relative L2, RMSE, MAE) for fluid quantities across all models.
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 Figure C.8: 2D Airfoil (compressible Euler) — one-step prediction. Columns: (left) input state at time t, a(x, y); (middle) ground truth at t+1, u(x, y); (right)

GSNO prediction at t+1. Rows: velocity ux (top), velocity uy (middle), and pressure p (bottom). All fields are on the same unstructured mesh withNs = 5233;
the white region indicates the airfoil.

Table C.5: Comparison of neural operator models on 2D-Airfoil (Ns = 5233)

Model Train
(s/epoch)

Density Pressure Velocity_x Velocity_y
Rel.L2 RMSE MAE Rel.L2 RMSE MAE Rel.L2 RMSE MAE Rel.L2 RMSE MAE

CORAL 252 0.0650 1.49 × 10−2 1.27 × 10−2 0.0610 1.34 × 10−2 1.13 × 10−2 0.0365 4.93 × 10−3 4.20 × 10−3 0.0410 6.15 × 10−3 5.12 × 10−3

Geo-FNO 298 0.0580 1.33 × 10−2 1.13 × 10−2 0.0550 1.21 × 10−2 1.02 × 10−2 0.0320 4.32 × 10−3 3.68 × 10−3 0.0360 5.40 × 10−3 4.50 × 10−3

MGKN 264 0.0500 1.15 × 10−2 0.975 × 10−2 0.0480 1.06 × 10−2 8.88 × 10−3 0.0215 2.90 × 10−3 2.47 × 10−3 0.0260 3.90 × 10−3 3.25 × 10−3

DeepONet 312 0.0400 9.20 × 10−3 7.80 × 10−3 0.0370 8.14 × 10−3 6.85 × 10−3 0.0290 3.92 × 10−3 3.34 × 10−3 0.0310 4.65 × 10−3 3.88 × 10−3

AMG 672 0.0021 4.83 × 10−4 4.09 × 10−4 0.0020 4.40 × 10−4 3.70 × 10−4 0.0014 1.89 × 10−4 1.61 × 10−4 0.0018 2.70 × 10−4 2.25 × 10−4

SP2GNO 189 0.0030 6.90 × 10−4 5.80 × 10−4 0.0028 6.20 × 10−4 5.20 × 10−4 0.0022 3.00 × 10−4 2.50 × 10−4 0.0025 3.80 × 10−4 3.20 × 10−4

GNOT 121 0.0054 1.24 × 10−3 1.05 × 10−3 0.0049 1.08 × 10−3 8.97 × 10−4 0.0040 5.40 × 10−4 4.60 × 10−4 0.0040 6.00 × 10−4 5.00 × 10−4

Transolver 108 0.0036 8.28 × 10−4 7.02 × 10−4 0.0032 7.04 × 10−4 5.92 × 10−4 0.0028 3.78 × 10−4 3.22 × 10−4 0.0035 5.25 × 10−4 4.38 × 10−4

GSNO (Ours) 96 0.0012 2.76 × 10−4 2.34 × 10−4 0.0012 2.64 × 10−4 2.22 × 10−4 0.0009 1.21 × 10−4 1.04 × 10−4 0.0008 1.20 × 10−4 1.00 × 10−4

C.3 ADDITIONAL RESULTS FOR SHAPE-NET 3D CAR

Figure C.9 illustrates a representative prediction from GSNO on the Car3D dataset, highlighting the reconstructed
velocity streamlines and pressure distribution. The corresponding quantitative comparison is provided in Table C.6,
which reports per-epoch training cost (s/epoch) together with error measures (Relative L2, RMSE, MAE) for
velocity and pressure across all competing models.

True streamlines Predicted streamlines 

 
 

 

Figure C.9: Shape-Net 3D Car — flow streamlines. Left: reference simulation; right: GSNO prediction.
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Table C.6: Comparison of neural operator models on Shape-Net 3D Car (Ns = 32186)

Model Train
(s/epoch)

Pressure Velocity
Rel.L2 RMSE MAE Rel.L2 RMSE MAE

CORAL 62 0.1680 4.20 × 10−2 3.57 × 10−2 0.1750 4.72 × 10−2 4.02 × 10−2

Geo-FNO 58 0.1560 3.90 × 10−2 3.31 × 10−2 0.1620 4.37 × 10−2 3.72 × 10−2

MGKN 67 0.1350 3.38 × 10−2 2.87 × 10−2 0.1420 3.83 × 10−2 3.26 × 10−2

DeepONet 87 0.1400 3.50 × 10−2 2.98 × 10−2 0.1480 4.00 × 10−2 3.40 × 10−2

AMG 181 0.0878 2.20 × 10−2 1.87 × 10−2 0.0919 2.48 × 10−2 2.11 × 10−2

SP2GNO 48 0.1005 2.50 × 10−2 2.13 × 10−2 0.1102 2.95 × 10−2 2.50 × 10−2

GNOT 36 0.1199 3.00 × 10−2 2.55 × 10−2 0.1206 3.26 × 10−2 2.77 × 10−2

Transolver 27 0.0993 2.48 × 10−2 2.11 × 10−2 0.1208 3.26 × 10−2 2.77 × 10−2

GSNO (Ours) 24 0.0712 1.78 × 10−2 1.51 × 10−2 0.0759 2.05 × 10−2 1.74 × 10−2

C.4 ADDITIONAL RESULTS FOR 2D BURGERS’ EQUATION

Figure C.10 presents GSNO predictions for the 2D Burgers’ equation benchmark, showcasing both horizontal and
vertical velocity components over time. Figures C.11 and C.12 provide a comparative analysis of generalization
accuracy across resolutions and training efficiency under varying temporal settings.

Table C.7: Comparison of neural operator models on Burgers’ Equation (Ns = 1168).

Model Temporal Config: 1→50 Temporal Config: 3→48 Temporal Config: 5→46 Temporal Config: 10→41

Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE

CORAL 0.1542 1.30 × 10−1 9.47 × 10−2 0.1308 1.05 × 10−1 7.97 × 10−2 0.1052 7.76 × 10−2 6.15 × 10−2 0.0966 6.88 × 10−2 5.52 × 10−2

Geo-FNO 0.1968 1.59 × 10−1 1.10 × 10−1 0.1718 1.32 × 10−1 9.58 × 10−2 0.1564 1.17 × 10−1 8.71 × 10−2 0.1410 1.02 × 10−1 7.77 × 10−2

MGKN 0.0876 5.86 × 10−2 4.78 × 10−2 0.0686 3.68 × 10−2 3.10 × 10−2 0.0612 3.09 × 10−2 2.62 × 10−2 0.0562 2.76 × 10−2 2.35 × 10−2

DeepONet 0.1146 8.56 × 10−2 6.70 × 10−2 0.1004 6.98 × 10−2 5.59 × 10−2 0.0894 5.79 × 10−2 4.72 × 10−2 0.0846 5.25 × 10−2 4.32 × 10−2

AMG 0.0812 5.45 × 10−2 4.46 × 10−2 0.0694 3.74 × 10−2 3.15 × 10−2 0.0570 2.88 × 10−2 2.48 × 10−2 0.0540 2.63 × 10−2 2.25 × 10−2

GNOT 0.1301 9.60 × 10−2 7.60 × 10−2 0.1232 8.90 × 10−2 7.10 × 10−2 0.0907 6.30 × 10−2 5.05 × 10−2 0.0855 5.75 × 10−2 4.60 × 10−2

SP2GNO 0.1054 7.20 × 10−2 5.85 × 10−2 0.0998 6.60 × 10−2 5.48 × 10−2 0.0736 3.95 × 10−2 3.30 × 10−2 0.0695 3.50 × 10−2 3.02 × 10−2

Transolver 0.0806 5.40 × 10−2 4.42 × 10−2 0.0763 4.10 × 10−2 3.44 × 10−2 0.0564 2.85 × 10−2 2.45 × 10−2 0.0534 2.58 × 10−2 2.20 × 10−2

GSNO 0.0221 1.21 × 10−2 1.05 × 10−2 0.0213 1.16 × 10−2 1.01 × 10−2 0.0156 7.60 × 10−3 6.67 × 10−3 0.0148 7.20 × 10−3 6.32 × 10−3
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Figure C.10: 2D Burgers’ equation on an irregular flower-shaped domain with a circular hole. Top row: Ground truth evolution of the horizontal velocity component
u. Bottom row: GSNO inference predictions of the vertical component v. The model is trained and evaluated on the same resolution mesh withNs = 1168 nodes
and 51 temporal snapshots. Inference is performed using Tin = 5 input steps to forecast Tout = 46 future steps.
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Figure C.11: Resolution-wise generalization results on the 2D Burgers’ equation benchmark. Left: Relative L2 error on the test set across increasing spatial
resolutions. Right: Error degradation relative to GSNO, computed as the ratio of each model’s error to GSNO’s at the same resolution. All models are trained
and evaluated on matching meshes using Tin = 5 input snapshots to predict Tout = 46 future steps. GSNO consistently outperforms baselines across all scales,
achieving up to 10× lower error.
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Figure C.12: Training efficiency of neural operator models on Burgers’ equation under varying temporal configurations at resolutionNs = 1168. Left:
Average runtime per epoch (in seconds) across different temporal input-output setups (Tin → Tout). Right: Slowdown relative to GSNO, computed as the ratio of
each model’s runtime to GSNO’s at the same setting. GSNO consistently achieves the lowest per-epoch runtime, highlighting its computational efficiency.

C.5 ADDITIONAL RESULTS FOR 2D NAVIER–STOKES EQUATION EQUATION

Figure C.13 demonstrates GSNO’s ability to perform zero-shot super-resolution on the 2D Navier–Stokes equation
benchmark. Figures C.14 and C.15 further present generalization accuracy across resolutions and training efficiency
under varying temporal input-output settings.

Table C.8: Comparison of neural operator models on Navier–Stokes Equation (Ns = 1244).

Model Temporal Config: 1→50 Temporal Config: 3→48 Temporal Config: 5→46 Temporal Config: 10→41

Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE

CORAL 0.1654 8.91 × 10−1 6.59 × 10−1 0.1412 7.61 × 10−1 5.79 × 10−1 0.1148 6.19 × 10−1 4.86 × 10−1 0.1070 5.77 × 10−1 4.57 × 10−1

Geo-FNO 0.2056 1.11 × 10+0 7.81 × 10−1 0.1790 9.65 × 10−1 7.02 × 10−1 0.1614 8.70 × 10−1 6.47 × 10−1 0.1512 8.15 × 10−1 6.13 × 10−1

MGKN 0.0964 5.20 × 10−1 4.16 × 10−1 0.0770 4.15 × 10−1 3.39 × 10−1 0.0654 3.52 × 10−1 2.92 × 10−1 0.0606 3.27 × 10−1 2.72 × 10−1

DeepONet 0.1250 6.74 × 10−1 5.23 × 10−1 0.1096 5.91 × 10−1 4.66 × 10−1 0.0958 5.16 × 10−1 4.14 × 10−1 0.0916 4.94 × 10−1 3.98 × 10−1

AMG 0.1060 5.71 × 10−1 4.61 × 10−1 0.0780 4.20 × 10−1 3.39 × 10−1 0.0580 3.13 × 10−1 2.52 × 10−1 0.0540 2.91 × 10−1 2.35 × 10−1

GNOT 0.1876 1.01 × 10+0 8.16 × 10−1 0.1326 7.15 × 10−1 5.77 × 10−1 0.0912 4.91 × 10−1 3.97 × 10−1 0.0844 4.55 × 10−1 3.67 × 10−1

SP2GNO 0.1533 7.35 × 10−1 5.90 × 10−1 0.1081 5.80 × 10−1 4.65 × 10−1 0.0744 3.65 × 10−1 2.95 × 10−1 0.0689 3.35 × 10−1 2.70 × 10−1

Transolver 0.1189 6.41 × 10−1 5.17 × 10−1 0.0836 4.51 × 10−1 3.64 × 10−1 0.0575 3.10 × 10−1 2.50 × 10−1 0.0534 2.88 × 10−1 2.32 × 10−1

GSNO 0.0336 1.81 × 10−1 1.55 × 10−1 0.0237 1.28 × 10−1 1.11 × 10−1 0.0164 8.84 × 10−2 7.71 × 10−2 0.0152 8.19 × 10−2 7.15 × 10−2
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Initial Vorticity t = 3.2 (s) t = 6.6 (s) t = 10.0 (s)

Ground Truth

Prediction

Figure C.13: Navier–Stokes simulation with viscosity ν = 10−3, demonstrating the model’s ability to perform zero-shot super-resolution. The GSNO is trained on
a coarse point cloud withNs = 972 nodes and evaluated on a finer mesh withNs = 1903 nodes without retraining. Ground truth results are shown on the top
row, and GSNO predictions are shown on the bottom row. (See Section 3.2 for further details.)

409 566 815 1244 2211 3823
Resolution

Geo-FNO
CORAL

DeepONet
MGKN

AMG
Transolver

SP2GNO
GNOT
GSNO

M
od

el

0.1804 0.1762 0.1687 0.1614 0.1513 0.1438
0.1657 0.1610 0.1502 0.1148 0.0985 0.0930
0.1256 0.1202 0.1110 0.0958 0.0880 0.0842
0.0968 0.0904 0.0806 0.0654 0.0610 0.0586
0.1190 0.1083 0.0924 0.0580 0.0495 0.0468
0.1165 0.1052 0.0888 0.0575 0.0486 0.0460
0.1358 0.1226 0.1084 0.0744 0.0668 0.0635
0.1550 0.1400 0.1280 0.0912 0.0850 0.0810
0.0341 0.0308 0.0257 0.0164 0.0143 0.0136

Relative L2 Error

409 566 815 1244 2211 3823
Resolution

Geo-FNO
CORAL

DeepONet
MGKN

AMG
Transolver

SP2GNO
GNOT

5.29 5.72 6.56 9.84 10.58 10.57
4.86 5.23 5.84 7.00 6.89 6.84
3.68 3.90 4.32 5.84 6.15 6.19
2.84 2.94 3.14 3.99 4.27 4.31
3.49 3.52 3.60 3.54 3.46 3.44
3.42 3.42 3.46 3.51 3.40 3.38
3.98 3.98 4.22 4.54 4.67 4.67
4.55 4.55 4.98 5.56 5.94 5.96

Error Ratio Relative to GSNO

0.05

0.10

0.15

Re
la

tiv
e 

L 2
 E

rro
r

4

6

8

10

× 
Er

ro
r R

at
io

(B
as

el
in

e 
/ G

SN
O)

Figure C.14: Resolution-based generalization comparison for the 2D Navier–Stokes equation in vorticity form. Left: Relative L2 error across increasing mesh
resolutions for all models. Right: Accuracy gap with respect to GSNO, computed as the ratio of each model’s error to GSNO’s error at each resolution. All
models are trained and tested on matching unstructured meshes using Tin = 5 → Tout = 46. GSNO consistently achieves the lowest error across all resolutions,
outperforming others by margins of up to 10×.
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Figure C.15: Training efficiency of neural operator models on the 2D Navier–Stokes equation under varying temporal configurations at resolution
Ns = 1244. Left: Average runtime per epoch (in seconds) for different input-output lengths (Tin → Tout). Right: Runtime overhead relative to GSNO, computed
as the ratio of each model’s epoch runtime to GSNO’s at the same setting. GSNO remains the most computationally efficient, outperforming all baselines in training
speed across temporal configurations.

C.6 ADDITIONAL RESULTS FOR 2D SHALLOW WATER EQUATIONS EQUATION

Figure C.16 reports the generalization accuracy of GSNO on the 2D Shallow Water Equations benchmark across
different mesh resolutions. Figure C.17 further compares the training efficiency of all models under varying
temporal input-output settings, highlighting GSNO’s computational advantages.
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Table C.9: Comparison of neural operator models on Shallow Water Equation (Ns = 1830).

Model Temporal Config: 1→50 Temporal Config: 3→48 Temporal Config: 5→46 Temporal Config: 10→41

Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE Rel L2 RMSE MAE

CORAL 0.1784 1.78 × 10−1 1.52 × 10−1 0.1534 1.53 × 10−1 1.31 × 10−1 0.1238 1.24 × 10−1 1.07 × 10−1 0.1162 1.16 × 10−1 1.00 × 10−1

Geo-FNO 0.2112 2.11 × 10−1 1.79 × 10−1 0.1848 1.85 × 10−1 1.58 × 10−1 0.1650 1.65 × 10−1 1.41 × 10−1 0.1526 1.53 × 10−1 1.31 × 10−1

MGKN 0.1128 1.13 × 10−1 9.79 × 10−2 0.0876 8.76 × 10−2 7.63 × 10−2 0.0724 7.24 × 10−2 6.32 × 10−2 0.0668 6.68 × 10−2 5.84 × 10−2

DeepONet 0.1284 1.28 × 10−1 1.11 × 10−1 0.1128 1.13 × 10−1 9.79 × 10−2 0.0982 9.82 × 10−2 8.53 × 10−2 0.0904 9.04 × 10−2 7.87 × 10−2

AMG 0.1210 1.21 × 10−1 1.04 × 10−1 0.0890 8.90 × 10−2 7.65 × 10−2 0.0692 6.92 × 10−2 5.95 × 10−2 0.0630 6.30 × 10−2 5.42 × 10−2

GNOT 0.2150 2.15 × 10−1 1.85 × 10−1 0.1534 1.53 × 10−1 1.32 × 10−1 0.1093 1.09 × 10−1 9.40 × 10−2 0.0995 9.95 × 10−2 8.56 × 10−2

SP2GNO 0.1752 1.75 × 10−1 1.51 × 10−1 0.1250 1.25 × 10−1 1.08 × 10−1 0.0891 8.91 × 10−2 7.66 × 10−2 0.0810 8.10 × 10−2 6.97 × 10−2

Transolver 0.1354 1.35 × 10−1 1.16 × 10−1 0.0965 9.65 × 10−2 8.40 × 10−2 0.0689 6.89 × 10−2 5.93 × 10−2 0.0625 6.25 × 10−2 5.38 × 10−2

GSNO 0.0375 3.75 × 10−2 3.30 × 10−2 0.0268 2.68 × 10−2 2.36 × 10−2 0.0193 1.93 × 10−2 1.70 × 10−2 0.0174 1.74 × 10−2 1.54 × 10−2
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Figure C.16: Resolution-based generalization comparison for the 2D Shallow Water Equation (SWE). Left: Relative L2 error across increasing mesh resolutions for
all models. Right: Accuracy gap with respect to GSNO, computed as the ratio of each model’s error to GSNO’s error at each resolution. All models are trained and
tested on matching unstructured meshes using Tin = 5 → Tout = 46. GSNO consistently delivers the highest predictive accuracy across spatial scales, with
improvements of up to 7× over baseline methods.
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Figure C.17: Training efficiency of neural operator models on the 2D Shallow Water Equations at resolutionNs = 3663. Left: Average runtime per epoch
(in seconds) for various temporal configurations (Tin → Tout). Right: Relative runtime overhead, calculated as the ratio of each model’s epoch runtime to GSNO’s.
GSNO achieves the best training efficiency across all settings, offering significant speedups over baseline models in time-dependent simulations.

D BAYESIAN INVERSION RESULT FOR DARCY FLOW

This appendix presents the results of the Bayesian inverse problem described in Section 3.3, where we aim to
recover the coefficient field a(x, y) ∈ R1184×1 in Darcy flow from a single output solution uobs ∈ R1184×1. We
use the Metropolis–Hastings algorithm to sample from the posterior distribution over a, leveraging GSNO as the
surrogate forward model. We assume a Gaussian prior on a ∼ N (0, σ2

priorI), and define the posterior using a
squared-error misfit between the GSNO prediction and the observed output. Since the observations are noise-free,
the unnormalized log-posterior becomes:

log p(a | uobs) ∝ −1

2
∥GSNO(a)− uobs∥2 −

1

2σ2
prior

∥a∥2.

A total of 5,000 samples are drawn from the posterior distribution, with the first 500 discarded as burn-in. Each
iteration involves a single forward evaluation of the GSNO model, enabling efficient sampling due to its mesh-
invariant spectral formulation and GPU-accelerated execution. Figure D.18 presents a comparison between the true
coefficient field and the posterior mean inferred from the sampled distribution. The close agreement illustrates
GSNO’s effectiveness in enabling fast and accurate Bayesian inversion under noise-free conditions.
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Figure D.18: Posterior mean of the coefficient field inferred from noise-free observations uobs ∈ R1184×1, using GSNO as the surrogate model and 5,000
Metropolis–Hastings samples. The reconstructed field closely matches the true coefficient.

E ABLATION RESULTS AND ANALYSIS

This section evaluates the contribution of key components in the GSNO architecture through a series of ablation
experiments. Four modifications are considered: (1) removing the spectral kernel Rϕ, (2) disabling the local
residual path W , (3) replacing the temporal Fourier transform (FFT) with a multilayer perceptron, and (4) using a
random orthonormal basis instead of the Laplacian eigenbasis Φks . Experiments are conducted on the steady-state
Darcy flow and the time-dependent 2D Burgers’ equation. The training setup and mesh resolution match those used
in the main experiments. For Burgers’, we use the configuration Tin = 5 → Tout = 46; Darcy is treated as a static
mapping from input field a(x) to output solution u(x). Results are reported in Table E.10.

Table E.10: Ablation results on GSNO architecture. Each variant is evaluated on Darcy Flow (steady-state) and Burgers’ Equation (time-dependent, with
Tin = 5 → Tout = 46). Removing or altering core components increases error and/or runtime.

Model Variant (a) Darcy Flow
(Ns = 1184)

(b) Burgers’ Equation
(Ns = 1168)

Relative L2 Error Runtime (s/epoch) Relative L2 Error Runtime (s/epoch)

Full GSNO (ours) 0.0083 2.24 0.0156 3.12
No Spectral Kernel (Rϕ = I) 0.0126 2.11 0.0243 3.05
No Local Path (W = 0) 0.0111 2.21 0.0278 3.08
No Temporal FFT (MLP instead) – – 0.0315 2.47
Random Spatial Basis 0.0472 2.31 0.0982 3.15

The results show that removing the spectral kernel reduces accuracy on both problems. While spectral projection
alone provides a useful basis, learning to mix frequencies improves global expressivity. Disabling the local residual
path leads to a similar drop, particularly on Darcy flow, indicating that local updates are important for correcting
and refining the spectral output.

Replacing the temporal FFT with an MLP has the most significant effect. Without access to global temporal
frequencies, the model struggles with dynamic tasks like Burgers’ and becomes slower to train. The largest
degradation occurs when the Laplacian eigenbasis is replaced with a random basis. This confirms that spatial
generalization strongly depends on the geometry-aware structure encoded in the Laplacian modes.

These results demonstrate that all components of GSNO contribute meaningfully to its performance. Their combined
effect supports efficient learning of PDE solutions across space and time, even on irregular domains.
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F GSNO HYPERPARAMETERS

F.1 GSNO ARCHITECTURE, TRAINING SETUP, AND SENSITIVITY TO THE NUMBER OF SPATIAL AND
TEMPORAL MODES

Two important hyperparameters in GSNO are the number of spatial modes ks and the number of temporal modes
kt. Together they control the trade-off between accuracy, efficiency, and generalization. Larger values capture finer
details but increase computation and can lead to overfitting, while smaller values act as a regularizer but may lose
important information. The parameter ks determines how many graph Laplacian eigenvectors are used to form the
spatial spectral basis. We fix kt = 8 and evaluate ks ∈ {4, 6, 8, 16, 32} on the 2D Navier–Stokes case (Ns = 1244,
Temporal Config: 5→46). We report Relative L2 error (lower is better) and CPU time per epoch.

Table F.11: Sensitivity of GSNO to spatial modes ks on 2D Navier–Stokes (Ns=1244, kt=8).

Spatial Modes ks Relative L2 Error CPU Time / epoch (s)
4 0.0412 2.11
6 0.0351 3.85
8 0.0164 4.17
16 0.0218 7.12
32 0.0275 10.98

As shown in Table F.11, performance follows a U–shaped curve: very small ks underfits, very large ks increases
cost and slightly hurts generalization. The sweet spot is ks = 8, which minimizes error with moderate runtime. In
practice, values between 6 and 10 work well. Next, we fix ks = 8 (the optimal setting above) and vary kt to see its
impact. The parameter kt controls how many Fourier modes are used along the temporal dimension. Larger kt can
improve long-term dynamics but at the expense of slower training.

Table F.12: Sensitivity of GSNO to temporal modes kt on 2D Navier–Stokes (Ns=1244, ks=8).

Temporal Modes kt Relative L2 Error CPU Time / epoch (s)
4 0.0287 3.02
6 0.0219 3.65
8 0.0164 4.17
12 0.0182 5.46
16 0.0235 6.88

Table F.12 shows a similar trend: too few temporal modes limit accuracy, while too many slow training and slightly
degrade generalization. The best balance occurs at kt = 8.

Overall, GSNO achieves the best trade-off when both ks and kt are chosen in the mid-range. Too few modes
limit expressivity, while too many increase cost and risk overfitting. Based on our experiments, ks = 8 and
kt = 8 provide a strong default setting for 2D Navier–Stokes and related PDE benchmarks. We therefore used this
configuration in our main experiments.

Table F.13 summarizes the architecture and training hyperparameters used for GSNO across all benchmark PDEs.
The columns "ks" and "kt" represent the number of retained spectral modes in the spatial (graph Laplacian) and
temporal (FFT) domains, respectively. The "Width" column denotes the latent feature dimensionality throughout
the GSNO blocks. Each block includes a learnable 4D spectral kernel and a residual 1×1 convolution branch,
followed by a GELU nonlinearity. Inputs and outputs are min-max normalized per dataset. All GSNO models are
trained using the Adam optimizer with a batch size of 32.

Table F.13: GSNO architecture and training hyperparameters.

PDE Case ks kt Width Lifting
MLP GSNO Layers Projection

MLP
Spatial
Branch Nonlinearity #Params LR Epochs

Darcy Flow 8 – 20 1-layer 4 2-layer: (20 × 128), (128 × 1) Conv 1×1 GELU 20,817 0.001 1000
2D Airfoil 8 – 20 1-layer 4 2-layer: (20 × 128), (128 × 1) Conv 1×1 GELU 20,817 0.001 1000
Shape Net 3d Car 8 - 40 1-layer 4 2-layer: (20 × 128), (128 × 1) Conv 1×1 GELU 42,516 0.001 1000
Burgers’ Equation 8 8 40 1-layer 4 2-layer: (20 × 128), (128 × 2) Conv 1×1 GELU 431,108 0.001 1000
Navier–Stokes 8 8 40 1-layer 4 2-layer: (20 × 128), (128 × 1) Conv 1×1 GELU 430,857 0.001 1000
Shallow water 8 8 40 1-layer 4 2-layer: (20 × 128), (128 × 1) Conv 1×1 GELU 430,857 0.001 1000
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G BASELINE MODELS OVERVIEW, KEY DIFFERENCES, AND HYPERPARAMETERS

We compare GSNO against a diverse set of state-of-the-art neural operator models: DeepONet, MGKN, CORAL,
Geo-FNO, GNOT, Transolver, and AMG. Each baseline embodies a distinct philosophy for operator learning
on irregular or multi-scale domains, ranging from dual-network architectures and kernel-based graph operators
to mesh-free latent encodings, Fourier-based domain warping, transformer-driven attention mechanisms, and
multi-graph constructions. We briefly summarize their architectures below before presenting a detailed comparison.

DeepONet Lu et al. (2021) employs a dual-network structure: a branch network encodes the input function (e.g.,
coefficients or initial conditions), while a trunk network processes spatial or spatiotemporal coordinates. The
outputs of both networks are combined via an inner product to yield the final prediction. This design enables
flexible, pointwise evaluation of the solution operator but does not incorporate mesh structure or explicit spectral
modeling. As a result, DeepONet’s generalization can be sensitive to the distribution and quality of sampled input
points, especially on highly irregular domains.

MGKN Li et al. (2020) extends the kernel integral operator framework using learned multipole kernels over graphs
built from unstructured meshes. It models spatial interactions by encoding inputs and applying graph convolutions
based on Delaunay connectivity. MGKN effectively captures spatial dependencies but does not exploit temporal
structure spectrally. Temporal dynamics are typically modeled through standard sequence processing methods,
limiting their capability to globally capture long-range temporal dependencies.

CORAL Serrano et al. (2023) proposes a mesh-free, coordinate-based neural operator framework. It encodes
input data into a latent space using MLPs and reconstructs outputs through coordinate queries. While this design
allows CORAL to flexibly generalize across different geometries, it lacks structured spatial priors such as Laplacian
smoothness or graph connectivity, which can limit its ability to capture long-range or multi-scale spatial correlations
efficiently.

Geo-FNO Li et al. (2023) adapts Fourier Neural Operators to irregular domains by learning a mapping from the
physical domain to a latent uniform grid using a transformer encoder. Standard Fourier convolutions are then
applied in the latent space. Although Geo-FNO preserves the advantages of global receptive fields inherent to
Fourier methods, its performance depends critically on the smoothness and quality of the learned domain warping.
In highly complex domains with topological irregularities or sharp features, this warping may introduce distortions,
reducing model accuracy and stability.

GNOT (Hao et al., 2023) introduces a transformer-based neural operator designed to jointly address three core
challenges in operator learning: irregular meshes, multiple input functions, and multi-scale physical dynamics.
Its architecture is built around a heterogeneous normalized attention (HNA) mechanism, which encodes arbitrary
types of inputs (e.g., boundary shapes, parameters, or distributed functions) into a unified representation and
applies efficient cross- and self-attention with linear complexity. This enables flexible handling of irregular
discretizations and diverse inputs. In addition, GNOT incorporates a geometric gating mechanism, inspired by
domain decomposition, which adaptively assigns different expert subnetworks to regions of the domain. This soft
domain decomposition allows the model to capture multi-scale phenomena more effectively.

SP2GNO (Sarkar & Chakraborty, 2025) adopts a hybrid design that couples truncated spectral graph convolutions
with a spatial message-passing branch gated by Lipschitz positional embeddings. While this dual-path strategy
balances local and global modeling, it introduces architectural complexity and runtime overhead due to dynamic
gating and stacked GNN layers. More critically, SP2GNO treats the temporal dimension implicitly through
autoregressive rollout of spatial layers, which limits its ability to capture long-range correlations and global
frequency structure. In contrast, GSNO follows a simpler and more principled approach: it directly leverages the
graph Laplacian eigenbasis for spatial spectral learning and augments it with real Fourier transforms along the
temporal dimension, forming a joint space–time spectral kernel without auxiliary gating. This unified treatment
eliminates error accumulation from autoregression, avoids over-smoothing, and reduces computation. As a result,
GSNO achieves higher efficiency and scalability, with faster runtimes, lower memory footprints, and stronger mesh-
invariant generalization, while SP2GNO remains sensitive to graph construction choices. Empirical results confirm
that GSNO consistently surpasses SP2GNO in both accuracy and efficiency across steady-state and time-dependent
PDE benchmarks.

Transolver (Wu et al., 2024) is a transformer-based neural operator specifically designed for solving PDEs across
diverse geometries and boundary conditions. Unlike models that rely on fixed grids or handcrafted kernels,
Transolver treats operator learning as a sequence-to-sequence problem. It encodes input functions and geometric
features through a transformer encoder, then reconstructs solution fields using a decoder equipped with spectral
attention. A key design is its ability to incorporate positional and geometric encodings that allow it to directly
handle irregular domains without requiring domain warping. By leveraging long-range self-attention, Transolver
captures global dependencies in both space and time, which improves its robustness on PDE benchmarks with
complex dynamics.
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AMG (Li et al., 2025) introduces a multi-graph neural operator framework designed to solve PDEs on arbitrary
geometries. Its key innovation is the use of three complementary graphs: a local graph that captures fine-scale,
high-frequency interactions, a global graph that encodes broad spatial dependencies, and a physics graph that
incorporates physical priors into the representation. These graphs are processed through a novel GraphFormer
block with dynamic graph attention, which generalizes attention as a learnable integral operator over irregular
domains. This design allows AMG to balance local detail and global coherence, while explicitly grounding
predictions in physical attributes. Unlike purely spectral or kernel-based models, AMG can adapt to highly complex
geometries and dynamically changing meshes.

G.1 KEY DIFFERENCES COMPARED TO GSNO.

Unlike Geo-FNO, GSNO does not rely on learned domain warping to a latent grid. Instead, it operates directly
on the physical mesh using Delaunay-based graphs and fixed Laplacian eigenvectors, preserving native geometry
without distortion. Compared to DeepONet and CORAL, which lack explicit spectral structure, GSNO projects
features into a spatial spectral basis, capturing global correlations across irregular domains. Relative to MGKN,
which learns multipole graph kernels but does not address temporal dynamics spectrally, GSNO introduces a
real-valued Fourier transform in the temporal dimension, enabling a joint space–time spectral kernel for coherent
dynamical modeling. Compared to transformer-based operators, GSNO follows a lighter but more structured
approach. Unlike GNOT and Transolver, which rely on heavy multi-head attention, GSNO avoids quadratic
attention costs by restricting spectral learning to graph Laplacians and Fourier modes, while still capturing global
dependencies. Unlike the AMG multi-graph strategy that aggregates local, global, and physics graphs, GSNO
emphasizes a single spectral basis with lightweight 1×1 convolutional residual paths, reducing computational
complexity while retaining generalization. Finally, while the SP2GNO (Sarkar & Chakraborty, 2025) framework
combines truncated Laplacian eigenbasis filtering with gated spatial GNN layers, this hybrid design introduces
architectural complexity and depends on k-NN graph construction and message passing. More importantly,
SP2GNO lacks an explicit temporal spectral module, instead modeling time implicitly through stacked GNN
updates, which limits its ability to capture long-range spatiotemporal correlations. In contrast, GSNO integrates
both graph-based spatial spectra and Fourier temporal spectra into a unified space–time kernel, achieving superior
accuracy and efficiency without relying on recurrent or autoregressive iterations. These design choices allow GSNO
to maintain mesh-invariant generalization (via Laplacian recomputation), minimize overhead, and deliver robust
accuracy across steady-state and time-dependent PDEs. As our experiments demonstrate, GSNO achieves higher
predictive accuracy and efficiency compared to all baselines, while requiring fewer architectural components. The
architectural and functional differences between GSNO and the baselines are summarized in Tables G.14 and G.15.

Table G.14: Comparison of GSNO with prior neural operator methods for irregular domains: Core Modeling Features.

Feature DeepONet MGKN CORAL Geo-FNO GNOT Transolver AMG SP2GNO GSNO

Space spectral learning No Yes (multipole kernels) No Yes (after warping) No (attention-based) No (spectral attention, not graph-based) Yes (multi-graph basis) Yes (truncated Laplacian + spectral kernel) Yes (graph Laplacian eigenbasis)
Time spectral learning No No No No No Yes (spectral attention) No No (time implicit via stacked GNNs) Yes (real FFT)
Mesh invariance Partial (fixed sampling) Partial Full Limited (warping quality) Full (HNA encoder) Full (geometric encoding) Full (multi-graph) Partial (depends on k-NN graph construction) Full (via Laplacian recomputation)
GNN stacking required No Yes (spatial GNN layers) No No No (transformer layers) No (transformer layers) Yes (GraphFormer blocks) Yes (gated spatial GNN layers) No (1×1 convolution only)

Table G.15: Comparison of GSNO with prior neural operator methods for irregular domains: Advanced Mechanisms.

Feature DeepONet MGKN CORAL Geo-FNO GNOT Transolver AMG SP2GNO GSNO

Attention mechanism No No No No HNA + geometric gating Multi-head + spectral attention Dynamic graph attention No (uses gated spatial convolution) No (spectral convolution only)
Multi-graph / gating No No No No Yes (soft domain decomposition) No Yes (local, global, physics graphs) Yes (edge gating via Lipschitz embeddings) No
Global space-time convolution No No No No No Yes (global self-attention) Partial (via multi-graph aggregation) No (temporal dynamics implicit, not spectral) Yes (joint space-time spectral kernel)

G.2 HYPERPARAMETERS FOR BASELINE MODELS

All baseline models are retrained under identical data splits and training settings as GSNO to ensure a fair and
consistent comparison. Detailed hyperparameter configurations for each model are provided in Tables G.16–G.19.

Table G.16: Hyperparameters for DeepONet.

Component Configuration

Trunk Network 3-layer MLP, 100 hidden units, ReLU
Branch Network 2-layer MLP, 100 hidden units, ReLU
Input Coordinates on a grid
Output Pointwise function values

Table G.17: Hyperparameters for MGKN.

Component Configuration

Input Encoder 3-layer MLP, 64 units, GELU
Decoder 2-layer MLP, 64 units, GELU
Graph Kernel Multipole (Gaussian RBF)
RBF Width (γ) 1.0
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Table G.18: Hyperparameters for CORAL.

Component Configuration

Encoder 4-layer SIREN, width 128, ω0 = 10
Latent Code 128-dimensional vector
Decoder 3-layer MLP, width 64
Training Strategy Meta-learning (outer/inner loops)
Input Representation Coordinate-based (mesh-free)

Table G.19: Hyperparameters for Geo-FNO.

Component Configuration

Input Encoder 3-layer MLP, width 32, sinusoidal encoding
Latent Mapping Learned warp to regular grid
Latent Grid Uniform FFT grid (2D for static, 3D for temporal PDEs)
Fourier Layers 4 layers, 8 retained modes, width 32
Spectral Operation Complex-valued FFT on latent grid

Table G.20: SP2GNO (Steady-state)

Component Configuration

Blocks (L) 6
Hidden Width (d) 32
Graph Construction k-NN (k=16)
Laplacian Basis First m=32 eigenvectors (LOBPCG)
Spectral Kernel K ∈ Rm×d×d (learnable)
Spatial Branch Gated GCN-style conv
Positional Encoding Lipschitz anchor embeddings

Table G.21: SP2GNO (Time-dependent)

Component Configuration

Blocks (L) 6
Hidden Width (d) 32
Graph Construction k-NN (k=16), fixed per frame
Laplacian Basis Reuse first m=32 eigenvectors
Temporal Handling Train 1→1; autoregressive rollout for multi-step
Rollout Settings Eval: 1→K via iterative 1→1 predictions

Table G.22: Hyperparameters for GNOT.

Component Configuration

Attention Layers 4
Hidden Size (Attention) 256
Embedding Dimension 256
MLP Depth / Width 4 layers, 256 units
Attention Heads 8
Experts (Geometric Gating) 3

Table G.23: Hyperparameters for Transolver.

Component Configuration

Transformer Layers 6
Embedding Dimension 256
MLP Depth / Width 2 layers, 256 units
Attention Heads 8
Spectral Attention Modes 16
Positional Encoding Sinusoidal + geometric features

Table G.24: Hyperparameters for AMG.

Component Configuration

Graph Types Local, Global, Physics
Processor Depth 3 GraphFormer layers
Local Node Number 1024
Global Sample Ratio 75% of nodes
Physics Nodes 32
Attention Heads 8
Hidden Size 256
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H MEMORY FOOTPRINTS

This appendix summarizes the computational footprint of all models. For the NSE and Darcy Flow setups, we
report inference time per batch and peak GPU memory during training and inference at fixed Ns and batch size, as
summarized in Tables H.26 and H.25.

Table H.25: Inference time and memory footprint of models for the Darcy Flow case (Ns=3421, batch size 32).

Model Inference Time (s/batch) Peak Training GPU Mem Inference GPU Mem

CORAL ∼0.025 ∼1.5 GB ∼320 MB
MGKN ∼0.023 ∼1.8 GB ∼360 MB
Geo-FNO ∼0.030 ∼2.1 GB ∼370 MB
GNOT ∼0.027 ∼2.0 GB ∼380 MB
Transolver ∼0.025 ∼1.9 GB ∼380 MB
AMG ∼0.104 ∼2.6 GB ∼420 MB
SP2GNO ∼0.023 ∼2.1 GB ∼400 MB
GSNO ∼0.022 ∼1.8 GB ∼360 MB

Table H.26: Inference time and memory footprint of models for the NSE case (Ns=1244, 5→46, batch size 32).

Model Inference Time (s/batch) Peak Training GPU Mem Inference GPU Mem

CORAL ∼0.31 ∼5.1 GB ∼1.0 GB
MGKN ∼0.27 ∼7.3 GB ∼1.4 GB
Geo-FNO ∼0.32 ∼6.4 GB ∼1.1 GB
GNOT ∼0.261 ∼6.2 GB ∼1.1 GB
Transolver ∼0.239 ∼6.0 GB ∼1.1 GB
AMG ∼0.992 ∼8.5 GB ∼1.2 GB
SP2GNO ∼0.285 ∼6.8 GB ∼1.2 GB
GSNO ∼0.21 ∼5.8 GB ∼1.0 GB
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