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Abstract

In image classification, it is common to utilize a pretrained model to extract
meaningful features of the input images, and then to train a classifier on top of
it to make predictions for any downstream task. Trained on enormous amounts
of data, these models have been shown to contain harmful biases which can hurt
their performance when adapted for a downstream classification task. Further, very
often they may be blackbox, either due to scale, or because of unavailability of
model weights or architecture. Thus, during a downstream task, we cannot debias
such models by updating the weights of the feature encoder, as only the classifier
can be finetuned. In this regard, we investigate the suitability of some existing
debiasing techniques and thereby motivate the need for more focused research
towards this problem setting. Furthermore, we propose a simple method consisting
of a clustering-based adaptive margin loss with a blackbox feature encoder, with no
knowledge of the bias attribute. Our experiments demonstrate the effectiveness of
our method across multiple benchmarks. The code is publicly available at https:
//github.com/abhipsabasu/blackbox_bias_mitigation.

1 Introduction

Deep learning models are to known to inherit harmful stereotypical biases with respect to the different
genders, races, cultures, from the datasets they are trained on [1, 2, 3]. For example, a model trained
on a gender-biased dataset with images of people having blond and non-blond hair may wrongly learn
a correlation between the label ‘blond hair’ and the gender of the person in the image. Thus the model
fails to classify images belonging to minority groups (in this case blond males and non-blond females).
These biases can affect the performance of AI systems handling job recruitment, e-commerce, health
care, face detection and recognition [4, 5, 6]. Models can also learn spurious correlations between
irrelevant training features and the target labels, instead of focusing on the relevant ones [7, 8].
Several works focus on mitigating such biases from trained models in a variety of tasks [9, 10, 11].

In recent times, large-scale models, pretrained on enormous amounts of data, are being used by
machine learning practitioners as feature encoders for numerous downstream applications, as their
features are shown to be semantically rich [12, 13]. However, do these powerful pretrained features
themselves exude the harmful stereotypical biases that are known to affect traditional deep learning
systems? A previous work [14] sheds light on these questions (when the pretrained model can be fully
finetuned on the downstream dataset) – the downstream models finetuned on top of pretrained models
can inherit their biases and such biases can be mitigated simply by manipulating the finetuning data.

In this paper, we investigate a more constrained yet practical problem setting. With billion-parameter
models gaining impetus in today’s world, it may not be feasible to finetune/retrain such models due to
scarcity of resources or unavailability of model weights for privacy concerns [13, 12, 15, 16, 17, 18].
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Figure 1: Summary of our setup. A frozen pretrained encoder is used as a feature extractor for a
downstream task. An adapter is attached on top of the encoder that learns the bias in the downstream
dataset. Finally, the bias is mitigated with the help of an adaptive margin loss, leading to unbiased
predictions. No knowledge of the bias attribute is assumed apriori.

Hence, for downstream classification tasks, simply the classifier layer on top of the pretrained features
is trained on the corresponding dataset, keeping the rest of the network frozen. We ask, to what extent
can such systems be debiased, given that the pretrained model weights are unavailable?

For the scope of this paper, we assume that the downstream dataset consists of multiple groups (e.g.
blond males, non-blond males, blond females, non-blond females) due to the presence of a certain
bias attribute (e.g. gender). We find that the effect of the bias in the downstream model depends on
how well the pretrained feature encodes the target attribute as compared to the bias attribute. The
system remains unbiased if the pretrained features are highly aware of the target attribute (even when
the bias correlation in the downstream dataset is high). However, if the pretrained features instead
predominantly encode the bias attribute, the downstream system becomes biased. A simple solution
to the problem is to group-balance, or reduce the bias-correlation of the finetuning dataset, similar to
the suggestion of Wang et al. [14]. However, as manipulating the bias correlation of a dataset is not
straightforward, we advocate for a specific strategy to debias the system in the given scenario.

To simplify the bias-mitigation task, we insert a trainable adapter module between the pretrained
feature extractor and the classifier. With such a setting, after evaluating existing methods, we find
that a large number of these methods do not yield the expected performance gains compared to the
ERM-trained model, indicating the challenges in the problem setting as well as the necessity of
designing specific debiasing strategies. To aid the mitigation process, we forcefully amplify the bias
in the downstream model into the adapter (following previous works [19, 20]), and then investigate a
number of simple debiasing techniques utilizing this biased adapter. Finally we propose a method
involving clustering-based adaptive margin loss which first clusters the biased feature space, and
accordingly sets the margin value for a given sample such that it is inversely proportional to the
frequency of the sample’s ground truth class in the cluster it belongs to. The problem setting is
depicted in Fig. 1. We summarize our key contributions in this paper below:

• We highlight a practical yet under-explored problem setting on how harmful biases creep into a
model when it uses pretrained but blackbox feature extractors to obtain features.

• We explore the scenarios in which biases can propagate from the pretrained features to the down-
stream tasks and demonstrate the necessity and feasibility of debiasing strategies in such cases.

• To debias, we first amplify the bias learnt by the model from the downstream data and propose a
simple mitigation strategy by utilizing the identified biases and applying an adaptive margin loss.
Extensive experiments show that the proposed method is effective across multiple benchmarks.

2 Related Works

Known biases: Mitigation of biases with the knowledge of the bias attributes, as well as their labels,
is a widely explored problem [21, 22, 23, 24, 25, 26, 27, 28]. Roh et al. [29] propose a sampling
algorithm by formulating a combinatorial optimization problem for unbiased sample selection. While
Sagawa et al. [23] minimize worst-case training loss over the groups formed using the available bias
labels and the target class labels, Zhang et al. [30] disentangle the bias and target representations and
debias the network using a mutual information estimator. Some methods adopt a semi-supervised
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approach, where bias attributes are annotated for only a few data samples [20, 31]. Another body of
work assumes knowledge of the bias attribute but not its specific labels [32, 33, 34, 35].
Unknown biases: Recent works consider the more practical scenario of unavailability of the knowl-
edge of the bias attribute as well as its labels [36, 37, 38, 39, 40, 19, 41, 42, 43]. This area encompasses
a wide variety of works, a subset of which is described here. JTT [19] debiases models using misclas-
sifications from an ERM-trained model. Some approaches like BPA and GEORGE employ clustering
to identify the biases in the dataset [44, 45]. Certain works employ the Generalized Cross-Entropy
(GCE) loss [46, 47] to amplify the biases learnt by the network and then debias it. While most of these
works, like LfF [20, 37, 48], employ two branches in the network, with one branch over-learning the
bias and the other debiasing it, Ahn et al. [40] utilize the GCE loss to learn the bias, and then find
the per-sample gradient of the trained model to obtain a balanced dataset. DebiAN [38] identifies
multiple biases by having a discoverer model which optimizes an equal opportunity violation loss.
Correct-n-Contrast [49] identifies training samples having the same class labels but dissimilar bias
features via Empirical Risk Minimization (ERM) training and then applies contrastive loss–similar to
Contrastive Adapter [50]–to bring the target features of these same-class samples closer. Qraitem
et al [51] propose a sampling method to reduce dataset biases. Kim et al. [52] use a committee of
auxiliary classifiers to identify the biases in the network, assigning large weights to the identified
bias-conflicting samples during the training of the main classifier. Jeon et al. [53] show how bias in a
CNN network is more pronounced at the top layers, and hence, leveraging features from the lower
layers can help the model to exploit less biased representations. Kirichenko et al. [54] observe that
retraining only the last layer is enough for having an unbiased model. However, they require bias
annotations in the 2nd stage of training. This is avoided by LaBonte et al. [55] by constructing a
reweighting dataset using model disagreements for the second stage of training.
Biases in pretrained models: Utilizing pretrained feature extractors for downsteam tasks is a com-
mon trend in recent times. Such encoders may carry biases that crept in from the datasets used for
training them – many recent works focus on quantifying the fairness of such pretrained models [56].
Srinivasan et al. [57] study biases in multimodal vision-language systems. Goyal et al. [58] shows
how pretrained models trained with self-supervision exhibit lesser biases than those trained with
supervision. Recent works show that biases of pretrained models can be reduced by manipulating
the fine-tuning dataset in both Computer Vision and NLP [14, 59]. Salman et al. [60] show that
bias transfer happens from pre-trained models to the downstream tasks, even when the target data
is unbiased. Our problem setting on the other hand consumes features from a blackbox pretrained
encoder and aims to mitigate the biases arising from that encoder. This is challenging, especially
when the bias annotations are not available.

3 Problem Statement and Methodology

3.1 Preliminaries and Problem Setting

This work focuses on the task of image classification. Let X = {x1, x2, . . . xN} be a set of training
images of size N , and {y1, y2, . . . , yN} be the corresponding labels, where each yi ∈ C . Each data
point (xi, yi) is associated with a hidden spurious attribute ai ∈ A, and consequently a group gi ∈ G,
where G = C × A. We assume that each group g ∈ G is present in the training data. In an unbiased
dataset, number of training samples in each g remains approximately equal. However, models tend
to learn spurious correlations when there is an imbalance in these numbers. We refer to samples
favoured most by the ERM trained models as bias-aligned, and the rest as bias-conflicting [20, 38].
The goal is to train a model to optimize a mapping function f : X → R|C|. In ERM training, we
optimize the Cross-Entropy (CE) loss as defined below for a sample (x, y):

LT =

|C|∑
j=1

−pj log p̂j (1)

where [p1, p2, . . . , p|C|] is a one-hot vector representing y. The corresponding predicted probability
vector for the same sample is given by [p̂1, p̂1, . . . , ˆp|C|].

3.2 Biases in Pretrained Features

Extracting features from popular pretrained encoders for downstream applications is a common
norm, as being trained on large amounts of data equips these models to perform well on a variety of
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Table 1: Performance of Waterbirds on different pretrained encoders. We compare the model
performance for a pretrained ViT-H encoder and a pretrained ResNet-18 encoder for three versions
of the training data: a) The original, b) By removing all bias-conflicting (Bi-Co) samples and c)
Group-Balanced. For all cases, the test set remains the same.

Dataset
Type

ViT-H ResNet-18

Worst Group Average Group Worst Group Average Group

Original 88.01 94.79 38.90 76.22
No Bi-Co samples 80.06 90.44 18.22 68.25

Balanced 92.37 95.47 83.55 85.94

tasks. We freeze these models to avoid backpropagating into their architectures that are generally
large-scale [12] and often only accessible through API calls [15, 18, 16, 17]. In this subsection, we
choose the WaterBirds dataset [23] to analyse the effect of the pretrained model on the downstream
performance (see Section 4 for details). We observe two different scenarios here:

Scenario 1: Pretrained features are target-aware. Mehta et al. [61] find that if one chooses a
proper pretrained encoder for their specific downstream task, ERM training on a linear classifier
attached to the pretrained embedding is enough to obtain unbiased predictions. For instance, using
a ViT-H 14 encoder pretrained on the SWAG dataset [62] followed by end-to-end ImageNet [63]
finetuning can achieve state-of-the-art results on the Waterbirds dataset. We find that even if all
the bias-conflicting samples are removed from the training data, the worst group accuracies remain
sufficiently high for the test set (see Table 1). Thus, the pretrained model is highly aware of the
downstream target attribute, and no debiasing is required. However, a single pretrained model is
hardly a panacea for bias mitigation. For instance, the worst group accuracy for the CelebA [64]
dataset’s Blond Hair Classification is merely 6.71%!

Scenario 2: Pretrained features are bias-aware. Contrary to Scenario 1, when we use an ImageNet-
pretrained ResNet-18 as the pretrained encoder, we notice that the worst group accuracies are
considerably low for the original Waterbirds dataset itself (see Table 1). An even further drop is
seen when the bias-conflicting samples are removed. This shows that this feature encoder exhibits
the biases present in the downstream dataset. One simple mitigation strategy is to reduce the bias-
correlation in the training set. Group-balancing the Waterbirds dataset leads to considerably uniform
accuracies across all groups, irrespective of the underlying pretrained model, as shown in Table 1.
This may not always be simple – firstly, the bias attribute may not be known apriori to a practitioner,
and secondly, group-balancing or reducing the bias in the downstream dataset may be expensive.
Further analyses on these lines are presented in Appendix subsection A.1. Thus, for such systems, an
explicit mitigation strategy is required so that the model predictions are unbiased.
3.3 Bias mitigation
To mitigate biases in this problem setting, we consider an image classification model that consists of
3 primary components (see Fig. 1): a) A pretrained feature extractor m to extract the image features
f locked = m(x) (m is blackbox, i.e. frozen) , b) an adapter consisting of a multi-layer perceptron
model h comprising of a single non-linear hidden layer, projecting f locked to a new latent space
defined as f̂ = h(f locked), c) a classifier C, attached to f̂ to obtain the final predictions ŷ = C(f̂).

Performance of existing methods. A large body of work exists in the domain of bias mitigation.
However, most of these works assume a fully trainable feature encoder. We pick a few representative
ones like DebiaN [38], BPA [45], GEORGE [44], LfF [20], JTT [19] and Contrastive Adapter (Co-
Ada) [50] (see Section 2 for details) and explore their efficacy in this setup. We choose three popular
benchmarks: Waterbirds, CelebA, and ColorMNIST-0.995 (descriptions available in Sec 4) and use a
frozen ResNet-18 feature encoder pretrained on the ImageNet dataset for this experiment. We have a
number of key observations (see Table 2):

• LfF performs well on Waterbirds and ColorMNIST-0.995, however, it drops by 14% on CelebA.
Similar trends are seen for other methods as well. This shows that existing methods exhibit
inconsistencies in this constrained problem setting.

• Co-Ada, which was designed to improve the zero-shot performance of foundation models (without
backpropagating into the underlying model), works consistently well across all datasets. However,
Contrastive Adapter is computationally expensive (Appendix Table 17).
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Table 2: Performance of existing methods on the proposed problem setting. We observe that
for three different benchmarks, performance of existing methods is either close to that of the ERM
model (measured by ∆ERM), or not consistently high. Co-Ada [50] is one exception among compared
methods, having the highest worst-group accuracies for all three benchmarks.

Backbone Model Waterbirds CelebA CMNIST-0.995

Worst ∆ERM Worst ∆ERM Bi-Co ∆ERM

ResNet-18

ERM 38.90 0 27.20 0 49.09 0
DebiAN [38] 58.94 20.04 26.10 −1.1 49.82 0.73
BPA [45] 58.70 19.80 66.71 39.51 47.84 −1.25
LfF [20] 66.09 27.19 13.26 −13.94 71.61 22.52
JTT [19] 49.84 10.94 56.25 29.05 42.86 −6.23
GEORGE [44] 59.35 20.45 42.22 15.02 48.77 −0.32
Co-Ada [50] 67.57 28.67 78.37 51.17 65.48 16.39

Figure 2: Effect of increasing weight decay. (a) For CelebA, as λ increases, the worst group
(Blond Male (M-B)) accuracy reduces, though the accuracies for Blond Female (F-B) and Non-blond
Males (M-NB) still remain high. (b) For Waterbirds, we see a fall in both Land-Waterbird (L-WB)
and Water-Landbird (W-LB) accuracies with increasing λ, though the scores for Land-Landbird
(L-LB) and Water-Waterbird (W-WB) remain high. (c) For ColorMNIST, while the bias-conflicting
accuracies reduce as expected, the training accuracy dips beyond λ = 0.1.

The above observations serve as motivating principles behind the proposed method for this problem
setting that is computationally efficient and effective across benchmark datasets.

3.4 Our approach

In this subsection, we present our approach. Inspired by previous works [20, 19, 38], we first amplify
the biases in the system. Following this, we discuss a few alternatives for mitigation that eventually
lead upto our final method.

Bias-amplified Training. We propose learning features f̂ first using an adapter (i.e. an MLP layer)
on top of the pretrained features f locked through ERM training, and then identifying the biases from
these learnt features. The goal is to reduce the worst-group accuracies of the training set while
maintaining the overall training performance – thereby amplifying the bias learnt by the model. As
indicated in previous works [65, 23], we find that increasing the weight decay λ reduces worst-group
performance of the training set considerably. We next show the effect of changing λ on 3 popular
datasets: Waterbirds, CelebA and ColorMNIST-0.995. In Fig. 2(a), we observe that with increasing
weight decay, the worst group accuracies reduce for CelebA’s Blond Hair classification [64] (i.e.
for Blond Males), and also dips for Non-blond Females, while the other two groups’ performances
remain high. This points to the amplification of gender bias, i.e., the model tends to predict Blond
Hair for female images and Non-blond Hair for male images. A similar phenomenon is noticed
in the case of Waterbirds [23], as shown in Fig. 2(b). Although the same pattern is exhibited in
the case of ColorMNIST-0.995 in Fig. 2(c), an interesting observation also emerges. For λ = 0.1,
training accuracy drops off quite steeply. So, with the goal of reducing the performance on bias
conflicting samples, the model may end up not learning anything meaningful at all (as also seen
in Fig. 2(a)). This hints at a tradeoff, where we fix λ to a high value while ensuring the training
accuracy does not fall drastically. We select the model based on the training accuracy as higher
training accuracy ensures optimal learning of the bias-aligned data points even when there is less
learning of the bias-conflicting samples. To avoid all predictions from collapsing to a single class, we

5



Table 3: Comparison of different alternatives. We compare three methods – loss-weighted CE
loss (LW), cluster-weighted CE loss (CW), and cluster-based margin loss (CM). While LW leads to
improved scores compared to an ERM-trained model, CW further improves upon it for CelebA and
ColorMNIST-0.995. Finally, the proposed CM outperforms the above two methods by a large margin.
All results are with respect to an ImageNet-pretrained ResNet-18 model.

Method Waterbirds CelebA ColorMNIST-0.995

Worst Avg Worst Avg Bi-Co Bi-Al Avg

ERM 38.90 76.22 27.20 75.43 49.09 100.00 74.55
LW 69.78 83.52 45.56 79.84 50.58 99.90 75.28
CW 70.16 84.21 69.4 85.16 65.00 99.05 82.00
CM 80.29 84.56 81.61 86.04 72.56 96.28 84.42

sample equally from each class for each batch of the training set. We call the obtained bias-amplified
model B, and utilize its knowledge to design a few alternative mitigation strategies. For debiasing,
we use the same architecture as that of the biased model B, and denote it by D.

Before delving into the rest of our method, we discuss a caveat here. An attentive reader might
enquire as to whether the above technique of bias amplification will always work. We reiterate that
we consider the bias in the downstream dataset to align with that in the feature encoder. An example
to the contrary has been discussed in Scenario 1 (subsection 3.2). This presents an interesting future
direction where one might attempt to debias a feature encoder which does not capture the downstream
dataset bias.

Technique 1: Loss-weighted (LW) Cross-Entropy Loss. We use a weighted CE loss to train
D: LD

LW = −LB
T

∑|C|
j=1 pj log p̂j , where LB

T is the CE loss computed from B for the sample with
respect to its ground truth label. The intuition is that B being biased, it would upweight the CE loss
for the bias-conflicting sample in the mitigation stage. On implementing this for the Waterbirds,
CelebA and ColorMNIST-0.995, we find that even though the mitigation performance increases as
compared to the ERM-trained model, the improvement is not satisfactory (see Table 3).

Technique 2: Cluster-weighted (CW) Cross-Entropy Loss. The adapter features f̂ in the biased
model B are expected to encode the bias in the downstream dataset. Hence, we explore a cluster-based
weighting scheme for bias mitigation by clustering the bias-amplified feature space f̂ in B. We define
K as the number of clusters obtained and m̄z

c as the proportion of class c within the cluster z, i.e.,

m̄z
c =

nz
c + ϵ∑

c′∈C n
z
c′ + ϵ

(2)

where nz
c is the number of times samples of class c have occurred in cluster z. For any sample in the

training data, we find the cluster it belongs to (say z), and then weight the CE loss for training D

in the following way: LD
LW = −

∑|C|
j=1(1− m̄z

j )pj log p̂j . Intuitively, the loss is upweighted if the
sample belongs to a minority class in its cluster, otherwise it is downweighted. From Table 3, we find
that it is a significant improvement over LW. Infact, from Table 2, we find that it performs on par
with Co-Ada [50] for Waterbirds and ColorMNIST-0.995.

3.5 Cluster-based Adaptive Margin Loss

In Technique 2, we see that clustering-based weighting methods can be effective, where we upweight
samples belonging to the minority classes in a cluster, whereas we downweight the others proportion-
ally to increase the importance of the sparse samples. We further ask, inside each cluster, can we make
the features of the individual classes more discriminative? We conjecture that in such a case, it will
be easier for the debiasing model D to distinguish among the samples from the different groups in the
dataset (assuming that the clusters are an approximate representation of the true groups in the dataset).
To this end, margin losses are an efficient class of loss functions that can reduce intra-class distance
and increase inter-class distance in the feature space. Enforcing such margin constraints on hyper-
spherical feature spaces has been shown to be beneficial in case of deep face recognition [6, 5, 66],
long-tailed learning [67], few-shot learning [68] and the language-bias problem [69, 70] in Visual
Question Answering (VQA). Especially, inspired by the works of long-tailed learning and VQA, we
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make the margins adaptive to ensure discriminative features among the frequently and infrequently
occurring classes within a cluster. To achieve this, we utilize the weights used in the cluster-weighted
(CW) CE loss (defined above) as the margin values. We begin by defining the following:

Normalized CE loss: First, we reformulate the CE loss as a cosine loss [5, 6], by L2-normalizing
the classifier weight vectors Wk ∈ C (recall that C is the classifier) for each class ck ∈ C (k =

1, 2, . . . |C|), and the trainable feature f̂ . We define Ŵk = Wk

∥Wk∥ and f̂norm = s f̂
∥f̂∥ , where s is

a scaling parameter. The bias term is set to 0 for simplicity. Let θk be the angle between f̂ and
Wk. Therefore, the logit for each class ck becomes: ŷk = Ŵk

⊤
f̂norm = ∥Ŵk∥∥f̂norm∥ cos θk =

s cos θk. The features f̂norm are thus distributed on a hypersphere with a radius s. This makes the
normalized CE loss for a single sample as:

LNS =

|C|∑
k=1

−pk log
exp(s cos θk)∑|C|
j=1 exp(s cos θj)

(3)

Adaptive Margin Loss. Inspired by the ArcFace loss [6] used in face recognition, we define the
adaptive margin loss here. The loss adds a margin penalty to the angle between the features f̂ , and
the classifier weights Wk for the kth class. Since the margin is placed on the angle, it maps exactly
to the "geodesic" distance on the hypersphere [6], leading to highly discriminative features. For face
recognition, it suffices to have a constant value for the margin penalty (0.5 for ArcFace). Since we
want discriminative features for the frequently and infrequently occurring classes in a cluster, we
ensure that the training samples assigned to a cluster z and belonging to the majority class y in that
cluster are allowed a smaller margin than those belonging to the minority class. We assign the loss
weights from CW as the margin values (i.e. eq. 2). Specifically, for a data sample belonging to class c
with cluster id z, we denote its margin as mz

c = (1− m̄z
c) (see Fig. 3 for an overview of the system).

Finally, we define the angular adaptive margin loss for each sample belonging to the tuple t = (c, z)
by combining eq.s 3 and 2:

Lt
Margin =

|C|∑
k=1

−pk log
exp(s cos(θk +mz

ck
))∑|C|

j=1 exp(s cos(θj +mz
cj ))

(4)

Gaussian Randomization of the margins: While we estimate the margins for the margin loss by
clustering the features from the biased model B, the obtained clusters can capture noisy signals,
leading to erronous results. Alluding to our previous example of a dataset of people with blond and
non-blond hair with gender bias (Section 1), since most of the females have blond hair, all such
females should be given lesser margin values, whereas blond-haired males should be given higher
values. But clustering leads to noisy grouping of samples in the dataset, whereby a certain group
may include less blond females and more blond males. Therefore, for those female blond samples,
comparatively large margin penalty will be assigned, while the blond male samples will get a low
margin penalty. Also, the margins being high for sparse classes and low for the frequent ones in a
cluster, they may over-learn the former, ignoring the latter. In face recognition, Boutros et al. [71]
suggest that in typical margin losses, setting constant margins can limit the generalizability and
discriminative power of a model and advise the introduction of stochasticity in the margin values to
boost the same. This stochasticity can help us smooth out the effect of the noises in clustering on
one hand and make the model more generalized to all groups. To enforce this, we use a randomized
version of m̄z

c , called r̄zc , where r̄zc ∼ N (m̄z
c , σ). Recall that m̄z

c denotes the proportion of samples
belonging to class c and cluster z. N is the Gaussian distribution, and σ is the standard deviation (a
hyperparameter). This impedes the model from overcorrecting with respect to the rare classes in a
group, thus increasing its generalizability while also compensating for the errors in margin values
due to the noisy cluster labels. Finally, we obtain the randomized margin rzc = 1− r̄zc for each c ∈ C.
We then replace mz

c with rzc in eq. 4. Our overall method is summarized in Fig. 3.

4 Experiments and Results

Dataset Details. We evaluate our method on multiple benchmarks. Waterbirds [23] is a dataset of
birds, labeled as waterbird if the bird is a seabird, and landbird otherwise. A spurious correlation
exists between these labels and the background–land or water. The dataset has 4795 training samples.
The ColorMNIST dataset (CMNIST) [72] is generated from MNIST [73], where each digit is
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Figure 3: Overview of our method. There are 3 steps: a) Bias-amplified training of the model
through Cross-Entropy Loss with high weight decay, b) Clustering the biased features f̂ , c) Miti-
gating the biases by using the resultant clusters to calculate the margins and the corresponding loss,
leading to decent performance on the bias-conflicting data points.

Table 4: Performance comparison of our method (CM). Worst and Average Group Accuracies for
Waterbirds & CelebA (Blond Hair), Bias-Conflicting (Bi-Co), Bias-Aligned (Bi-Al) and Average
Accuracies for CMNIST-0.9. Highest accuracies are marked in bold, the 2nd highest ones are
underlined. All scores for our method are averaged over 3 seeds.

Backbone Model Waterbirds CelebA CMNIST-0.9

Worst Avg Worst Avg Bi-Co Bi-Al Avg

ResNet-18
ERM 38.90±1.40 76.22±1.04 27.20±0.89 75.43±0.67 61.72±0.59 99.90±0.31 65.54±0.27

Co-Ada [50] 67.57±1.29 80.10±1.36 78.37±0.14 85.79±0.78 80.82±1.02 89.63±0.11 85.22±0.37

CM (Ours) 80.29±2.50 84.56±1.20 81.61±1.02 86.04±0.26 81.91±0.40 92.75±0.56 87.33±0.35

CLIP RN50
ERM 67.93±1.12 84.65±0.71 36.09±0.42 79.59±0.70 90.22±0.12 99.18±1.04 91.18±0.05

Co-Ada [50] 81.95±1.13 87.35±0.85 90.52±0.17 91.88±1.15 83.81±0.02 95.68±0.01 89.74±0.15

CM (Ours) 79.28±0.94 85.790.46 90.47±0.43 92.52±0.42 94.07±0.06 96.40±0.06 95.23±0.03

ViT-B
ERM 59.67±1.07 83.31±0.89 31.72±0.64 77.82±0.62 88.93±0.4 99.69±0.15 94.31±0.14

Co-Ada [50] 63.71±1.18 80.24±1.15 85.87±0.42 89.45±1.17 79.71±0.61 86.84±0.07 83.28±1.01

CM (Ours) 74.92±1.43 82.85±0.34 87.28±0.91 89.31±0.66 91.32±0.19 98.59±0.15 94.96±0.16

associated with one color in its background most of the time (see Fig. 3). It has 50000 training and
10000 test images. We evaluate our margin loss method on two variants of CMNIST: in CMNIST-0.9,
each digit is associated with one color 90% of the time and other colors only 10% of the time
(moderate bias). In CMNIST-0.995, each digit is associated with a single color 99.5% of the time
(severe bias). The real-world CelebA dataset [64] consists of 202, 599 face images of celebrities
along with 40 attributes. We choose Blond Hair as the target attribute, as it is known to suffer
from severe gender bias [28, 38, 45]. For evaluating models on CelebA and Waterbirds, we find the
accuracy of each group g = (c, a) in the test set [20, 45], and report the worst of all the groups in G
and their average. For CMNIST, we report the overall bias-aligned (i.e. images of digits with their
maximally associated colors) and bias-conflicting (i.e. images of digits with other colors) accuracies,
along with the average of all the groups [38]. We also show the results for two more real-life datasets
(BAR [20] and UTKFace [74]) in Appendix Table 12.
Implementation Details. We evaluate our method on multiple pretrained encoders: ImageNet-
pretrained ResNet-18 [75] and ViT-Base [76] encoders, and CLIP ResNet-50 image encoder [12]
(pretrained on other datasets). All our implementations use a 1-hidden layer of M neurons followed
by a non-linearity in the adapter, and the classifier is a linear layer. For clustering, we use the KMeans
algorithm. We discuss the hyperparameters and their analyses in Appendix subsection A.3. We
assume the availability of a small group-balanced (but unannotated) validation set and calculate the
overall accuracy over this dataset for model selection during the bias-mitigation phase.

4.1 Results

We compare our baseline against Contrastive Adapter [50], given that it performs the best among
all other methods across different benchmarks (see Table 2), and the ERM model. The results are
presented in Table 4, where we compare our method against the ERM method and Co-Ada. For
comparison with other competing methods, see Appendix Table 8. We also present the results for the
ViT-H 14 encoder in Appendix Table 13.
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Table 6: Ablations of the proposed method: Here we show the roles of the different components of
our model using ResNet-18 as the pretrained backbone.

Model Component Waterbirds CelebA CMNIST-0.9

Worst Average Worst Average Bi-Co Bi-Al Average

CM (Ours) 80.29 84.56 81.61 86.04 81.91 92.75 87.33
Constant Margin (0.5) 55.76 77.45 34.44 77.63 44.91 100.00 72.45
No Randomization 79.28 82.9 78.51 86.07 82.28 91.23 86.70

Clustering from f locked 74.92 84.95 80.52 85.04 75.96 94.88 85.42

For the Waterbirds dataset, our method far outperforms Contrastive Adapter for ResNet-18 and
ViT-B (by 12.72% and 11.21% respectively), though for CLIP the worst-group accuracy is slightly
lesser (by 2.67%). In case of CelebA, for ResNet-18 and ViT-Base, the margin loss outperforms
Contrastive Adapter (by 3.24% and 1.41%). For the CLIP encoder, we observe the two methods to
perform similarly. The CMNIST-0.9 dataset is affected by a moderate degree of the background color
bias, whereas for CMNIST-0.995 the bias strength is severe. In case of both datasets, our method
outperforms Contrastive Adapter for all backbones by a large margin, especially for CMNIST-0.9
(see results for CMNIST-0.995 in Table 5). Compared to Contrastive Adapter, our method has another
advantage: it is time-efficient, as discussed in the Appendix Table 17. Our method is effective even
when finetuning to the encoder weights is possible (see Appendix subsection A.7).

5 Ablations

Table 5: Performance comparison of our method
for CMNIST-0.995. We report Bias-Conflicting
(Bi-Co), Bias-Aligned (Bi-Al) and Average Accu-
racies. Highest accuracies are marked in bold, the
2nd highest ones are underlined. All scores for our
method are averaged over 3 seeds.

Model CMNIST-0.995

Bi-Co Bi-Al Avg

R18
ERM 49.09±0.19 100.00±0.70 74.55±0.82

Co-Ada 65.48±0.21 84.48±0.42 74.98±0.49

CM (Ours) 72.56±0.88 96.28±0.50 84.42±0.41

CLIP
ERM 56.87±0.12 100.00±0.46 78.44±0.52

Co-Ada 77.34±0.34 92.18±0.06 84.76±0.18

CM (Ours) 80.65±0.05 93.29±1.23 86.97±0.60

ViT-B
ERM 59.21±0.65 100.00±0.17 79.61±0.42

Co-Ada 76.88±0.43 92.27±0.61 84.58±0.70

CM (Ours) 77.97±0.71 94.86±0.49 86.42±0.44

In this subsection, we discuss the important com-
ponents of our approach and the margin loss
strategy. We first show what happens when
the margin penalty is constant as the ArcFace
loss [6] itself. Then, we show the role played by
the Gaussian randomization of the group-based
margins (read subsection 3.5 and Appendix sub-
section ??). Finally, we show what happens
when we estimate the different bias-groups in
the training data by clustering the blackbox
features instead of the bias-amplified adapter
layer. All evaluations are performed on Water-
birds, CelebA (Blond Hair classification) and
CMNIST-0.9 with ResNet-18 as the backbone.
The results are shown in Table 6.

Constant Margin. We present the results ob-
tained by keeping the margin value constant at
0.5 as suggested by ArcFace [6] (no Gaussian
randomization is applied here). This study en-
ables us to judge the utility of the adaptive nature of the margins. While for Waterbirds and Blond
Hair, the scores are better than those of ERM, there’s a sharp drop in both worst and average group
accuracies compared to our method. The trends are similar in CMNIST-0.9 as well. Hence, we
conclude that while margin losses improve model performance, a constant margin is not enough.

Without Randomization. We remove the Gaussian randomization of the margins, but here the
margins are adaptive (as per eq. 2). For Waterbirds, we see that both the worst and average group ac-
curacies reduce compared to the final scores. Worst group accuracy drops for CelebA as well, though
the average group score remains similar. In CMNIST, the bias-conflicting accuracies slightly improve
at the cost of a small drop in bias-aligned performance. Thus, overall we find that randomizing the
margins for each sample is helpful.

Clustering from f locked. Our model identifies biases by clustering the adapter features f̂ . However,
the pretrained features flocked can be useful as well, if the pretrained model and the downstream
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dataset share similar biases. Hence, we cluster the pretrained features f locked instead of f̂ to obtain the
margin penalties. The rest of the training pipeline remains the same, as described in subsection 3.3.
For all 3 datasets, we see a reduction in the worst and average group accuracies, however, the scores
are still close to that of the proposed approach. Since clustering the pretrained features does not
require an extra stage of ERM training, therefore in presence of time-constraints, f locked can be used
as a proxy for f̂ , and subsequently, relatively decent model predictions can be obtained.

6 Discussion and Limitations

Our method is specifically targeted towards cases where the bias in the downstream dataset is already
encoded in the pretrained model. We believe that detecting if this assumption holds apriori is highly
challenging in the absence of the bias labels. We put forward a few suggestions to identify the
scenarios that fit this assumption: a) Obtain bias annotations for the small validation set. If the worst
group accuracy of the validation set does not reduce substantially with increasing weight decay, it
indicates that the features have stronger signals of the target class than that of the bias, making it
harder to capture the bias. b) If the bias annotations of the validation set cannot be obtained due to
privacy concerns, the overall validation accuracy can indicate strength of the bias. For example, the
difference between the validation and training accuracy is 25% for an ERM trained method for the
Waterbirds dataset on the ResNet-18 backbone. The higher this difference, the more the indication
that the model is overfitting to more and more samples. Such overfitting can indicate that the model
is learning the bias in the dataset, thus not generalizing on the bias-conflicting samples. While we
have mentioned the situation when the pretrained model is aware of the target attribute in Section 3,
another potential use case might be when the pre-training data distribution may be different from that
of the downstream dataset. We prescribe finetuning the pretrained models to amplify and mitigate the
biases in such a case. A more practical approach would be to choose another model, as also suggested
by Zhang et al. [50].

One limitation of our method is that it currently relies on the existence of biased groups in the training
set (i.e., the bias labels are expected to be categorical) as it uses clustering to identify the biases.
Furthermore, since our approach (along with most competing methods) relies on amplifying the bias
first and then mitigating the same, it involves a risk wherein if the mitigation module fails, the bias in
the system may be exacerbated. With these limitations in mind, we hope this work initiates a much
required discussion in this direction leading to more sophisticated and targeted solutions in the near
future.

Scalability of the proposed approach to large datasets and models. Since our method involves
clustering the features, if the dataset is large-scale, one can randomly sample a small percentage of it
to do the clustering. For example, on clustering only 10% randomly sampled images from the CelebA
dataset, we find that the worst group accuracy is 81.11%, whereas the average group accuracy is
85.6% on the ResNet-18 backbone. The scores become 80.55% and 85.6% respectively when the
clustering is performed only on 1% of the images (with full clustering, the scores are 81.61% and
86.04% respectively). On the other hand, for very large models, the requirement is to be able to load
the model into a GPU memory. Our method adds negligible overhead owing to the addition of only
an adapter and a classifier layer.

7 Conclusion

In this work, we explored the effect of using pretrained but frozen feature extractors on downstream
applications with biased datasets and found the need for specific bias mitigation strategies in cases
where the biases in the downstream dataset align with the pretrained encoders. Such mitigation is
challenging as the encoder is blackbox. While we found many of the existing works to be inadequate,
we proposed a simple method where we first amplified the biases present in the downstream dataset
and then employed a clustering-based margin loss to mitigate the same. Our experiments showed
this method to be an efficient and effective technique across multiple benchmarks. Lastly, it is our
hope that this work will initiate a much-required discussion among the scientific community on
encouraging similar works in this highly practical problem setting. We share further studies, detailed
hyperparameter analyses and experiments of the proposed method in the appendix.
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A Appendix
A.1 Biases in Pretrained Features - Further Analysis

In the main paper, we looked at two scenarios on how the absence or presence of biases in the
pretrained feature encoder affects the downstream model’s performance on finetuning data. However,
for the analysed cases, we did not look into the specific relation between the pretraining data and
the downstream data. In the appendix, we perform a controlled and detailed analysis to answer 4
questions in this regard:

Q1: What happens if the pretraining data is heavily biased and so is the downstream dataset?

To answer this question, we pretrain a ResNet-18 model with the CelebA dataset to make it heavily
gender-biased by performing gender prediction itself as the pretraining task [14]. During the down-
stream step, we choose to predict the Blond Hair attribute of the CelebA dataset, which is known to
be heavily correlated with gender. We class-balance the finetuning dataset to have equal number of
blonds and non-blonds, so as to avoid the downstream predictions from collapsing into a single class.
Finally, we also sample from the class-balanced downstream data to ensure that the total number of
data points in the downstream data is approximately 1/4th of the pretraining data.

Q2: What happens if the pretraining dataset is heavily biased but the downstream dataset is
less biased?
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Table 7: Dependence of downstream model performance on pretraining data. When the pretraining
model has a high amount of bias, the downstream data performance is heavily affected if the latter
itself is biased. On the other hand, the performance is more stable if i) the pretraining data has high
bias and the finetuning data has low bias, ii) the pretraining data has low bias and the finetuning data
has high bias. The downstream predictions get biased even if the finetuning data has biases which are
not common with those in the pretraining data, but the performance drops.

Pretraining data Finetuning Data Worst-Group Average-Group

High Bias High Bias 6.48 53.21
High Bias Low Bias 43.33 57.97
Low Bias High Bias 46.28 54.95

High Bias High Bias (WB) 4.70 49.76

For pretraining, we use gender prediction again as mentioned in the above case, but for the downstream
dataset, we group-balance the CelebA dataset in terms of Blond Hair and gender, keeping the total
number of downstream samples same as described above.

Q3: What happens if the pretraining data is less biased but the downstream dataset is heavily
biased?

For the downstream dataset, we choose the same one as mentioned in case of Q1. For the pretraining
task, instead of predicting gender, we predict the ‘Smiling’ attribute, as we find it to be much less
biased in terms of gender.

Q4: What happens if the pretraining data is highly biased and so is the downstream dataset,
but the two biases are unrelated?

To simulate this scenario, we pretrain the ResNet-18 encoder by predicting the gender attribute again
in the CelebA dataset as mentioned in the above cases, and for the downstream task, we choose a
class-balanced version of Waterbirds, which has a completely different bias.

Findings. Note that Q1, Q2 and Q3 are related. From our experiments, we observe the following.
When both the pretrained encoder and the downstream dataset are heavily biased with a common
attribute (Q1), the worst group performance on the downstream dataset is the least of all the 3 cases.
On the other hand, for Q2 (i.e. when the pretrained model is heavily biased but the downstream
dataset is not), the worst group performance improves considerably. This corroborates with our
findings in the main paper (Sec 3) that group-balancing the downstream task can improve model
performance. The best performance is seen for Q3, where the pretraining model is less biased, but
the downstream dataset is still highly biased – here we find that the worst group performance is infact
higher than the previous case (Q2). This shows that the lesser the bias in the pretraining data, the
more unbiased downstream application is going to be.

When the bias in the pretrained model and the downstream task are unrelated, we find that the model
is indeed affected by the bias in the downstream data, with a drastic drop in overall performance.
This indicates that if the pretraining and downstream data distributions do not match, one should
choose a different feature encoder to achieve better performance on the downstream task. All the
above findings are summarized in Table 7. Note that the overall performance of the downstream task
is considerably lower in comparison to using an Imagenet pretrained encoder for all above cases.
This is likely because the pretraining task involves a binary prediction of an attribute that is different
from the downstream target attribute – leading to overfitting of the pretrained features to the former.

A.2 Comparison of the Margin Loss-based method with other Methods

In the main paper, we discuss the performance of our proposed baseline and compare it with Co-
Ada [50] across various benchmarks and pretrained encoders. In this section, we describe the
performance of the other methods in Table 8. We find that for the ResNet-18 encoder, among all
methods, LfF [20] performs well on Waterbirds and both the versions of CMNIST, but the worst
group accuracies for the same method is poor for CelebA. On the other hand, while BPA has high
worst group accuracy for CelebA, its performance deteriorates for Waterbirds and both the CMNIST
versions. This inconsistency is present for other methods as well, for every encoder.
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Table 8: Performance comparison of our method with all other methods. Worst and Average
Group Accuracies for Waterbirds & CelebA (Blond Hair), Bias-Conflicting (Bi-Co), Bias-Aligned
(Bi-Al) and Average Accuracies for CMNIST-0.9 and CMNIST-0.995. Highest accuracies are marked
in bold, while the 2nd highest ones are underlined. All scores with respect to the proposed approach
are averaged over 3 seeds. Co-Ada: Contrastive Adapter.

Backbone Model Waterbirds CelebA CMNIST-0.9 CMNIST-0.995

Worst Avg Worst Avg Bi-Co Bi-Al Avg Bi-Co Bi-Al Avg

ResNet-18
ERM 38.90±1.40 76.22±1.04 27.20±0.89 75.43±0.67 61.72±0.59 99.90±0.31 65.54±0.27 49.09±0.19 100.00±0.70 74.55±0.82

DebiAN [38] 58.94±1.09 80.47±0.91 26.10±0.02 75.41±0.17 61.97±0.64 99.72±0.47 80.84±0.19 49.82±0.82 99.80±0.11 74.81±0.27

BPA [45] 58.70±2.49 80.83±0.94 66.71±0.70 84.14±0.66 61.43±0.58 98.01±0.36 65.09±0.35 47.84±0.79 100.00±0.21 73.92±0.22

LfF [20] 66.09±1.21 81.39±0.81 13.26±0.31 69.42±0.43 78.46±0.32 84.15±0.43 81.30±0.71 71.61±0.32 91.47±0.04 81.54±0.05

JTT [19] 49.84±1.21 77.03±0.86 56.25±0.45 73.58±0.36 47.82±0.37 95.35±0.64 71.59±0.43 42.86±0.07 99.79±0.31 71.32±0.43

GEORGE [44] 59.35±2.21 80.34±0.86 42.22±0.41 79.76±0.34 61.41±0.65 99.90±0.84 80.65±0.62 48.77±0.39 100.00±0.67 74.38±0.09

Co-Ada [50] 67.57±1.29 80.10±1.36 78.37±0.14 85.79±0.78 80.82±1.02 89.63±0.11 85.22±0.37 65.48±0.21 84.48±0.42 74.98±0.49

Our method 80.29±2.50 84.56±1.20 81.61±1.20 86.04±0.26 81.91±0.40 92.75±0.56 87.33±0.35 72.56±0.88 96.28±0.49 84.42±0.44

CLIP RN50
ERM 67.93±1.12 84.65±0.71 36.09±0.42 79.59±0.70 90.22±0.12 99.18±1.04 91.18±0.05 56.87±0.12 100.00±0.46 78.44±0.52

DebiAN [38] 63.61±1.78 84.73±0.78 38.33±0.65 79.98±0.39 90.62±0.51 99.20±0.67 94.91±0.34 58.29±0.61 99.90±0.19 79.10±0.24

BPA [45] 69.51±2.19 85.71±1.21 81.70±0.75 90.09±0.47 91.61±0.64 98.89±0.39 92.34±0.47 55.24±0.34 100.00±0.63 77.62±0.27

LfF [20] 61.28±1.42 80.07±0.79 37.57±0.46 79.63±0.82 91.09±0.67 96.08±0.39 93.59±0.07 80.17±0.41 81.95±0.60 81.06±0.02

JTT [19] 71.18±2.01 83.72±1.41 75.00±0.45 84.78±0.52 90.61±0.06 97.82±0.18 94.22±1.07 52.39±0.34 98.37±0.28 75.38±0.09

GEORGE [44] 62.77±1.21 83.14±0.89 56.11±0.65 85.07±0.27 90.61±0.41 98.47±0.09 94.54±0.44 54.65±0.63 100.00±0.00 77.32±0.03

Co-Ada [50] 81.95±1.13 87.35±0.85 90.52±17 91.88±1.15 83.81±0.02 95.68±0.01 89.74±0.15 77.34±0.34 92.18±0.06 84.76±0.18

Our method 79.28±0.94 85.79±0.46 90.47±0.43 92.52±0.42 94.07±0.06 96.40±0.06 95.23±0.03 80.65±0.05 93.29±1.23 86.97±0.60

ViT-B
ERM 59.67±1.07 83.31±0.89 31.72±0.64 77.82±0.62 88.93±0.4 99.69±0.15 94.31±0.14 59.21±0.65 100.00±0.70 79.61±0.82

DebiAN [38] 58.32±1.82 82.88±0.87 29.40±0.71 77.05±0.62 89.54±0.45 99.6±0.32 94.57±0.81 60.63±0.09 99.91±0.26 80.26±0.64

BPA [45] 59.01±1.45 82.03±0.73 60.00±0.61 84.93±0.49 89.28±0.82 99.69±0.64 94.49±0.39 57.45±0.29 100.00±0.61 78.73±0.43

LfF [20] 30.02±1.83 73.55±0.69 28.73±0.72 74.48±0.62 89.23±0.43 99.69±0.61 92.81±0.43 76.74±0.08 93.58±0.43 85.16±0.32

JTT [19] 52.64±1.47 78.84±0.89 65.12±0.52 78.97±0.62 88.28±0.37 99.43±0.45 93.36±0.59 58.41±0.42 99.67±0.36 79.04±0.08

GEORGE [44] 58.72±1.45 81.67±0.87 55.00±0.19 84.14±0.61 87.43±0.43 98.88±0.28 93.15±0.35 57.25±0.73 100.00±0.00 78.62±0.04

Co-Ada [50] 63.71±1.18 80.24±1.15 85.87±0.42 89.45±1.17 79.71±0.61 86.84±0.07 83.28±1.01 76.88±0.43 92.27±0.61 84.58±0.70

Our method 74.92±1.43 82.85±0.34 87.28±0.91 89.31±0.66 91.32±0.19 98.59±0.15 94.96±0.16 77.97±0.71 94.86±0.49 86.42±0.44

A.3 Hyperparameter Details and Analysis

As mentioned in the main paper, for model selection, we use the training accuracy in the bias-
amplification stage, whereas for the mitigation stage, we use the overall validation accuracy. Hy-
perparameter tuning happens via the validation accuracy of the model checkpoint saved during the
mitigation stage. The bias-amplification stage has the following hyperparameters: LR (learning rate),
BS (batch size), λ (weight decay) and number of epochs. In the clustering stage, the number of
clusters K is a hyperparameter. Finally, in the mitigation stage, we have two hyperparameters specific
to the margin loss: the scaling parameter s (i.e. the radius of the hypersphere on which the features
are projected) and the standard deviation for the Gaussian randomization, σ. We next define the range
of each hyperparamter on which we evaluate our model and the other methods. For learning rate
LR, we explore in the range 0.0001, 0.0005, · · · , 0.05 in step sizes of 5 and 2 respectively. Similarly,
for batch size BS we evaluate on the range {64, 128, 256, 512}. We explore higher values of weight
decay λ ∈ {1, 0.1, 0.05, 0.01} for the bias-amplication stage and for the mitigation stage, we search
λ in the range 10−6, · · · , 10−2 in step sizes of 10 and also consider λ = 0. Number of epochs for
training is kept in the range {50, 100}. For the clustering stage, we choose K ∈ {2, 4, 6, 8} for
Waterbirds and CelebA, and explore K = 10, 20, · · · , 60 with a step size of 10 for the CMNIST
variants. In the mitigation stage, we select s ∈ {4, 8, 12, 16} and σ ∈ {0, 0.05, 0.1, 0.15, 0.2}. We
show the selected hyperparameters in the bias-amplification stage in Tables 9 and 10, and for the
mitigation procedure, the chosen hyperparameters are present in Table 11. For number of neurons M
in the MLP layer, we fix the value to be 128. For CelebA experiments, we use SGD as the optimizer,
whereas for Waterbirds, and both the variants of CMNIST, we use Adam.

Finally, we show the changes in scores by varying the number of clusters K, the standard deviation σ
for the Gaussian randomization of margins and the hypersphere radius s for CelebA and Waterbirds
(with ResNet-18 as the feature encoder) in Fig. 4. We find that performance remains consistent for
K ≥ 4 for both datasets. Similarly, similar scores are seen with σ > 0.1. The best values for s are
found to be 8 and 12. We also vary the weight decay λ in the bias amplification stage and show
its effect on the final model performance. While for CelebA, the effect of changing λ is minimal,
Waterbirds can be seen to be more sensitive towards higher values.

A.4 Performance on Other Datasets and Architecture

Here we describe two real-world datasets: UTKFace [74] and BAR [20] and compare our model
against the ERM model and the Contrastive Adapter [50].
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Figure 4: Hyperparameter analysis. We vary the number of clusters K, the σ for the Gaussian
randomization of margins and the hypersphere radius s and show model performance for Waterbirds
and CelebA.

Figure 5: Effect of Weight Decay on Downstream Model Performance. We vary the weight decay
λ and show the final model performance for Waterbirds and CelebA.

A.4.1 UTKFace

In the main paper, we evaluate on Waterbirds, CelebA (for Blond Hair classification) and CMNIST-
0.9, CMNIST-0.995. Here, we evaluate on UTKFace [74], which is a dataset of faces, with gender,
race and age annotations. Specifically, we predict race, with gender as the bias attribute. The dataset
is stored in 3 parts with 10137, 10719 and 3252 images respectively; we use the first part as the
training set, second part as test, and third part as the validation set. Like all other experiments, we
manipulate the validation set to contain group-balanced data. There are 5 races - White, Black, Asian,
Indian and Other, and two perceived genders - females and males. Out of the 10 resultant groups, we
report the worst group’s accuracy as well as the average group score. We observe that our method far
outperforms the ERM scores (as well as the competing Contrastive Adapter) for the ResNet-18 image
encoder, thus further demonstrating the effectiveness of our method. The results are summarized in
Table 12.

A.4.2 BAR

BAR (Biased Action Recognition) [20] is an image dataset with actions as the class labels and places
as the spurious attribute. Note that the test set only consists of bias-conflicting samples, hence, we

Table 9: Hyperparameters for the Bias-amplification stage for Waterbirds and CelebA for all the
pretrained models shown in the main paper.

Waterbirds CelebA

LR λ BS Ep Opt LR λ BS Ep Opt

R18 0.0001 1 256 100 Adam 0.01 1 512 50 SGD
ViT 0.05 1 256 100 Adam 0.0001 1 512 50 SGD

CLIP 0.01 0.1 256 100 Adam 0.0001 0.1 512 50 SGD
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Table 10: Hyperparameters for the Bias-amplification stage for CMNIST-0.9 and CMNIST-0.995 for
all the pretrained models shown in the main paper.

CMNIST-0.9 CMNIST-0.995

LR λ BS Ep Opt LR λ BS Ep Opt

R18 0.01 0.05 256 100 Adam 0.0001 0.1 256 100 Adam
ViT 0.01 0.01 256 100 Adam 0.0001 0.1 256 100 Adam

CLIP 0.01 0.01 128 100 Adam 0.0001 0.01 256 100 Adam

Table 11: Hyperparameters for Mitigation stage of our approach for Waterbirds, CelebA, CMNIST-
0.9 and CMNIST-0.995.

Datasets Pretrained Encoder LR λ BS Eps Opt K s σ

Waterbirds
R18 0.01 0.01 64 100 Adam 6 8 0.2
ViT 0.01 0.01 128 100 Adam 4 8 0.25

CLIP 0.01 0.01 256 100 Adam 4 8 0.2

CelebA
R18 0.0001 0.0001 128 100 SGD 4 8 0.2
ViT 0.01 0 128 100 SGD 2 8 0.15

CLIP 0.1 1e− 5 128 100 SGD 2 8 0.2

CMNIST-0.9
R18 0.01 0 128 100 Adam 30 12 0.15
ViT 0.0001 1e− 6 256 100 Adam 20 4 0.15

CLIP 0.0001 1e− 6 256 100 Adam 20 8 0.2

CMNIST-0.995
R18 0.01 0 256 100 Adam 20 8 0
ViT 0.005 1e− 4 128 100 Adam 40 8 0.05

CLIP 0.001 0 128 100 Adam 40 12 0.1

Table 12: Performance of our method on the UTKFace dataset and the BAR dataset. In all cases,
we find our proposed approach outperforming the worst group accuracies of the ERM method and
Contrastive Adapter. The underlying pretrained encoder is the ResNet-18 model.

Method UTKFace BAR
Worst Group Avg Group Test

ERM 13.6 40.5 63.15
Contrastive Adapter 8.36 31.46 62.54

Our method 32.26 40.65 65.96

report its test accuracies following previous work [38]. As with UTKFace, we find that our method
outperforms both the ERM method and the Contrastive Adapter (see Table 12).

A.4.3 ViT-H 14 as the Pretrained Encoder

In a previous work [61], it is shown that spurious correlations can be mitigated simply by using
a stronger pretrained encoder. Further, the authors show that the strength of mitigation depends
on the underlying pretraining data. They observe that using a ViT-H 14 encoder pretrained on the
SWAG dataset [62] followed by end-to-end ImageNet [63] finetuning can achieve state-of-the-art
results on the Waterbirds dataset. Likewise, to test whether the same holds for other datasets too,
we use this same encoder and train for CelebA and CMNIST-0.995 using the ERM method. We
observe that while indeed the worst group score for Waterbirds is considerably high, for CelebA
and CMNIST-0.995, the performance is still weak. This leads us to the important observation that
bias mitigation strategies are indeed required for all pretrained encoders, as even though they might
perform well for some biased datasets, they may not be free of all biases that can affect model
predictions. We compare the ERM scores with that of our margin loss approach and Contrastive
Adapter, and find that in Waterbirds, though the ERM scores outperform the mitigation methods
marginally, for the other two datasets, the mitigation scores considerably improve. Upon comparing
our method with Contrastive Adapter, we find that the former outperforms the latter in CMNIST-0.995
and Waterbirds. The results are shown in Table 13.
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Table 13: Performance on ViT-H 14 (pretrained on SWAG and finetuned on ImageNet). In this
table we show the performance of ERM, Contrastive Adapter and our margin loss-based method
for Waterbirds, CelebA and CMNIST-0.995. We observe that while the ERM scores are high for
Waterbirds, the same does not hold for CelebA and CMNIST-0.995 – showing that a single feature
encoder, however powerful, may not mitigate all biases. Thus we advocate strongly for bias mitigation
strategies that can debias models in presence of untrainable feature encoders.

Method Waterbirds CelebA CMNIST-0.995
Worst Group Avg Group Worst Group Avg Group Bi-Co Bi-Al Avg

ERM 91.1 95.99 6.71 61.32 68.41 100 71.57
Contrastive Adapter 86.12 93.17 82.23 85.74 78.09 94.97 86.53

Our method 89.17 95.26 62.93 68.61 85.51 95.29 90.4

Table 14: Ablations of our method: Here we further show the roles of the different components of
our margin loss-based approach using ResNet-18 as the pretrained backbone.

Model Component Waterbirds CelebA CMNIST-0.9

Worst Average Worst Average Bi-Co Bi-Al Average

Our method 80.29 84.56 81.61 86.04 81.91 92.75 87.33
Randomization (margin = 0.0) 40.34 76.26 25.56 75.45 55.65 99.68 77.67
Randomization (margin = 1.0) 40.34 76.72 30.00 76.78 56.48 99.69 78.09
Randomization (margin = 0.5) 43.61 76.78 29.44 76.20 55.61 99.68 77.65

A.5 Ablations

In this subsection, we further discuss the importance of the adaptive margin components of our
approach and the margin loss strategy. Specifically, we present the results when the randomization is
applied to constant margin values. As with Table 6 in the main paper, all evaluations are performed
on Waterbirds, CelebA (Blond Hair classification) and CMNIST-0.9 with ResNet-18 as the backbone.
The results are shown in Table 14.

Observations. Here we show the effects of randomizing a constant margin value to further understand
the role of the adaptive margins. We perform this experiment on 3 constant margins – 0.0, 1.0 and 0.5.
We observe that for all three datasets, both worst and average accuracies decrease drastically. This
shows the effectiveness of the adaptive margins, i.e., randomizing the margins do not help unless their
underlying values represent the frequency of a training sample’s class label in its assigned cluster.

We next show further ablations of our method. As described in the main paper, in the bias-
amplification stage, we set the weight decay λ to a high value (weight decay is the weight used
for L2 regularization) to ensure amplification of the bias in the model. Instead of the L2 loss, we
investigate what happens when we instead use L1 and L1 + L2 regularization during this stage. The
performances for all these different regularizations appear similar. We also show what happens when
we do not use any of these regularizations – the scores drop drastically for Waterbirds. Moreover, in
many of the previous works like JTT [19], misclassifications in the ERM stage are used to identify
the biases. When we use the same in our method to calculate the margins (instead of clustering), we
find that clustering works better than using misclassifications for bias-identification. Further, we find
that using the Generalized Cross-Entropy loss [20] with L2 regularization can have similar effects
as that of our original approach, though the latter outperforms the former for both the datasets. We
also investigate what happens when we replace the ArcFace loss [6] with another margin loss called
CosFace [5]. Here we only change the loss formulation, but calculate the margins in the same way as
that our method as described in the main paper. We call this version of our method CM + CosFace,
and find that it is indeed effective, however the original margin loss still outperforms the former on
both Waterbirds and CelebA. The results are summarized in Table 15.

A.6 Comparison with Other Methods

A.6.1 Last Layer Retraining

In DFR [54], Kirichenko et al. show that simply retraining the last layer of a biased model can
achieve considerably unbiased predictions. However, they utilize a group-balanced reweighting
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Table 15: In this table we summarize the roles of the different regularization techniques as well as
misclassifications as an alternate for clustering on the ResNet-18 pretrained encoder. We find that
using L1 regularization can be a good (even better) proxy for weight decay. We also show what
happens when we use the GCE loss [20] along with high weight decay for the bias amplification stage.
Finally, we evaluate the changes in performance when we use an alternate margin loss to mitigate the
bias in the network.

Method Waterbirds CelebA

Worst Group Avg Group Worst Group Avg Group

L1 Regularization 81.80 85.21 81.79 85.50
(L1+L2) Regularization 78.55 85.66 79.98 85.47

No Regularization 39.88 77.04 78.33 80.71
Misclassification 75.86 82.76 75.56 85.23

GCE + L2 Regularization 78.35 83.43 78.33 83.28

CM + CosFace 77.07 82.55 75.56 85.42

Our method 80.29 84.56 81.61 86.03

Table 16: In this table we show the performance comparison of DFR with the proposed approach for
the ResNet-18 backbone, for Waterbirds, CelebA and CMNIST-0.9

Method Waterbirds CelebA CMNIST-0.9

Worst Group Avg Group Worst Group Avg Group Bi-Co Bi-Al Avg

Our method 80.29 84.56 81.61 86.04 81.91 92.75 87.33
DFR 74.68 81.29 73.33 80.78 91.39 90.84 91.16

dataset (specifically from the validation set) for this retraining. The difference of this setting with
ours is that ours does not assume a feature encoder which is already trained on the biased dataset;
rather we assume a blackbox feature encoder which does not interact with the downstream training
data. We summarize the results in Table 16. While we see that the performance of Waterbirds and
CelebA are comparable to our method, DFR has superior performance in CMNIST-0.9. However, it
is to be remembered here that DFR not only uses part of the validation data for training, but also this
excess data is group-annotated. This gives additional advantage to DFR, leading to improved scores
in some datasets.

A.6.2 Contrastive Adapter

Table 17: Difference in training time (in mins) for Contrastive Adapter and the proposed approach
for different datasets trained on the ResNet-18 backbone. We find that while our method is trained in
considerably less amount of time, Contrastive Adapter requires enormous time, rendering it inefficient
for time-constrained settings.

Dataset Contrastive Adapter Our method Gap

Waterbirds 34 1.05 32.95
CelebA 105 13.39 91.61

CMNIST 213 2.05 210.95

While the problem statement described by Zhang et al. [50] is similar to ours, there are subtle
differences. E.g., Contrastive Adapter is meant to boost the group robustness of foundation models.
It uses the zero-shot capabilities of the existing foundation models (as a result, utilizes their text
modalities) to find positive and negative samples with respect to an anchor sample and apply a
contrastive loss for bias mitigation purposes. On the other hand, our aim is more generic: to detect
and mitigate biases in case the feature encoder is untrainable (only accessible through API calls)
and does not rely on any other modality. That is why, when we compare our method against other
methods, we freeze the feature encoder for all of them and investigate how these methods perform
when no backpropagation is allowed into the frozen backbone. Moreover, since ResNet-18 and
ViT-Base do not have the text encoder, we cluster the backbone features as a proxy for the zero-shot
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accuracies of Contrastive Adapter using the KMeans algorithm (suggested by the authors in their
code submission). Since KMeans is an unsupervised algorithm, the cluster label might not always
correspond to the correct class index. Simple heuristics are employed to properly label each obtained
cluster. In the binary classification setting (WaterBirds and CelebA), the cluster that has a higher
number of correct predictions is assigned the label 0 (since WaterBirds has a higher number of
landbirds (class 0) and CelebA has a higher number of Non-blonde samples (class 0)). This heuristic
fails when the number of classes exceeds 2 (e.g. ColorMNIST), and in such cases, we use consensus
to handle the prediction. For each cluster, we count the number of predictions for each class (digit),
and the cluster label is the class with the largest number. This associates the most probable label with
each cluster in the KMeans model – i.e., we take the ground truth class (digit) of each sample, find
the majority class per cluster and assign that digit as the predicted class.

Table 18: Effect of full finetuning. Upon fine-
tuning the encoders fully, our method achieves
decent performance compared to the existing meth-
ods across two pretrained encoders. The numbers
of all competing methods are taken from previous
works for ResNet-18 [45] and ResNet-50 [19].

Method Res-18 Res-50

Worst Avg Worst Avg

ERM 62.39 84.63 72.6 97.3
LfF 68.02 85.48 75.2 97.5
BPA 71.39 87.05 - -
JTT - - 86.0 93.6
Our method 80.82 85.91 88.82 90.62

Impact of number of positives and negatives.
Contrastive Adapter requires the creation of a
similarity matrix, which consists of positive and
negative samples for every sample in the dataset.
Typically, a reasonable number of positive and
negative samples are necessary for the method
(contrastive learning) to function properly. The
caveat is that when dealing with multi-class clas-
sification problems, gathering a sufficient num-
ber of negative samples takes a toll on the system
memory, and a server of 128GiB can support
only about 128 positives and negatives before
overflowing. In addition to this, even if a suf-
ficiently large server is procured to be able to
support a higher number of samples, the train-
ing time grows significantly, which is a further
drawback on the total runtime as well.

We show the differences in training times of the proposed method and Contrastive Adapter in Table 17.
It is to be noted that we perform all our experiments on a single Nvidia-RTX A5000 GPU. In a
time-constrained setting, this renders Contrastive Adapter inefficient, whereas our method, even with
considerable less training time, outperforms Contrastive Adapter in most cases.

A.7 Full finetuning

In this subsection, we discuss the effect of full finetuning on the proposed loss, i.e., when the loss
is allowed to backpropagate into the pretrained encoder. We compare our method with LfF [20],
BPA [45] and JTT [19]. We report the results for LfF and BPA on the ResNet-18 encoder as per
the results shown by Seo et al [45], whereas those for JTT (along with LfF) are with respect to the
ResNet-50 model [19]. From Table 18, we note that for ResNet-18, our method outperforms BPA
and LfF. For ResNet-50, our method surpasses that of JTT by 3% in the worst group accuracy. In
comparison, for our proposed setting, our method outperforms JTT by a huge margin (30.45%)!
This study shows how our method performs satisfactorily in the setting of full finetuning, in addition
to decent and consistent performance on the problem setting proposed in the paper.

A.8 Social Impact

Since our work aims to create unbiased models in a unique problem setting, we believe that it
promotes a positive social impact. Pretrained models are not free of biases [14], and our method is an
attempt to generate unbiased predictions without having to finetune these pretrained encoders – we
believe that this is a step towards ensuring that future deep learning models are free of the prejudices
already present in the society towards marginalized groups, and are fair to all.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are reflected in Sections 3 and 4 and Appendix Section A.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a thorough discussion and limitations section in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results have been presented in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Along with the method discussed in Section 3, the implementation and
dataset details are shared in Section 4. The code is available at https://github.com/
abhipsabasu/blackbox_bias_mitigation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets are open-source. Code is available at https://github.com/
abhipsabasu/blackbox_bias_mitigation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All implementation details are present in Section 4 and hyperparameter details
are in Appendix Section A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments have been done over 3 seeds, and Tables 4 and 5 have the
corresponding standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Such details are present in the attached code, and Appendix Section A.6.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in Appendix subsection A.8.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The does not pose any such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used have been cited. Only open-source methods have been
replicated and all of them have been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets/datasets have been proposed in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing is involved in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing is involved in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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