
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEATURE-AWARE (HYPER)GRAPH GENERATION VIA
NEXT-SCALE PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph generative models have shown strong results in molecular design but strug-
gle to scale to large, complex structures. While hierarchical methods improve
scalability, they usually ignore node and edge features, which are critical in real-
world applications. This issue is amplified in hypergraphs, where hyperedges
capture higher-order relationships among multiple nodes. Despite their importance
in domains such as 3D geometry, molecular systems, and circuit design, existing
generative models rarely support both hypergraphs and feature generation at scale.
In this paper, we introduce FAHNES (feature-aware hypergraph generation via
next-scale prediction), a hierarchical framework that jointly generates hypergraph
topology and features. FAHNES builds multi-scale representations through node
coarsening and refines them via localized expansion, guided by a novel node bud-
get mechanism that controls granularity and ensures consistency across scales.
Experiments on synthetic, 3D mesh and graph point cloud datasets show that
FAHNES achieves state-of-the-art performance in jointly generating features and
structure, advancing scalable hypergraph and graph generation.

1 INTRODUCTION

Generating discrete geometric structures such as graphs and hypergraphs is an important challenge
in modern machine learning (Zhu et al., 2022). These structures are central to applications ranging
from molecular design and materials discovery to electronic circuits and 3D shape modeling (Kajino,
2019; Rahman et al., 2012; Starostin & Balashov, 2008; Luo et al., 2024). Their ability to capture
complex relationships—pairwise in graphs, and multi-way in hypergraphs—makes them an essential
tool for representing and synthesizing structured data. In many real-world settings, topology alone
is not enough: node and edge (or hyperedge) features often carry important semantic or geometric
information, such as atom and bond types in molecules, or vertex coordinates in 3D meshes.

Despite recent advances, existing methods for featured graph generation struggle to scale. Most of
these approaches use flat architectures that model the entire structure at once, leading to quadratic
computational and memory complexities (Vignac et al., 2023; Eijkelboom et al., 2024; Xu et al.,
2024). This limits their use to moderately sized graphs. To address scalability, hierarchical generation
strategies have been proposed for both graphs and hypergraphs (Bergmeister et al., 2024; Gailhard
et al., 2025). These methods build the structure in stages, starting from a coarse representation and
progressively upsampling and refining it, which allows them to handle much larger topologies.

Training Examples Disjoint Generation
Baseline FAHNES

Figure 1: Examples of generated featured hy-
pergraphs by a sequential disjoint generation
baseline and our model (FAHNES).

However, existing hierarchical methods only focus
on unfeatured structures (Bergmeister et al., 2024;
Gailhard et al., 2025). Extending them to generate
features is challenging because different regions of a
graph or hypergraph often grow at uneven rates dur-
ing the refinement process, making it difficult to main-
tain consistency across scales. Furthermore, sequen-
tially generating topology first and then features—
rather than modeling them jointly—is ineffective in
complex settings, as illustrated in Figure 1.

To overcome these limitations, we propose
FAHNES (feature-aware hypergraph generation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

via next-scale prediction), a hierarchical generative framework that jointly models topology and
features for both graphs and hypergraphs1. FAHNES builds multi-scale representations (Tian et al.,
2024) through node coarsening and reconstructs fine structures via localized expansion, while
directly predicting features alongside structure at each stage. A fundamental component of our
model is a node budget mechanism, which encodes local growth constraints and helps maintain
consistency in regions that expand at different rates. In addition, we adapt minibatch flow-matching
optimal-transport (OT) coupling (Tong et al., 2024; Pooladian et al., 2023) to the hierarchical setting,
improving stability and coherence during generation. This combination enables scalable generation
of large, featured graphs or hypergraphs across diverse domains, from 3D meshes to point clouds.
Our main contributions are:

• We introduce the first scalable hierarchical model for the joint generation of hypergraph topology
and features, targeting complex data such as 3D meshes and point clouds.

• We propose a novel budget-based mechanism that enhances global structural coherence in hierar-
chical generation.

• We extend minibatch OT-coupling to hierarchical graph or hypergraph generation, improving
generative stability and quality.

• We validate FAHNES on both synthetic and real-world datasets, demonstrating strong performance
in jointly generating topology and features.

2 RELATED WORK

Graph and hypergraph generation using deep learning. Graph generation has seen significant
advances in recent years. Early approaches, such as GraphVAE (Simonovsky & Komodakis, 2018),
employed autoencoders to embed graphs into latent spaces for sampling. Subsequent models lever-
aged recurrent neural networks to sequentially generate adjacency matrices, improving structural
fidelity (You et al., 2018). More recently, diffusion-based methods have enabled permutation-invariant
graph generation (Niu et al., 2020; Vignac et al., 2023), with extensions incorporating structural
priors such as node degrees (Chen et al., 2023). Many of these previous methods jointly model node
features and topology, but are limited to small graphs due to scalability challenges. Diffusion-based
models (Vignac et al., 2023; Eijkelboom et al., 2024; Xu et al., 2024) operate over complete graphs
by gradually corrupting structures and features, then training models to denoise them. However, their
scalability is constrained by the combinatorial number of possible edges in graphs.

To mitigate this, hierarchical methods have been proposed. Bergmeister et al. (2024) introduced
a scalable graph generation framework based on a coarsen-then-expand approach, merging nodes
to form coarse representations and progressively reconstructing finer details. This framework was
extended to hypergraphs by Gailhard et al. (2025), which allows edges to connect more than two
nodes. However, both methods focus exclusively on topology generation, neglecting node and
hyperedge features essential for many applications.

Applications of hypergraph generation. Generative models that capture both higher-order structure
and node/hyperedge features are critical in numerous domains. In molecular design, regular graph
generative models struggle to accurately represent rings and scaffolds (Vignac et al., 2023; Barsbey
et al., 2025), which naturally correspond to hyperedges involving multi-atom interactions rather than
pairwise bonds. Similarly, 3D shape modeling involves surfaces such as triangles, quads, or general
polygons that extend beyond simple pairwise connectivity. Conventional approaches often rely on
fixed topology, quantization, or autoregressive sequence modeling with transformers (Nash et al.,
2020; Siddiqui et al., 2024), limiting their flexibility and scalability. Hypergraphs provide a more
general framework by treating faces as hyperedges, enabling the joint generation of topology and
features.

Unlike prior work that focuses solely on topology or relies on flat, non-scalable designs, we present the
first unified, scalable approach for jointly modeling hypergraph structure and features. FAHNES en-
hances hierarchical generative modeling with feature integration, a novel node-budget mechanism,
and flow-matching training tailored to our strategy.

1Since hypergraphs are a generalization of graphs, we present FAHNES on hypergraphs. The explanation for
graphs follows straightforwardly.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 FEATURE-AWARE (HYPER)GRAPH GENERATION VIA NEXT-SCALE
PREDICTION

Notations. Throughout this paper, we use calligraphic letters, like V , to represent sets, with their
cardinality denoted by |V|. Matrices are represented by bold uppercase letters (e.g., A), while
vectors are indicated by bold lowercase letters (e.g., x). The transpose and point-wise multiplication
operations are denoted by (·)⊤ and ⊙, respectively. ⌈·⌋ denotes rounding to the nearest integer.

Basic definitions. We define a graph G = (V, E) as a pair consisting of a set of vertices V and a
set of edges E ⊆ V × V . Graphs may also carry node and edge features, represented by matrices
FV ∈ R|V|×m and FE ∈ R|E|×l, where m and l denote the dimensionality of the features. Each edge
e ∈ E corresponds to a pair (u, v), indicating a connection between nodes u and v. A bipartite graph
B = (VL,VR, E) is a special case of a graph where the vertex set is split into two disjoint subsets
VL and VR, and edges exist only between the two parts, i.e., E ⊆ VL × VR. The full set of nodes is
V = VL ∪ VR. In this work, we consider node features for bipartite graphs, denoted by FL for the
left-side nodes and FR for the right-side nodes.

A hypergraph H extends the concept of a graph and is specified by a pair (V, E), where V represents
the vertex set and E comprises hyperedges, with each e ∈ E being a subset of V . The main distinction
of hypergraphs lies in their ability to connect arbitrary numbers of vertices through a single hyperedge.
Similar to graphs, hypergraphs can possess node and hyperedge features, which are denoted FV
and FE . We consider two fundamental graph-based representations of hypergraphs: clique and star
expansions. The clique expansion transforms a hypergraph H into a graph C = (V, Ec), where
hyperedges are replaced by cliques, i.e., Ec = {(u, v) | ∃ e ∈ E : u, v ∈ e}. The star expansion
converts a hypergraph H into a bipartite structure B = (VL,VR, Eb), where VL = V , VR = E ,
and Eb = {(v, e) | v ∈ VL, e ∈ VR, v ∈ e in H}. Left side nodes VL represent the nodes of the
hypergraph, while right side nodes VR represent hyperedges.

Our objective is to develop a generative model that can sample from the underlying distribution of a
dataset of featured hypergraphs (or graphs) (H1, . . . ,HN), i.e., to learn the joint distribution over
both topology and features. We present FAHNES in the more general setting of hypergraphs; since
graphs are a special case of hypergraphs, the model can be directly adapted to graphs, as discussed in
Section 3.6. Complete mathematical proofs of all propositions in this paper appear in Appendix A.

3.1 OVERVIEW

FAHNES follows a hierarchical pipeline as shown in Figure 2: i) during training, multi-scale
representations of input (hyper)graphs are produced; ii) a model learns to reconstruct a higher
scale from a lower one. Our approach adopts a coarsening–expansion framework (Gailhard et al.,
2025). We first perform standard spectrum-preserving coarsening (Loukas, 2019) on the clique
expansion of the hypergraph to obtain the multi-scale representation. The process is then reversed
through expansion and refinement, reconstructing both topology and features at progressively finer
scales. Expansion and refinement are learned on the bipartite representation using the flow-matching
framework (Lipman et al., 2022), treating generation as the inverse of the coarsening process.

To address uneven growth across regions, we introduce a node budget mechanism: each cluster
is assigned a budget indicating its remaining expansions. Budgets are recursively divided among
child nodes, starting from a single super-node with the full budget and ending when all clusters have
a budget of one. This provides more local control over the final node count and improves global
consistency compared to prior methods (Bergmeister et al., 2024; Gailhard et al., 2025), which only
append the desired size to node embeddings. At each expansion step, the model also predicts the
mean feature of future child nodes conditioned on the parent’s feature, extending the scale-wise
autoregressive idea of Ren et al. (2024) so that predictions at one scale guide those at the next.

3.2 BUDGETED COARSENING

We adopt the coarsening strategy of Gailhard et al. (2025), representing the hypergraph at multiple
resolution levels by merging nodes into clusters. Node pairs to be merged are selected using the
spectrum-preserving coarsening of Loukas (2019), applied to the hypergraph’s clique expansion.
Mergings in the clique expansion are then mirrored in the bipartite representation, with corresponding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

G
en

eratio
n

Generation

Bipartite
Representation

Flow
Matching

C
o
ar

se
ni

ng

Coarsening

Expansion Refinement

+ Budget

+ Budget

+ Budget

Features + Topology

Features + Topology

Features + Topology

Refinement

Refinement

Expansion

Expansion

Flow
Matching

Flow
Matching

...

Figure 2: Our framework adopts a coarsening-expansion strategy. i) During training, input hy-
pergraphs are progressively coarsened by merging nodes and hyperedges, yielding a multiscale
representation. Node features are averaged during merging, and budgets are summed. ii) The model
is then trained to predict which nodes were merged at each scale. iii) In the expansion phase, merged
nodes (shown in dark in the leftmost column) are expanded back (copies shown in dark), inheriting
their parent’s features, budget, and connectivity. In the refinement phase, the model is trained to (a)
identify which edges should be removed (dotted lines), (b) predict how the parent’s budget should be
split across the children, and (c) refine the features of newly expanded nodes.

left side nodes being merged, and copies of the same hyperedge being subsequently collapsed. We
limit node mergings to at most two per cluster, which consequently bounds hyperedge mergings to at
most three (Gailhard et al., 2025). For each resulting cluster, we track two quantities. First, the budget
is the total number of nodes contained in the cluster. Initially, each node and hyperedge has a budget
of 1; when clusters merge, their budgets are summed and assigned to the new super-cluster. The
node budget provides a local growth constraint, indicating how many fine-level nodes each coarse
cluster should expand into and guiding refinement in regions that grow at different rates. Second, the
super-cluster’s feature is computed as the weighted mean of the features of the clusters it absorbs, so
it represents the average feature of all its contained nodes.

We denote node (left-side) budgets and features by bL ∈ N|VL| and FL, and hyperedge (right-side)
budgets and features by bR ∈ N|VR| and FR. The following definition formalizes our coarsening
process.
Definition 1 (Bipartite graph coarsening). Let H be an arbitrary hypergraph, C = (Vc, Ec) its clique
expansion, and B = (VL,VR, Eb,bL,bR,FL,FR) its featured bipartite representation. Let PL =
{V(1), . . . ,V(n)} be a partitioning2 of the node set VL such that each set V(p) induces a connected
subgraph in C. We construct an intermediate coarsening B̃(B,PL) = (V̄L,VR, Ēb, b̄L,bR, F̄L,FR)
by merging each part V(p) into a single node v(p) ∈ V̄L, and by defining:

b̄L[p] =
∑

v∈V(p)

bL[v], F̄L[p] =
1

b̄L[p]

∑
v∈V(p)

bL[v]FL[v], (1)

for every merged node V(p). An edge e{p,q} ∈ Ēb is added between v(p) ∈ V̄L and v(q) ∈ VR if there
exists an edge e{i,q} ∈ Eb in the original bipartite representation between some v(i) ∈ V(p) and v(q).

To complete the coarsening process, we define an equivalence relation v1 ∼ v2 ⇐⇒ N (v1) =
N (v2) on VR, whereN (v) denotes the set of neighbors of v, i.e., we consider right side nodes having

2That is, V(p) ⊆ VL,
⋃n

i=1 V
(i) = VL, and V(i) ∩ V(j) = ∅ ∀ 1 ≤ i, j ≤ n.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the same set of neighbors as equivalent, or in other words we consider hyperedges containing the
same set of nodes as equivalent. This induces a partitioning PR = {V(1)

R , . . . ,V(m)
R }, allowing us

to construct the fully coarsened bipartite representation B̄(B̃,PL) = (V̄L, V̄R, Ēb, b̄L, b̄R, F̄L, F̄R)

by merging each part V(p)
R into a single node v

(p)
R ∈ V̄R, similarly to the construction of V̄L, and by

defining:

b̄R[p] =
∑

v∈V(p)
R

bR[v], F̄R[p] =
1

b̄R[p]

∑
v∈V(p)

R

bR[v]FR[v], (2)

for every merged hyperedge V(p)
R .

Remark 2. Informally, we cluster nodes in the clique expansion, merge the corresponding left-side
nodes of the bipartite graph, and compute their budgets and features as described above. Right-side
nodes (hyperedges) connected to the same left-side nodes are then merged. In our implementation,
we select nodes for clustering using spectrum-preserving coarsening (Loukas, 2019). In the final
reduction—when only one node and one hyperedge remain—we replace their features with zero
matrices to yield a feature-agnostic initialization for generation. Please note that cluster size vectors
introduced in (Bergmeister et al., 2024) correspond to the sizes of all sets V(p)

L and V(p)
R , i.e., the

number of mergings for each cluster at this specific step, and not the number of nodes absorbed
since the initialization of coarsening—which we call budget. Further details about the coarsening
methodology are provided in Appendix B. Some visual examples of coarsening sequences are
provided in Appendix C.

We provide the following theoretical result regarding the feature merging process in FAHNES.
Proposition 3. Setting cluster features as the mean of the nodes they contain minimizes the mean
squared error between the features of the fully expanded hypergraph and those of the original
hypergraph.

3.3 BUDGETED EXPANSION AND REFINEMENT

Once multi-scale representations for the dataset of hypergraphs are produced by the coarsening
procedure, the objective is to train a model able to reverse it. In this section, we define the inverse of
the coarsening procedure, which the model will learn to imitate. It comprises two stages: expansion
(“upsampling” by duplicating nodes and hyperedges) and refinement (adjusting connectivity, budgets,
and features). This process exclusively works on the bipartite representation.

Since our framework only conditions on the total number of nodes in the final hypergraph, we
maintain a single node budget vector b ∈ N|VL| for the node (left-side) partition and discard the
hyperedge (right-side) budget. To undo mergings, clusters are recursively split into multiple child
nodes. Each child initially copies the parent’s connections and inherits its feature and budget, before
a subsequent refinement step, then: i) redistributes the budget among the children, ii) updates their
features, and iii) removes edges that should not persist at the finer scale.

Formally, the expansion and refinement steps can be described as follows.
Definition 4 (Bipartite graph expansion). Given a bipartite graph B = (VL,VR, E ,b,FL,FR)
and two expansion size vectors vL ∈ N|VL|, vR ∈ N|VR|, denoting the number of dupli-
cation for nodes (left side) and hyperedges (right side), respectively. Let B̃(B,vL,vR) =

(ṼL, ṼR, Ẽ ,bexpanded,Fexpanded
L ,Fexpanded

R) denote the expansion of B, whose node sets, budgets, and
features are given by:

ṼL = V(1)
L ∪ · · · ∪ V(|VL|)

L , where V(p)
L = {v(p,i)L | 1 ≤ i ≤ vL[p]} for 1 ≤ p ≤ |VL|,

ṼR = V(1)
R ∪ · · · ∪ V(|VR|)

R , where V(p)
R = {v(p,i)R | 1 ≤ i ≤ vR[p]} for 1 ≤ p ≤ |VR|,

bexpanded[p, i] = b[p] for 1 ≤ i ≤ vL[p], 1 ≤ p ≤ |VL|,
Fexpanded

L [p, i] = FL[p] for 1 ≤ i ≤ vL[p], 1 ≤ p ≤ |VL|,
Fexpanded

R [p, i] = FR[p] for 1 ≤ i ≤ vR[p], 1 ≤ p ≤ |VR|.

(3)

The edge set Ẽ includes all the cluster interconnecting edges: {e{p,i;q,j} | e{p,q} ∈ E , v
(p,i)
L ∈

V(p)
L , v

(q,j)
R ∈ V(q)

R }.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remark 5. Expansion thus acts as a clone-and-rewire operation: vertices and hyperedges are dupli-
cated, and each child inherits every incident edge of its parent.
Definition 6 (Bipartite graph refinement). Given a bipartite graph B̃ =

(ṼL, ṼR, Ẽ ,b,Fexpanded
L ,Fexpanded

R), an edge selection vector e ∈ {0, 1}|Ẽ|, a budget split vec-
tor f ∈ [0, 1]|ṼL|, satisfying

∑
v∈V(p)

L

f [v] = 1 for all cluster V(p)
L in ṼL, and two feature

refinement vectors Frefine
L and Frefine

R with the same dimensions as Fexpanded
L and Fexpanded

R , let
B(B̃, e, f ,Frefine

L ,Frefine
R) = (ṼL, ṼR, E , ⌈b ⊙ f⌋,Frefine

L ,Frefine
R) denote the refinement of B̃, where

E ⊆ Ẽ such that the i-th edge e(i) ∈ E if and only if e[i] = 1.
Remark 7. Edges are selectively removed based on the binary indicator vector e, and features are
updated with new predictions. Node budgets are divided among child nodes according to the split
proportions specified by the vector f . Since budgets must be integers, the resulting values are rounded.
In the case of a tie (e.g., when an odd number must be split evenly), the child with the lowest index
receives the larger share, and the remaining budget is distributed among the others accordingly.

3.4 PROBABILISTIC MODELING

We now present a formalization of our learning framework, generalizing (Bergmeister et al., 2024;
Gailhard et al., 2025). Let {H(1), . . . ,H(N)} denote a set of i.i.d. hypergraph instances. Our
objective is to approximate the unknown generative process by learning a distribution p(H). We
model the marginal likelihood of each hypergraph H as a sum over the likelihoods of its bipartite
representation’s expansion sequences p(H) = p(B) =

∑
ϖ∈Π(B) p(ϖ), where Π(B) denotes the set

of valid expansion sequences from a minimal bipartite graph to the full bipartite representation B
corresponding to H . Each intermediate B(l−1) is generated by expanding and refining its predecessor,
in accordance with Definitions 4 and 6.

To simplify notations, we drop the superscript for Frefine and simply write F. Assuming a Markovian
generative structure, the likelihood of a specific expansion sequence ϖ is factorized as:

p(ϖ) =

1︷ ︸︸ ︷
p(B(L))

∏1
l=L p(B(l−1)|B(l)) =

∏1
l=L p(e(l−1), f (l−1),F

(l−1)
L ,F

(l−1)
R |B̃(l−1))p(v

(l)
L ,v

(l)
R |B(l)).

(4)
To simplify the modeling process and avoid learning two separate distributions
p(e(l), f (l),F

(l)
L ,F

(l)
R |B̃(l)) and p(v

(l)
L ,v

(l)
R |B(l)), we rearrange terms as follows:

p(ϖ) = p(e(0), f (0),F
(0)
L ,F

(0)
R |B̃0)p(v

(L)
L ,v

(L)
R)

[∏1
l=L−1 p(v

(l)
L ,v

(l)
R |B(l))p(e(l), f (l),F

(l)
L ,F

(l)
R |B̃(l))

]
,

(5)
where p(v

(L)
L ,v

(L)
R) = p(v

(L)
L ,v

(L)
R |B(L)).

We assume that the variables v(l)
L and v

(l)
R are conditionally independent of B̃(l) when conditioned

on B(l):
p(v

(l)
L ,v

(l)
R |B

(l), B̃(l)) = p(v
(l)
L ,v

(l)
R |B

(l)). (6)
This allows us to write the combined likelihood as:

p(v
(l)
L ,v

(l)
R |B

(l))p(e(l), f (l),F
(l)
L ,F

(l)
R |B̃

(l)) = p(v
(l)
L ,v

(l)
R , e(l), f (l),F

(l)
L ,F

(l)
R |B̃

(l)), (7)
which corresponds to the combined expansion and refinement step that inverts coarsening at depth l.

During training, the model approximates the right-hand side of (7), learning to generate, for each
expansion and refinement step, vL, vR, e, f , and Frefine

L ,Frefine
R . Once trained, the model generates a

hypergraph with N nodes through successive expansion and refinement steps:

1. Initialization. Start from a minimal bipartite graph: B(L) = ({1}, {2}, {(1, 2)}, (N)), consisting
of a single node on each side connected by one edge. The left-side node is assigned the full
node budget, i.e., b = [N]. If node and hyperedge features need to be generated, FL and FR are
initialized as zero matrices.

2. Expansion and refinement. Iteratively expand and refine the current bipartite representation to add

details until the desired size is attained: B(l) expand−−−→ B̃(l−1) refine−−−→ B(l−1).
3. Hypergraph reconstruction. Once the final bipartite graph is generated, construct the hypergraph

by collapsing each right-side node into a hyperedge connecting its adjacent left-side nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.5 MINIBATCH OT-COUPLING

Graphs and hypergraphs lack a natural node ordering, making it challenging to align predictions with
their targets. After an expansion, the model may produce a permutation of the correct predictions; yet,
without alignment, the computed loss will be large despite the prediction being correct. This mismatch
introduces significant noise into the learning signal. To address this, we generalize minibatch OT-
coupling (Tong et al., 2024; Pooladian et al., 2023) from image generation to our setting. In its
original form, OT-coupling aligns samples from the prior and target distributions within a minibatch
via an optimal transport plan, reindexing prior samples to minimize the matching cost. Formally,
given prior samples X ∈ RB×d and targets Y ∈ RB×d, OT-coupling finds:

P∗ = argmin
P∈ΠB

∥XP−Y∥2, (8)

where P is a permutation matrix and ΠB denotes the set of all B ×B permutations.

In our context, for a given bipartite graph with n nodes, adjacency matrix A ∈ {0, 1}n×n, expanded
budgets b ∈ Nn and expanded features F ∈ Rn×d where d is the dimension of node or hyperedge
features, X and Y correspond to prior samples and targets, respectively, and P is implemented as a
node-swapping operation. To avoid bias, swaps are only allowed between equivalent nodes—those
structurally and feature-wise indistinguishable up to noise. Swapping non-equivalent nodes would
alter the learned distribution and degrade model performance. This leads to the following problem:

P∗ = argmin
P∈Πn

∥PX−Y∥2 s.t. P⊤AP = A, Pb = b, PF = F. (9)

To reduce overhead, we only consider permuting children from a single cluster expansion, where
equivalence holds naturally. In our implementation, with exactly two or three children per cluster,
only two or six permutations are possible, making the operation lightweight and easily parallelizable
with standard tensor operations.
Proposition 8 (Informal). Minibatch OT-coupling in our framework preserves the target distribution
and produces shorter target paths.

3.6 GENERALIZATION TO GRAPHS

Our framework can be directly extended to generate standard graphs by adapting the coarsen–expand
procedure of Bergmeister et al. (2024). As in the hypergraph setting, each node begins with a budget
of one, which is summed when nodes are merged, while features are aggregated through a weighted
average with weights proportional to node budgets. During expansion, clusters propagate their
budgets and features to child nodes, and the model predicts how to split the budget among them while
refining their features. Graph generation, therefore, starts from a single node with a budget equal to
the desired size and proceeds through successive expansion and refinement steps. To ensure stable
training and alignment between predicted and target structures, minibatch OT-coupling is applied to
groups of expanded nodes exactly as in the hypergraph case.

4 EXPERIMENTS AND RESULTS

In this section, we detail our experimental setup, covering datasets, evaluation metrics, implementation
choices, baselines, results, and ablation studies. Full experimental details are provided in Appendix
D. Visualizations of the generated samples are provided in Appendix I.

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. We evaluate our method on five featureless datasets: Stochastic Block Model (SBM)
(Kim et al., 2018), Ego (Comrie & Kleinberg, 2021), Tree (Nieminen & Peltola, 1999), ModelNet40
bookshelf, and ModelNet40 piano (Wu et al., 2015). We also evaluate FAHNES on two featured
hypergraphs datasets, comprising two sets of 3D meshes: Manifold40 bench and Manifold40 airplane
(Hu et al., 2022). Additionally, we adapt our method to graphs using the methodology outlined in
Section 3.6 and evaluate it on two point cloud datasets sampled on the meshes of the two previous
mesh datasets. For 3D mesh and point cloud datasets, node features are 3D positions, and edges or
hyperedges do not have features.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison between FAHNES and other baselines for the SBM, Ego, and Tree hypergraphs.

Method SBM Hypergraphs Ego Hypergraphs Tree Hypergraphs
Valid SBM ↑ Node Num ↓ Spectral ↓ Valid Ego ↑ Node Num ↓ Spectral ↓ Valid Tree ↑ Node Num ↓ Spectral ↓

HyperPA 2.5 0.075 0.273 0.0 35.830 0.237 0.0 2.350 0.159
VAE 0.0 0.375 0.024 0.0 47.580 0.133 0.0 9.700 0.124
GAN 0.0 1.200 0.059 0.0 60.350 0.230 0.0 6.000 0.089
Diffusion 0.0 0.150 0.031 0.0 4.475 0.190 0.0 2.225 0.127
HYGENE 65.0 0.525 0.010 90.0 12.550 0.004 77.5 0.000 0.012

FAHNES 87.8±3.1 0.029±0.009 0.006±0.004 99.5±1.1 0.128±0.171 0.004±0.003 89.7±6.0 0.000±0.000 0.003±0.002

Table 2: Evaluation on ModelNet40.

Method ModelNet40 Bookshelf ModelNet40 Piano
Node Num ↓ Spectral ↓ Node Num ↓ Spectral ↓

HyperPA 8.025 0.048 0.825 0.067
VAE 47.450 0.190 75.350 0.396
GAN 0.000 0.476 0.000 0.697
Diffusion 0.000 0.079 0.050 0.113
HYGENE 69.730 0.068 42.520 0.117

FAHNES 0.135±0.276 0.024±0.015 0.846±1.009 0.040±0.026

Table 3: Evaluation on the graph point cloud datasets.

Method Airplane Point Clouds Bench Point Clouds
Chamfer Dist ↓ Spectral ↓ Ratio ↓ Chamfer Dist ↓ Spectral ↓ Ratio ↓

DiGress OOM OOM OOM OOM OOM OOM
DeFoG OOM OOM OOM OOM OOM OOM
FAHNES 0.094±0.006 0.005±0.004 67.311±44.903 0.130±0.000 0.004±0.000 84.423±0.000

Metrics. For featureless hypergraphs, we follow the evaluation criteria in (Gailhard et al., 2025).
These include: i) structural comparison metrics such as Node Num (difference in node counts); ii)
topological analysis with Spectral (maximum mean discrepancy between the spectral distributions). In
scenarios where datasets enforce structural constraints, we report Valid—the percentage of generated
samples satisfying those constraints. For all metrics except Valid, lower values indicate improved
performance, while higher values are preferable for Valid. In the case of 3D meshes, we use ChamDist
(the nearest training sample Chamfer distance), which computes the Chamfer distance between point
clouds sampled from a generated sample and all training samples and outputs the minimum distance.
For graph point cloud datasets, we report the nearest training sample Chamfer distance, the maximum
mean discrepancy (MMD) between the spectral distributions of the generated samples and training
set, and the ratio of various metrics computed for the generated samples and test set (see Appendix D
for details). Detailed numerical results with additional metrics can be found in Appendix H.

Implementation details. Our implementation uses a custom flow-matching framework (Lipman
et al., 2022) together with a local PPGN architecture (Bergmeister et al., 2024). We also leverage our
budget component using graph inpainting techniques, enabling the model to learn only the necessary
parts of the distribution: i) budget splits are fixed to 1 for unexpanded clusters or those with a budget
of 1, ii) equal splits are enforced for expanded clusters with a budget of 2, iii) clusters of size one
are not allowed to expand, and iv) the features of non-expanded clusters are copied unchanged.
Extensive implementation details are provided in Appendix E. The training and sampling procedures
are explained in Appendix F. We also analyze the computational complexity in Appendix G.

Baselines. For the featureless hypergraphs, we compare FAHNES against HYGENE (Gailhard et al.,
2025), HyperPA (Do et al., 2020), a Variational Autoencoder (VAE) (Kingma & Welling, 2013), a
Generative Adversarial Network (GAN) (Goodfellow et al., 2020), and a standard 2D diffusion model
(Ho et al., 2020) trained on incidence matrix images, where hyperedge membership is represented by
white pixels and absence by black pixels. For 3D meshes, we compare FAHNES with a sequential
disjoint generation baseline, in which the hypergraph topology is generated first, followed by the
feature generation. For the graph point cloud datasets, we compare FAHNES against DeFoG (Qin
et al., 2024) and DiGress (Vignac et al., 2023), two state-of-the-art flat models for graph generation.

4.2 RESULTS AND DISCUSSION

Comparison with the baselines. Tables 1 and 2 show the comparisons for the featureless hypergraphs.
We see that our node-budget and OT-coupling components improve the generation quality. Regarding
the Manifold40 featured hypergraph dataset3, FAHNES obtains a Chamfer distance of 0.073 and
0.049 for bench and airplane, respectively, while the sequential baseline reaches 0.143 and 0.117,
respectively. This shows the better modeling capability of FAHNES in jointly generating topology
and features in hypergraphs instead of a simple two-step approach. About the graph point cloud

3The full set of numerical results for the Manifold40 datasets is provided in Appendix H.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation studies on the node budget (Budg.) and minibatch OT-coupling (Coup.) for SBM,
Ego, and Tree hypergraphs.

Budg. Coup.
SBM Tree Ego

Valid ↑ NodeNum ↓ Spectral ↓ Valid ↑ NodeNum ↓ Spectral ↓ Valid ↑ NodeNum ↓ Spectral ↓
✓ ✓ 87.8±3.1 0.029±0.009 0.006±0.004 89.7±6.0 0.000±0.000 0.003±0.002 99.5±1.1 0.128±0.171 0.004±0.003

✗ ✓ 85.3±5.9 0.044±0.078 0.006±0.004 90.7±6.7 0.000±0.000 0.004±0.001 100.0±0.0 0.118±0.158 0.005±0.003

✓ ✗ 86.7±6.7 0.039±0.014 0.006±0.004 89.3±3.6 0.000±0.000 0.005±0.011 99.9±0.4 0.073±0.050 0.007±0.012

✗ ✗ 84.6±4.6 0.049±0.045 0.007±0.007 95.6±3.7 0.000±0.000 0.005±0.003 99.5±1.1 0.117±0.155 0.004±0.003

Table 5: Ablation studies on the node budget (Budg.) and minibatch OT-coupling (Coup.) for
ModelNet and ManifoldNet datasets.

Budg. Coup.
ModelNet Bookshelf ModelNet Piano ManifoldNet Airplane ManifoldNet Bench

NodeNum ↓ Spectral ↓ Node Num ↓ Spectral ↓ ChamDist ↓ Node Num ↓ Spectral ↓ ChamDist ↓ NodeNum ↓ Spectral ↓
✓ ✓ 0.135±0.276 0.024±0.015 0.846±1.009 0.040±0.026 0.048±0.003 0.017±0.070 0.010±0.003 0.064±0.005 0.060±0.149 0.017±0.011

✗ ✓ 0.940±0.917 0.032±0.013 3.622±1.822 0.055±0.040 0.079±0.019 0.426±0.820 0.014±0.007 0.090±0.003 0.240±0.265 0.018±0.009

✓ ✗ 0.265±0.496 0.014±0.007 3.155±3.637 0.030±0.048 0.050±0.005 0.052±0.065 0.012±0.005 0.085±0.056 0.020±0.032 0.013±0.003

✗ ✗ 1.325±1.631 0.031±0.009 5.490±8.847 0.036±0.016 0.100±0.023 0.304±0.437 0.019±0.009 0.098±0.024 0.267±0.319 0.022±0.014

datasets, Table 3 shows that our hierarchical method is the only one able to perform at this scale,
which shows its superior scalability. Detailed numerical results with more metrics are shown in
Appendix H.

4.3 ABLATION STUDIES

Tables 4 and 5 present ablation studies of FAHNES for the node-budget and OT-coupling components.
We observe that using budgets instead of concatenating the target size to each node embedding, like
in (Bergmeister et al., 2024; Gailhard et al., 2025), improves generation quality. OT-coupling has a
more nuanced effect, clearly improving quality on some datasets, like SBM or ManifoldNet Airplane,
while not changing much for others. Those two components are also essential for feature generation,
as lacking one of them results in much worse results, as seen by the large increase in ChamDist when
one component is ablated.

4.4 LIMITATIONS

While our node budget mechanism helps mitigate the issue of missing nodes, it does not fully re-
solve it, and our method still struggles when generating very large hypergraphs, such as ModelNet
Bookshelf and Piano, or very large graphs, such as point cloud datasets. These cases highlight that
scalability remains challenging when both the number of nodes and the structural complexity grow
substantially. Moreover, our framework currently assumes relatively simple feature distributions
(e.g., 3D coordinates), and extending it to domains with richer or heterogeneous node and hyperedge
attributes (such as categorical or multi-modal features) may require additional modeling components.
Finally, although FAHNES improves stability through minibatch OT-coupling, training remains com-
putationally expensive for large-scale datasets, which may limit applicability in resource-constrained
settings.

5 CONCLUSION

We presented FAHNES, the first scalable hierarchical framework for jointly generating graph and
hypergraph topology together with features. By integrating coarse-to-fine structural modeling with
feature-aware generation, FAHNES overcomes the limitations of flat or disjoint approaches and
enables the generation of complex structures at larger scales. Key innovations include a node budget
mechanism, which provides fine-grained control over local growth, and minibatch OT-coupling,
which improves alignment and stability during training. Extensive experiments on synthetic, 3D
mesh, and point cloud datasets show that FAHNES achieves strong performance in both topology
and feature generation while scaling to graph and hypergraph sizes that are out of reach for prior
models. Our framework opens new directions for generative modeling of structured data, including
applications in 3D geometry and circuit modeling, as well as extensions to richer feature modalities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All proofs of propositions and theorems, and all details regarding the experiments, parameters, and
datasets can be found in the appendix. The code will be made public upon acceptance of the paper.

REFERENCES

Sinan G Aksoy, Cliff Joslyn, Carlos Ortiz Marrero, Brenda Praggastis, and Emilie Purvine. Hypernet-
work science via high-order hypergraph walks. EPJ Data Science, 2020.

Melih Barsbey, Rubén Ballester, Andac Demir, Carles Casacuberta, Pablo Hernández-García, David
Pujol-Perich, Sarper Yurtseven, Sergio Escalera, Claudio Battiloro, Mustafa Hajij, and Tolga Birdal.
Higher-order molecular learning: The cellular transformer. In ICLR 2025 Workshop on Generative
and Experimental Perspectives for Biomolecular Design, 2025.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In International Conference on
Learning Representations, 2024.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International Conference on Machine Learning, 2023.

Cazamere Comrie and Jon Kleinberg. Hypergraph ego-networks and their temporal evolution. In
IEEE International Conference on Data Mining, 2021.

Manh Tuan Do, Se-eun Yoon, Bryan Hooi, and Kijung Shin. Structural patterns and generative
models of real-world hypergraphs. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
ℓ1-ball for learning in high dimensions. International Conference on Machine Learning, 2008.

Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3D de novo
molecule generation. ArXiv, 2024.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. In Advances in Neural Information
Processing Systems, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis. In International Conference on Machine Learning,
2024.

Dorian Gailhard, Enzo Tartaglione, Lirida Naviner, and Jhony H Giraldo. HYGENE: A diffusion-
based hypergraph generation method. In AAAI Conference on Artificial Intelligence, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, and
Ralph R Martin. Subdivision-based mesh convolution networks. ACM Transactions on Graphics,
2022.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
International Conference on Machine Learning, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chiheon Kim, Afonso S Bandeira, and Michel X Goemans. Stochastic block model for hypergraphs:
Statistical limits and a semidefinite programming approach. ArXiv, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2013.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Ste-
fanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
International Conference on Learning Representations, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In International Conference on Learning Representations, 2022.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 2019.

Zhishang Luo, Truong Son Hy, Puoya Tabaghi, Michaël Defferrard, Elahe Rezaei, Ryan M Carey,
Rhett Davis, Rajeev Jain, and Yusu Wang. De-hnn: An effective neural model for circuit netlist
representation. In International Conference on Artificial Intelligence and Statistics, 2024.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, 2022.

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. PolyGen: An autoregressive
generative model of 3D meshes. In International Conference on Machine Learning, 2020.

J Nieminen and M Peltola. Hypertrees. Applied mathematics letters, 1999.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, 2020.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings.
In International Conference on Machine Learning, 2023.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete flow matching
for graph generation. ArXiv, 2024.

Ahsanur Rahman, Christopher L Poirel, David J Badger, and TM Murali. Reverse engineering
molecular hypergraphs. In ACM Conference on Bioinformatics, Computational Biology and
Biomedicine, 2012.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. FlowAR:
Scale-wise autoregressive image generation meets flow matching. In International Conference on
Machine Learning, 2024.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. MeshGPT: Generating triangle meshes with decoder-
only transformers. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, 2018.

NV Starostin and VV Balashov. The use of hypergraphs for solving the problem of orthogonal
routing of large-scale integrated circuits with an irregular structure. Journal of Communications
Technology and Electronics, 2008.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. In Advances in Neural Information Processing
Systems, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
DiGress: Discrete denoising diffusion for graph generation. In International Conference on
Learning Representations, 2023.

Nisheeth K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Computer Science, 2013.
ISSN 1551-305X.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2015.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
In Advances in Neural Information Processing Systems, 2024.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning, 2018.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

This supplementary material offers additional technical details and formal proofs to complement
the main paper. The document is structured as follows: Formal proofs of the main propositions are
presented in Appendix A. Appendix B describes our procedure for sampling coarsening sequences.
Appendix C provides illustrative examples of coarsening sequences. Appendix D outlines the
experimental setup, including hyperparameter choices and numerical results. Appendix E discusses
more detailed implementation details of FAHNES. Algorithms for model training and sampling
featured hypergraphs are detailed in Appendix F. Appendix G analyzes the algorithmic complexity of
our approach. Appendix H presents detailed numerical results for the ablation studies. Appendix I
presents visual comparisons between training and generated samples.

A PROOFS

A.1 AVERAGING NODE FEATURES FOR CLUSTERS’ FEATURES

Proposition 9. Setting cluster features as the average of the nodes they contain minimizes the Mean
Squared Error (MSE) between the fully expanded hypergraph and the original hypergraph.

Proof. Let H = (V, E) be a hypergraph with node set V and hyperedge set E , and let Hl = (Vl, El)
denote the lifted hypergraph obtained by expanding each cluster C ⊆ V of size |C|-clique. By
construction, there exists a bijection ϕ : V → Vl mapping each original node to its corresponding
lifted node. Suppose each node v ∈ V is associated with a feature vector xv ∈ Rd, and each cluster
C ⊆ V is assigned a cluster feature vector xC ∈ Rd, which is inherited by all lifted nodes ϕ(v) for
v ∈ C. Define the mean squared error between the original node features and the cluster features in
the lifted hypergraph as:

MSE =
∑
v∈V
∥xv − xC(v)∥2, (10)

where C(v) denotes the cluster containing node v.

To minimize the MSE, it suffices to minimize, for each cluster C,

JC(xC) =
∑
v∈C
∥xv − xC∥2. (11)

Since JC is a convex quadratic function in xC , we find its minimum by setting the gradient to zero:

∇xCJC(xC) =
∑
v∈C

2(xC − xv) = 2|C|xC − 2
∑
v∈C

xv = 0. (12)

Solving for xC , we obtain

xC =
1

|C|
∑
v∈C

xv, (13)

which is the arithmetic mean of the feature vectors in the cluster C.

A.2 MINIBATCH OT-COUPLING

Let B be a bipartite graph. Let b be its current budget repartition, FL its node features, and FR its
hyperedge features. Denote x = (vL,vR, e, f ,F

refine
L ,Frefine

R), i.e., the predictions of the model. In
the following, all distributions are conditioned on b, FL and FR.
Proposition 10 (Marginal preservation). Under the OT-coupling of Algorithm 2, the joint distribution:

q(x0,x1)

has marginals:
q0(x0), q1(x1).

Definition 11 (Isomorphism of bipartite graphs in our setting). Let
B1 = (V1

L,V1
R, E1,b1,F1

L,F
1
R), B2 = (V2

L,V2
R, E2,b2,F2

L,F
2
R),

be bipartite graphs.

We say B1
∼= B2 (are isomorphic in our setting) if there exist bijections

σL : V1
L → V2

L, σR : V1
R → V2

R

such that:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1. Edge structure is preserved: (v, w) ∈ E1 ⇐⇒ (σL(v), σR(w)) ∈ E2,

2. Budgets are preserved: b1(v) = b2(σL(v)) for all v ∈ V1
L, b1(w) = b2(σR(w)) for all w ∈

V1
R,

3. Node and hyperedge features are preserved: F1
L(v) = F2

L(σL(v)), F1
R(w) = F2

R(σR(w)).

Proof. Let f be an arbitrary test function defined on bipartite graphs. Algorithm 2 swaps noise
samples between nodes that are equivalent in the sense that their target graphs (conditioned on the
same topology and conditioning features) remain isomorphic after swapping. That is, if x0 and x′

0
differ only by such a swap, then the resulting graphs are isomorphic: B(x0) ∼= B(x′

0). Let σ be the
bijective reindexing function corresponding to this isomorphism. Since f is defined on graphs and
graphs are invariant under isomorphism, we have:

f(x0) = f(σ(x0)). (14)

Therefore:

Eq(x0,x1)[f(x0)] = Eq(x1)

[
Eq(x0|x1)[f(x0)]

]
(15)

= Eq(x1)

[
Eq(x0)[f(σ(x0))]

]
(16)

= Eq(x1)

[
Eq(x0)[f(x0)]

]
(17)

= Eq(x0)[f(x0)]. (18)

where 16 comes from the transfer formula.

Thus, the marginal distribution over x0 remains unchanged. The same argument applies symmetrically
for x1 by using σ−1, concluding the proof.

Proposition 12 (Shorter paths). Under the OT-coupling of Algorithm 2, the loss-induced paths
for a given minibatch are, on average, shorter than without OT-coupling. Formally, let π be the
permutation returned by Algorithm 2 for starting points x0 and target points x1. Then∑

i

∥x0
i − x1

i ∥2 ≥
∑
i

∥x0
π(i) − x1

i ∥2. (19)

Proof. We can rewrite the left-hand side of (19) as a sum over clusters:∑
i

∥x0
i − x1

i ∥2 =
∑

clusters C

∑
i∈C
∥x0

i − x1
i ∥2. (20)

By construction, Algorithm 2 minimizes
∑

i∈C ∥x0
i − x1

i ∥2 within each cluster C.

Therefore, ∑
clusters C

∑
i∈C
∥x0

i − x1
i ∥2 ≥

∑
clusters C

∑
i∈C
∥x0

π(i) − x1
i ∥2 (21)

=
∑
i

∥x0
π(i) − x1

i ∥2, (22)

which proves the claim.

B COARSENING SEQUENCE SAMPLING

This section outlines our methodology for sampling a coarsening sequence π ∈ ΠF (H) for a
given hypergraph H . The full procedure is detailed in Algorithm 1. At each coarsening step l, let
H(l) denote the current hypergraph, B(l) its bipartite representation, and C(l) its weighted clique
expansion. We begin by sampling a target reduction fraction red_frac ∼ U([ρmin, ρmax]). We then
evaluate all possible contraction sets F (C(l−1)) using a cost function c, where lower cost indicates
higher preference. We employ a greedy randomized strategy that processes contraction sets in order
of increasing cost. For each set:

• The set is stochastically rejected with probability 1− λ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• If not rejected:
– Overlap check: If the contraction set overlaps with any previously accepted contraction, it

is discarded.
– Coarsening attempt: Otherwise, we compute tentative coarsened representations Ctemp and
Btemp.

– Cluster constraint check: If all right-side clusters in Btemp contain at most three nodes, the
contraction is accepted.

– Update step: When a contraction is accepted, we:

* Sum the budgets of the nodes in the contraction set to define the new cluster budget.
* Compute the new cluster’s node features as a weighted average of the original features,

using node budgets as weights.

The loop terminates once the number of remaining nodes satisfies the stopping condition:

|V(l−1)
L | − |V̄(l)

L | > red_frac · |V(l−1)
L |,

i.e., when the number of nodes on the left side (corresponding to the original hypergraph nodes) has
been reduced by the sampled fraction. This framework is flexible, allowing a variety of cost functions
c, contraction families F , reduction fraction ranges [ρmin, ρmax], and randomization parameters λ.

Practical considerations. To avoid oversampling overly small graphs during training, we follow the
heuristic of Bergmeister et al. (2024): when the current graph has fewer than 16 nodes, we fix the
reduction fraction to ρ = ρmax. Due to the constraint that no right-side cluster in B(l) may contain
more than three nodes, achieving the target reduction fraction is not always feasible. However, we
observe empirically that this rarely poses a problem when ρmax is reasonably small.

During training, we sample a coarsening sequence for each dataset graph, but only retain a randomly
selected intermediate graph from the sequence. Thus, our practical implementation of Algorithm 1 is
designed to return a single coarsened graph with associated features and budgets, rather than the full
sequence π.

To improve efficiency, we incorporate the caching mechanism introduced in Bergmeister et al. (2024).
Once a coarsening sequence is generated, its levels are cached. During training, a random level is
selected, returned, and then removed from the cache. A new sequence is generated only when the
cache for a particular graph is depleted, avoiding unnecessary recomputation.

Hyperparameters. In all experiments described in Section 4, we use the following settings:

• Contraction family: The set of all edges in the clique representation, i.e., F (C) = E , for a
weighted clique expansion C = (V, E).

• Cost function: Local Variation Cost Loukas (2019) with a preserving eigenspace size of k = 8.
• Reduction fraction range: [ρmin, ρmax] = [0.1, 0.3].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Hypergraph coarsening sequence sampling: Randomized iterative coarsening of
a hypergraph. At each step, contraction sets are selected based on cost, while ensuring right-side
clusters never merge more than three at a time. Accepted contractions update the hypergraph structure,
node budgets, and features.

Parameters: contraction family F , cost function c, reduction fraction range [ρmin, ρmax], randomiza-
tion parameter λ

Input: hypergraph H with n nodes and m hyperedges; node features FL; hyperedge features FR

Output: coarsening sequence π = (H(0), . . . ,H(L)) ∈ ΠF (H)
1: function HYPERGRAPHCOARSENINGSEQ(H)
2: H(0) ← H
3: B(0) ← BipartiteRepresentation(H(0))
4: C(0) ←WeightedCliqueExpansion(H(0))

5: b
(0)
L ← (1, . . . , 1) ∈ Rn ▷ Initial node budgets

6: b
(0)
R ← (1, . . . , 1) ∈ Rm ▷ Initial hyperedge budgets

7: π ← (B(0),b
(0)
L ,FL,FR)

8: l← 0
9: while |V(l)

L | > 1 do
10: l← l + 1
11: red_frac ∼ Uniform([ρmin, ρmax]) ▷ Sample reduction fraction
12: f ← c(·, C(l−1), (P(l−1), . . . ,P(0))) ▷ Cost function
13: accepted_contractions← ∅
14: for S ∈ SortedByCost(F (C(l−1))) do
15: if Random() > λ then
16: if S ∩ (

⋃
P∈accepted_contractions P) = ∅ then

17: Ctemp ← CoarsenCliqueExpansion(C(l−1), S)

18: Btemp ← CoarsenBipartite(B(l−1), S)
19: if ∀ right cluster R ∈ Btemp : |R| ≤ 3 then
20: accepted_contractions← accepted_contractions ∪ {S}
21: C(l) ← Ctemp, B(l) ← Btemp

▷ Update budgets and features for the new cluster
22: Let S = {v1, . . . , vk}, and the new node be v∗

23: b
(l)
L [v∗]←

∑k
i=1 b

(l−1)
L [vi]

24: F
(l)
L [v∗]← 1

b
(l)
L [v∗]

∑k
i=1 b

(l−1)
L [vi] · F(l−1)

L [vi]

25: end if
26: end if
27: end if
28: if |V(l−1)

L | − |V̄(l)
L | > red_frac · |V(l−1)

L | then
29: break
30: end if
31: end for
32: π ← π ∪ {B(l),b

(l)
L ,F

(l)
L }

33: end while
34: return π
35: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C EXAMPLES OF COARSENING SEQUENCES

Figure 3: Examples of coarsening sequence for various meshes. Thick lines represent 2-edges.

D EXPERIMENTAL DETAILS

In this section, we detail all three types of experiments – unfeatured hypergraphs, 3D meshes and graph
point clouds – individually, detailing their datasets, baselines, metrics and specific hyperparameters.

For all experiments, we use embeddings with 32 dimensions for edge selection vectors and node
and hyperedge expansion numbers. When they exist, features are embedded with 128 dimensions.
SignNet always has 5 layers and a hidden dimension of 128. Positional encodings always have
32 dimensions. We always use 10 layers of Local PPGN. We always use 25 sampling steps. All
experiments are run for 1M steps on a single L40S. We use 8 CPU workers.

D.1 UNFEATURED HYPERGRAPHS

Datasets. Our experiments utilize five datasets: three synthetic and two real-world, consistent with
those described in Gailhard et al. (2025):

• Stochastic Block Model (SBM) hypergraphs Kim et al. (2018): Constructed with 32 nodes split
evenly into two groups. Every hyperedge connects three nodes. Hyperedges are sampled with
probability 0.05 within groups and 0.001 between groups.

• Ego hypergraphs Comrie & Kleinberg (2021): Created by generating an initial hypergraph of
150–200 nodes with 3000 randomly sampled hyperedges (up to 5 nodes each), then extracting an
ego-centric subgraph by selecting a node and retaining only hyperedges that include it.

• Tree-structured hypergraphs Nieminen & Peltola (1999): A tree with 32 nodes is generated
using networkx, followed by grouping adjacent tree edges into hyperedges. Each hyperedge
contains up to 5 nodes.

• ModelNet40 meshes Wu et al. (2015): Hypergraphs are derived from mesh topologies of selected
ModelNet40 categories. To simplify computation, meshes are downsampled to fewer than 1000
vertices by iteratively merging nearby vertices. Duplicate triangles are removed, and the resulting
low-poly mesh is converted into a hypergraph. We focus on the bookshelf and piano categories.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

All datasets are divided into 128 training, 32 validation, and 40 testing hypergraphs.

Evaluation Metrics. We evaluate generated hypergraphs using the same suite of metrics as Gailhard
et al. (2025):

• NodeNumDiff: Average absolute difference in node count between generated and reference
hypergraphs.

• NodeDegreeDistrWasserstein: Wasserstein distance between node degree distributions of gener-
ated and reference hypergraphs.

• EdgeSizeDistrWasserstein: Wasserstein distance between hyperedge size distributions.
• Spectral: Maximum Mean Discrepancy (MMD) between Laplacian spectra.
• Uniqueness: Fraction of generated hypergraphs that are non-isomorphic to one another.
• Novelty: Fraction of generated hypergraphs that are non-isomorphic to training samples.
• CentralityCloseness, CentralityBetweenness, CentralityHarmonic: Wasserstein distances

computed between centrality distributions (on edges for s = 1). For details see Aksoy et al.
(2020).

• ValidEgo: For the hypergraphEgo dataset only, proportion of generated hypergraphs that contain
a central node shared by all hyperedges.

• ValidSBM: For the hypergraphSBM dataset only, proportion of generated graphs that retain the
original intra- and inter-group connectivity patterns.

• ValidTree: For the hypergraphTree dataset only, proportion of generated samples that preserve
tree structure.

Baselines. We compare our method against the following baselines:

• HyperPA Do et al. (2020): A heuristic approach for hypergraph generation.
• Image-based models: We design three baseline models—Diffusion, GAN, and VAE—that

operate on incidence matrix representations of hypergraphs:
– Each model is trained to produce binary images where white pixels signify node-hyperedge

membership.
– To normalize input sizes, incidence matrices are permuted randomly and padded with black

pixels.
– Generated images are thresholded to obtain binary incidence matrices.

• HYGENE Gailhard et al. (2025): A hierarchical diffusion-based generator using reduction,
expansion, and refinement steps.

Specific hyperparameters. We use λ = 0.3, our Local PPGN layers have a dimension of 128, and
the hidden dimension for our MLP is 256. We use perturbed hypergraph expansion with a radius of 2
and dropout of 0.5. Our model has 4M parameters.

D.2 3D MESHES

Datasets. Datasets for meshes are taken from Manifold40 Hu et al. (2022), which is a reworked
version of ModelNet40 Wu et al. (2015) to obtain manifold and watertight meshes. Meshes are
subsequently coarsened to obtain low-poly versions of 50 vertices and 100 triangles. We use two
classes:

• Airplane comprising 682 training samples, 21 validation samples, and 23 testing samples.
• Bench comprising 144 training samples, 19 validation samples, and 30 testing samples.

Metrics. We use the same metrics as for unfeatured hypergraphs. To this we add a metric ChamDist
which computes the minimal Chamfer distance between a point cloud sampled from the surface of
the generated mesh and equivalent point clouds sampled from all validation/test set meshes.

Baselines. We compare against a simple sequential baseline:

1. Our model (4M parameters) is trained for 1M steps on the topology of meshes without learning
to generate the features.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. A simple Local PPGN model (4M parameters) is trained for 20 epochs as a flow-matching model
to learn to generate the 3D positions, with the topology fixed.

3. We use the best checkpoint of the first model to generate the topology, then apply the second
model on this topology to generate the 3D positions.

Specific hyperparameters. We use λ = 0.1, our Local PPGN layers have a dimension of 200, and
the hidden dimension for our MLP is 300. We use perturbed hypergraph expansion with a radius of 2
and dropout of 0.5. Our model has 6M parameters.

D.3 GRAPH POINT CLOUDS

Datasets. We reuse the same datasets as for 3D meshes. Point clouds comprising 1024 nodes are
sampled on the surface of each mesh, then each node is connected to its 3 nearest neighbors. Only
the largest connected component is kept.

Metrics. Evaluation Metrics. We adopt the same evaluation protocol as Martinkus et al. (2022) to
assess the quality of generated graphs, reporting the following metrics:

• NumDiff: MMD between node counts distributions of generated and reference graphs.
• Deg: MMD between degree distributions of generated and reference graphs.
• Clustering: MMD between clustering coefficient distributions.
• Orbit: MMD between graphlet orbit count distributions.
• Spectral: MMD between Laplacian spectra.
• Wavelet: MMD between wavelet coefficient distributions.
• Ratio: Average ratio of generated-to-reference values across the above metrics, used as a global

indicator of statistical similarity.

To this we add a metric ChamDist which computes the minimal Chamfer distance between the
generated mesh and all validation/test set point clouds.

Baselines. We compare against two state-of-the-art flat generative models: Defog Qin et al. (2024),
DiGress Vignac et al. (2023). As these two methods are tailored for discrete data, we use a mixed-
discrete continuous framework for continuous features.

Specific hyperparameters. We use λ = 0.3, our Local PPGN layers have a dimension of 128, and
the hidden dimension for our MLP is 256. We use perturbed hypergraph expansion with a radius of 2
and dropout of 0.5. Our model has 4M parameters.

E IMPLEMENTATION DETAILS

E.1 FLOW-MATCHING FRAMEWORK

We employ a flow-matching generative modeling framework Lipman et al. (2022), with endpoint
parameterization following Dunn & Koes (2024), equivalent to denoising diffusion models Ho et al.
(2020) using linear interpolation between the prior p0 and target p1 distributions. The goal is to align
two distributions by transporting samples from p0 to p1 through a learned time-dependent vector field
f(x, t), governed by the ODE:

∂x

∂t
= f(x, t), x0 ∼ p0. (23)

Here, f(x, t) is trained such that integrating this ODE produces samples from p1.

Endpoint parameterization. Instead of directly modeling the flow field, we learn the terminal point
x̂1(xt, 1) of the trajectory. The flow can be recovered using:

f(xt, t) =
x̂1(xt, 1)− xt

1− t
. (24)

Training objective. The model is trained to minimize the expected squared error between the
predicted and true endpoints:

L = Et, x0∼p0, x1∼p1

[
∥x̂1(xt, 1)− x1∥2

]
, (25)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where xt = (1− t)x0 + tx1 is a linear interpolation between samples from the prior and target distri-
butions. Following Esser et al. (2024), during training t is sampled using a log-normal distribution,
which has been shown to improve performance.

Prior distributions. We use different prior distributions depending on the task:

• Node and edge predictions: Prior samples p0 are drawn from a Gaussian distribution. Targets
are either −1 or 1, indicating binary decisions (e.g., whether a node is expanded or an edge is
retained).

• Hyperedge expansion: Similar to node and edge predictions, with targets −1, 0, or 1, encoding
the number of expansions (none, one, or two).

• Budget fractions: Prior samples p0 are drawn from a Dirichlet distribution with concentration
parameter α = 1.5, linearly mapped to [−1, 1] via 2x − 1. The target is the budget fraction
of each child node, linearly mapped to [−1, 1] via 2x − 1. If a cluster is not expanded, the
corresponding budget becomes 1. Parent cluster budgets are encoded using sinusoidal positional
encodings Vaswani et al. (2017) (dimension 32, base frequency 10−4).

• Feature generation: Following Ren et al. (2024), we draw prior features from a Gaussian and
predict true node features, conditioned on the parent node’s feature using a FiLM layer Perez et al.
(2018).

Simplex projection via Von Neumann method. When modeling budget fractions, predictions must
lie on the probability simplex. To ensure this, we project the model’s outputs using the Von Neumann
projection Duchi et al. (2008), which finds the closest point (in Euclidean distance) on the simplex:

∆K =

{
x ∈ RK | xi ≥ 0,

K∑
i=1

xi = 1

}
. (26)

i) Sort z ∈ RK into a descending vector u, such that u1 ≥ u2 ≥ · · · ≥ uK .

ii) Find the smallest index ρ ∈ {1, . . . ,K} such that:

uρ −
1

ρ

 ρ∑
j=1

uj − 1

 > 0. (27)

iii) Compute the threshold:

τ =
1

ρ

 ρ∑
j=1

uj − 1

 . (28)

iv) The projection is then:
x∗ = max(z− τ, 0). (29)

Graph inpainting. During generation, we use inpainting to enforce constraints: i) budget splits
are fixed to 1 for unexpanded clusters or those with a budget of 1, ii) equal splits are enforced for
expanded clusters with a budget of 2, iii) clusters of size one are not allowed to expand; and iv)
features of non-expanded clusters are copied unchanged.

E.2 MODEL ARCHITECTURE

Our method represents the expansion numbers for left and right nodes, along with edge presence, as
attributes of the bipartite graph. To model the distribution p(v

(l)
L ,v

(l)
R , e(l), f ,Frefine

L | B̃(l)), we adopt
an endpoint-parameterized flow-matching framework Lipman et al. (2022). Within this framework,
the attributes—namely, the expansion vectors and edge indicators—are corrupted with noise, and a
denoising network is trained to reconstruct the original values.

The denoising network is structured as follows:

1. Positional encoding: Node positions within the graph are encoded using SignNet Lim et al.
(2022). These encodings are replicated according to the respective expansion numbers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2. Attribute embedding: Five separate linear layers are used to embed the bipartite graph attributes:
left node features, right node features, edge features, node-specific features, and hyperedge-
specific features. FiLM conditioning Perez et al. (2018) is applied to incorporate contextual
information into node and hyperedge features. Node budgets are embedded using sinusoidal
positional encodings Vaswani et al. (2017).

3. Feature concatenation:
• For each left and right node, embeddings are concatenated with positional encodings and the

desired reduction fraction. Left nodes also receive the node budget embedding.
• If node features are present, they are appended to the left nodes. Likewise, hyperedge

features are appended to the right nodes when available.
• For edges, embeddings include edge features, concatenated positional encodings of the

incident nodes, and the reduction fraction.
4. Graph processing: The attribute-enriched bipartite graph is processed through a stack of sparse

PPGN layers, following the architecture from Bergmeister et al. (2024).
5. Output prediction: The final graph representations are passed through three linear projection

heads to generate outputs.
• Left node head: Predicts expansion values, budget splits, and refined node features.
• Right node head: Predicts hyperedge expansions and refined hyperedge features.
• Edge head: Predicts edge existence.

E.3 ADDITIONAL DETAILS

Perturbed expansion. Building on Bergmeister et al. (2024); Gailhard et al. (2025), we augment
Definitions 4 and 6—which are sufficient for reversing coarsening steps—with additional randomness
to enhance generative quality. This modification is especially beneficial in low-data regimes where
overfitting is a concern. Specifically, we introduce a probabilistic mechanism that supplements the set
of edges Ẽ by randomly adding edges between node pairs on opposite sides of the bipartite graph that
are within a fixed distance in B. The following definition extends the expansion process (Definition
4) to include this stochastic component.
Definition 13 (Perturbed hypergraph expansion). Let B = (VL,VR, E) be a bipartite graph, and
let vL ∈ N|VL| and vR ∈ N|VR| denote the left and right cluster size vectors. For a given radius
r ∈ N and probability 0 ≤ p ≤ 1, we construct B̃ as in Definition 4. Additionally, for each pair of
distinct nodes vL(p) ∈ ṼL and vR(q) ∈ ṼR that are within a distance of at most 2r + 1 in B, we
independently add an edge e{pi,qj} to Ẽ with probability p.

Spectral conditioning. In line with Martinkus et al. (2022); Bergmeister et al. (2024), we incorporate
spectral information—specifically, the principal eigenvalues and eigenvectors of the normalized
Laplacian—as a form of conditioning during the generative process. This technique has been shown
to improve the quality of generated graphs. To generate B(l) from its coarser form B(l+1), we
leverage the approximate spectral invariance under coarsening. We compute the k smallest non-
zero eigenvalues and their corresponding eigenvectors from the normalized Laplacian matrix L(l+1)

of B(l+1). These eigenvectors are processed using SignNet Lim et al. (2022) to produce node
embeddings for B(l+1). These embeddings are then propagated to the expanded nodes of B(l),
helping to preserve structural coherence and facilitate cluster identification. The hyperparameter k
controls the number of spectral components used.

Minibatch OT-coupling. Minibatch OT-coupling Tong et al. (2024); Pooladian et al. (2023) acceler-
ates training by jointly sampling priors and targets and reindexing priors to minimize input–output
distance, leading to smoother flows and fewer inference steps. As detailed in Section 3.5, we adapt
this idea by treating each side of the bipartite graph as a minibatch and applying OT-coupling within
them. To preserve the distribution, we restrict permutations to groups of equivalent nodes (identical
topology and features, differing only in noise). For efficiency, we assume equivalence only among
nodes from the same cluster expansion. Since each cluster produces two or three children, coupling
reduces to evaluating two or six possible permutations per cluster, which can be efficiently parallelized
with tensors (Algorithm 2).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 2 Minibatch OT-coupling for coarsening/expansion strategy

Require: Expanded bipartite representation B with clusters {V (p)}, each V (p) containing 1 or 2
nodes; target samples {xi}

Ensure: Reindexed noise samples {z̃i}
1: Sample noise {zi} for each node in B
2: for all clusters V (p) ∈ B do
3: if |V (p)| = 1 then
4: No reassignment needed for singleton cluster
5: else if |V (p)| = 2 then
6: Let i, j be the indices of the two nodes in V (p)

7: Let xi, xj be their corresponding targets
8: Compute normal order cost:

Cnormal ← ∥zi − xi∥2 + ∥zj − xj∥2

9: Compute swapped order cost:

Cswap ← ∥zj − xi∥2 + ∥zi − xj∥2

10: if Cswap < Cnormal then
11: Swap zi ↔ zj
12: end if
13: end if
14: end for
15: return {z̃i} (reassigned noise samples)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F TRAINING AND SAMPLING PROCEDURES

In this section, we present the complete training and inference procedures, detailed in Algorithms 4
and 5. Both pipelines rely on node embeddings produced by Algorithm 3.

Algorithm 3 Node embedding computation: Here we describe the way the left and right side
node embeddings are computed for a given bipartite representation of a hypergraph. Embeddings
are computed for the input bipartite representation and then replicated according to the cluster size
vectors.
Parameters: number of spectral features k
Input: bipartite representation B = (VL,VR, E), spectral feature model SignNetθ, cluster size

vector vL and vR

Output: node embeddings computed for all nodes in VL and VR and replicated according to vL and
vR

1: function EMBEDDINGS(B = (VL,VR, E), SignNetθ, vL, vR)
2: if k = 0 then
3: H = [h(1), . . . , h(|V|)]

i.i.d.∼ N (0, I) ▷ Sample random embeddings
4: else
5: if k < |V| then
6: [λ1, . . . , λk], [u1, . . . , uk]← EIG(B) ▷ Compute k spectral features
7: else
8: [λ1, . . . , λ|VL|+|VR|−1], [u1, . . . , u|VL|+|VR|−1]← EIG(B) ▷ Compute
|VL|+ |VR| − 1 spectral features

9: [λ|VL|+|VR|, . . . , λk], [u|VL|+|VR|, . . . , uk]← [0, . . . , 0], [0, . . . , 0] ▷ Pad with zeros
10: end if
11: H = [h(1), . . . , h(|VL|+|VR|)]← SignNetθ([λ1, . . . , λk], [u1, . . . , uk], B)
12: end if
13: B̃ = (V(1)

L ∪ · · · ∪ V(pl)
L ,V(1)

R ∪ · · · ∪ V(pr)
R , Ẽ)← B̃(B,vL,vR) ▷ Expand as per

Definition 4
14: set B̃ s.t. for all pL ∈ [|VL|] and all pR ∈ [|VR|]: for all v(pi)

L ∈ V(pl)
L , H̃[pi] = H[pl] and

for all v(pi)
R ∈ V(pr)

R , H̃[pi] = H[pr] ▷ Replicate embeddings
15: return H̃
16: end function

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 4 End-to-end training procedure: This describes the entire training procedure for our
model.
Parameters: number of spectral features k for node embeddings
Input: dataset D = {H1, . . . ,HN}, denoising model GNNθ, spectral feature model SignNetθ
Output: trained model parameters θ

1: function TRAIN(D, GNNθ, SignNetθ)
2: while not converged do
3: H ∼ Uniform(D) ▷ Sample graph
4: (B(0), . . . , B(L))← RndRedSeq(H) ▷ Sample coarsening sequence by Algorithm 1
5: l ∼ Uniform({0, . . . , L}) ▷ Sample level
6: if l = 0 then
7: v

(0)
L ← 1, v(0)

R ← 1
8: else
9: set v(l)

L and v
(l)
R such that the node sets of B̃(B(l),v

(l)
L ,v

(l)
R) equals that of B(l−1)

10: end if
11: if l = L then
12: B(l+1) ← B(l) = ({1}, {2}, {(1, 2)},b = size(H),FL = 0,FR = 0)

13: v
(l+1)
L ← 1

14: v
(l+1)
R ← 1

15: e(l) ← 1
16: end if
17: set e(l), f , Frefine

L and Frefine
R such that B(B̃(B(l+1),v

(l+1)
L ,v

(l+1)
R), e(l), f ,Frefine

L ,Frefine
R) =

B(L)

18: H(l) ← Embeddings(B(l+1), SignNetθ,v
(l+1)
L ,v

(l+1)
R) ▷ Compute node embeddings

19: ρ̂ ← 1 − (n(l)/n(l−1)), with n(l) and n(l−1) being the size of the left side of B(l) and
B(l−1)

20: Dθ ← GNNθ(·, ·, B̃(l),H(l), n(0), ρ), where n(0) is the size of the left side of B(0)

21: take gradient descent step on ∇θDiffusionLoss(v(L)
L ,v

(L)
R , e(l), f ,Frefine

L ,Frefine
R , Dθ)

22: end while
23: return θ
24: end function

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 5 End-to-end sampling procedure with deterministic expansion size: This describes
the sampling procedure. Note that this assumes that the maximum cluster sizes are 2 and 3, which
is the case when using edges of the clique representation as the contraction set family for model
training.

Parameters: reduction fraction range [ρmin, ρmax]
Input: target hypergraph size N , denoising model GNNθ, spectral feature model SignNetθ
Output: sampled hypergraph H = (V, E) with |V| = N

1: function SAMPLE(N , GNNθ, SignNetθ)
2: B = (VL,VR, E , f ,Frefine

L ,Frefine
R)← ({1}, {2}, {(1, 2)}, N, 0, 0) ▷ Start with a minimal

bipartite graph
3: vL ← [1], vR ← [1] ▷ Initial cluster size vectors
4: while |VL| < N do
5: H← Embeddings(B,SignNetθ,vL,vR) ▷ Compute node embeddings
6: n← ∥vL∥1
7: ρ ∼ Uniform([ρmin, ρmax]) ▷ random reduction fraction
8: set n+ s.t. n+ = ⌈ρ(n+ n+)⌉ ▷ number of left side nodes to add
9: n+ ← min(n+, N − n) ▷ ensure not to exceed target size

10: ρ̂← 1− (n/(n+ n+)) ▷ actual reduction fraction
11: Dθ ← GNNθ(·, ·, B̃(B,vL,vR),H, N, ρ̂)
12: (vL)0, (vR)0, (e)0, f ,F

refine
L ,Frefine

R ← Sample(Dθ) ▷ Sample features
13: set vL s.t. for i ∈ [n]: vL[i] = 2 if |{j ∈ [n] | (vL)0[j] ≥ (vL)0[i]}| ≥ n+ and v[i] = 1

otherwise
14: set vR s.t. for i ∈ [|(vR)0|]: vR[i] = 1 if (vR)0 < 1.66, vR[i] = 2 if (vR)0 < 2.33 and

vR[i] = 3 otherwise
15: set e s.t. for i ∈ [|(e)0|]: e[i] = 1 if (e)0 > 0.5 and e[i] = 0 otherwise
16: B = (VL,VR, E)← B(B̃, e, f ,Frefine

L ,Frefine
R) ▷ Refine as per Definition 6

17: end while
18: build H from its bipartite representation B
19: return H
20: end function

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G COMPLEXITY ANALYSIS

In this section, we investigate the asymptotic complexity of our proposed algorithm, which extends
the methodology introduced by Bergmeister et al. (2024) and Gailhard et al. (2025). To construct
a hypergraph comprising n nodes, m hyperedges, and k incidences, the algorithm sequentially
produces a series of bipartite graphs B(L) = ({1}, {2}, {(1, 2)}), B(L−1), . . . , B(0) = B, where the
final graph B corresponds to the bipartite representation of the generated hypergraph. We use n, m,
and k to denote, respectively, the number of nodes, hyperedges, and incidences in the hypergraph,
and as the number of left-side nodes, right-side nodes, and edges in the corresponding bipartite graph.

For each level 0 ≤ l < L of the sequence, the number of left-side nodes in B(l), denoted nl, satisfies
nl ≥ (1 + ϵ)nl−1 for some ϵ > 0 (e.g., ϵ = reduction_frac/(1− reduction_frac)). This
implies an upper bound on the number of steps in the expansion sequence: ⌈log1+ϵ n⌉ ∈ O(log n).
Since the expansion process only increases node counts, all Bl graphs contain fewer than n left-
side and m right-side nodes. The number of edges, however, may temporarily exceed k, as the
intermediate bipartite graphs may include additional edges removed in later refinements. Still,
because the coarsening during training consistently reduces incidences, the model is expected to
learn accurate edge refinement and avoid such accumulation. Consequently, we assume kl ≤ k and
ml ≤ m for all 0 ≤ l ≤ L.

Next, we assess the computational cost of generating a single expansion step. At level l = L, this
consists of creating a pair of connected nodes, initializing features as matrices of zeros, initializing
budget as the targeted node count, and predicting the expansion vectors vL and vR—a process
with constant complexity O(1). For levels 0 ≤ l < L, given B(l+1) and expansion vectors v(l+1)

L ,
v
(l+1)
R , the algorithm constructs the expanded bipartite graph B̃(B(l+1),v

(l+1)
L ,v

(l+1)
R) inO(n+m)

time. It then samples v(l)
L , v(l)

R , e(l), f , Frefine
L , and Frefine

R , and constructs the refined graph B(l) =

B(B̃(l), e(l), f ,Frefine
L ,Frefine

R). Letting vLmax and vRmax be the maximum cluster sizes, the incidence
count in B̃(l) is bounded by kl ≤ kl+1v

L
maxv

R
max.

The sampling process queries a denoising model a constant number of times per step. The complexity
is thus governed by the architecture. In our case, since bipartite graphs are triangle-free, the Local
PPGN model Bergmeister et al. (2024) has linear complexityO(n+m+k). Embedding computation
for B(l) similarly costs O(n+m+ k). This includes calculating the top K eigenvalues/eigenvectors
of the Laplacian via the method from Vishnoi (2013), with complexityO (K(nl+1 +ml+1 + kl+1)),
and embedding via SignNet, also linear in graph size due to fixed K.

The final transformation from the bipartite graph to a hypergraph—by collapsing right-side nodes
into hyperedges—has a cost of O(m+ k). Under these assumptions, the total complexity to generate
a hypergraph H with n nodes, m hyperedges, and k incidences is O(n+m+ k).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H DETAILED NUMERICAL RESULTS

In this section, we present detailed numerical results for all datasets and metrics described in Appendix
D. Reported values of the form a± b indicate the mean a and twice the standard deviation b computed
over 5 runs. The best and second-best results are highlighted in bold and underlined, respectively.

H.1 COMPARISONS WITH THE BASELINES

SBM Hypergraphs
Method Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

HyperPA Do et al. (2020) 2.5 0.075 4.062 0.407 0.273 77.840 0.074 0.008
VAE Kingma & Welling (2013) 0.0 0.375 1.280 1.059 0.024 6.543 0.007 0.006
GAN Goodfellow et al. (2020) 0.0 1.200 2.106 1.203 0.059 10.700 0.076 0.012

Diffusion Ho et al. (2020) 0.0 0.150 1.717 1.390 0.031 13.940 0.040 0.004
HYGENE Gailhard et al. (2025) 65.0 0.525 0.321 0.002 0.010 2.990 0.016 0.000

FAHNES 87.8±3.1 0.029±0.009 0.846±0.457 0.005±0.003 0.006±0.004 6.410±3.124 0.009±0.006 0.003±0.001

Ego Hypergraphs
Method Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

HyperPA Do et al. (2020) 0.0 35.830 2.590 0.423 0.237 143.000 0.354 0.002
VAE Kingma & Welling (2013) 0.0 47.580 0.803 1.458 0.133 38.950 0.558 0.019
GAN Goodfellow et al. (2020) 0.0 60.350 0.917 1.665 0.230 41.800 0.612 0.015

Diffusion Ho et al. (2020) 0.0 4.475 3.984 2.985 0.190 6.911 0.407 0.009
HYGENE Gailhard et al. (2025) 90.0 12.550 0.063 0.220 0.004 5.790 0.025 0.000

FAHNES 99.5±1.1 0.128±0.171 0.124±0.086 0.155±0.067 0.004±0.003 2.703±3.468 0.003±0.005 0.000±0.000

Tree Hypergraphs
Method Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

HyperPA Do et al. (2020) 0.0 2.350 0.315 0.284 0.159 5.941 0.477 0.168
VAE Kingma & Welling (2013) 0.0 9.700 0.072 0.480 0.124 3.869 0.280 0.139
GAN Goodfellow et al. (2020) 0.0 6.000 0.151 0.469 0.089 2.198 0.201 0.124

Diffusion Ho et al. (2020) 0.0 2.225 1.718 1.922 0.127 8.565 0.353 0.139
HYGENE Gailhard et al. (2025) 77.5 0.000 0.059 0.108 0.012 1.099 0.041 0.016

FAHNES 89.7±6.0 0.000±0.000 0.022±0.022 0.030±0.034 0.003±0.002 0.171±0.106 0.014±0.006 0.014±0.004

ModelNet Bookshelf
Method NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

HyperPA Do et al. (2020) 8.025 7.562 0.044 0.048 877.500 0.211 0.005
VAE Kingma & Welling (2013) 47.450 6.190 1.520 0.190 113.600 0.145 0.003
GAN Goodfellow et al. (2020) 0.000 397.200 46.300 0.476 670.100 0.707 0.007

Diffusion Ho et al. (2020) 0.000 20.360 2.346 0.079 264.100 0.239 0.006
HYGENE Gailhard et al. (2025) 69.730 1.050 0.034 0.068 27.400 0.204 0.004

FAHNES 0.135±0.276 2.980±2.107 0.020±0.025 0.024±0.015 46.614±58.803 0.086±0.030 0.001±0.001

ModelNet Piano
Method NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

HyperPA Do et al. (2020) 0.825 9.254 0.023 0.067 77.840 0.236 0.004
VAE Kingma & Welling (2013) 75.350 8.060 1.686 0.396 184.300 0.241 0.003
GAN Goodfellow et al. (2020) 0.000 409.000 86.380 0.697 622.200 0.738 0.005

Diffusion Ho et al. (2020) 0.050 20.900 4.192 0.113 289.300 0.303 0.004
HYGENE Gailhard et al. (2025) 42.520 6.290 0.027 0.117 155.000 0.285 0.002

FAHNES 0.846±1.009 3.265±1.954 0.042±0.056 0.040±0.026 119.158±81.023 0.123±0.119 0.002±0.002

Table 6: Detailed numerical results for unfeatured hypergraphs.

ManifoldNet Airplane
Method ChamDist NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

Sequential 0.143 0.367 0.801 0.004 0.007 4.964 0.087 0.006

FAHNES 0.048±0.003 0.017±0.070 0.218±0.085 0.004±0.007 0.010±0.003 2.428±1.455 0.032±0.007 0.003±0.001

ManifoldNet Bench
Method ChamDist NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

Sequential 0.117 0.078 0.332 0.011 0.015 3.131 0.035 0.007

FAHNES 0.064±0.005 0.060±0.149 0.349±0.454 0.009±0.017 0.017±0.011 5.069±8.171 0.046±0.040 0.004±0.003

Table 7: Detailed numerical results for 3D meshes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Airplane Point Clouds
Method ChamDist ↓ NumDiff ↓ Wavelet ↓ Orbit ↓ Clustering ↓ Deg ↓ Spectral ↓ Ratio ↓

DiGress Vignac et al. (2023) OOM OOM OOM OOM OOM OOM OOM OOM
DeFoG Qin et al. (2024) OOM OOM OOM OOM OOM OOM OOM OOM

FAHNES 0.094±0.006 0.000±0.000 0.004±0.001 0.074±0.104 0.264±0.254 0.002±0.002 0.005±0.004 67.311±44.903

Bench Point Clouds
Method ChamDist ↓ NumDiff ↓ Wavelet ↓ Orbit ↓ Clustering ↓ Deg ↓ Spectral ↓ Ratio ↓

DiGress Vignac et al. (2023) OOM OOM OOM OOM OOM OOM OOM OOM
DeFoG Qin et al. (2024) OOM OOM OOM OOM OOM OOM OOM OOM

FAHNES 0.130±0.001 0.000±0.000 0.003±0.000 0.013±0.004 0.229±0.071 0.000±0.000 0.004±0.000 73.279±22.287

Table 8: Detailed numerical results for graph point cloud datasets.

H.2 ABLATION STUDIES

SBM Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 87.8±3.1 0.029±0.009 0.846±0.457 0.005±0.003 0.006±0.004 6.410±3.124 0.009±0.006 0.003±0.001

✗ ✓ 85.3±5.9 0.044±0.078 0.856±0.636 0.023±0.022 0.006±0.004 6.210±4.649 0.009±0.013 0.003±0.003

✓ ✗ 86.7±6.7 0.039±0.014 0.910±0.363 0.006±0.004 0.006±0.004 6.815±1.913 0.010±0.005 0.004±0.001

✗ ✗ 84.6±4.6 0.049±0.045 0.916±0.749 0.047±0.070 0.007±0.007 6.665±5.199 0.012±0.014 0.004±0.004

Ego Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 99.5±1.1 0.128±0.171 0.124±0.086 0.155±0.067 0.004±0.003 2.703±3.468 0.003±0.005 0.000
✗ ✓ 100.0±0.0 0.118±0.158 0.140±0.104 0.133±0.106 0.005±0.003 3.426±2.629 0.000 0.000
✓ ✗ 99.9±0.4 0.073±0.050 0.237±0.465 0.193±0.175 0.007±0.012 4.521±5.629 0.000±0.002 0.000
✗ ✗ 99.5±1.1 0.117±0.155 0.110±0.111 0.189±0.084 0.004±0.003 2.765±1.684 0.001±0.004 0.000

Tree Hypergraphs
Node Budget Minibatch OT Valid ↑ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 89.7±6.0 0.000 0.022±0.022 0.030±0.034 0.003±0.002 0.171±0.106 0.014±0.006 0.014±0.004

✗ ✓ 90.7±6.7 0.000 0.024±0.019 0.067±0.016 0.004±0.001 0.315±0.098 0.018±0.012 0.014±0.008

✓ ✗ 89.3±3.6 0.000 0.019±0.013 0.047±0.077 0.005±0.011 0.169±0.106 0.041±0.082 0.013±0.010

✗ ✗ 95.6±3.7 0.000 0.042±0.042 0.077±0.091 0.005±0.003 0.217±0.169 0.013±0.013 0.008±0.011

ModelNet Bookshelf
Node Budget Minibatch OT NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 0.135±0.276 2.980±2.107 0.020±0.025 0.024±0.015 46.614±58.803 0.086±0.030 0.001±0.001

✗ ✓ 0.940±0.917 3.040±1.446 0.089±0.099 0.032±0.013 59.300±108.101 0.137±0.042 0.003±0.001

✓ ✗ 0.265±0.496 4.400±1.635 0.025±0.021 0.014±0.007 54.558±30.276 0.102±0.020 0.001±0.001

✗ ✗ 1.325±1.631 2.820±0.958 0.055±0.077 0.031±0.009 79.889±98.721 0.135±0.012 0.003±0.001

ModelNet Piano
Node Budget Minibatch OT NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 0.846±1.009 3.265±1.954 0.042±0.056 0.040±0.026 119.158±81.023 0.123±0.119 0.002±0.002

✗ ✓ 3.622±1.822 3.358±1.772 0.054±0.080 0.055±0.040 133.806±137.603 0.155±0.058 0.012±0.033

✓ ✗ 3.155±3.637 5.250±1.087 0.066±0.168 0.030±0.048 154.211±383.979 0.188±0.164 0.002±0.002

✗ ✗ 5.490±8.847 3.733±2.989 0.107±0.215 0.036±0.016 97.724±198.774 0.138±0.129 0.002±0.002

Table 9: Detailed numerical results for ablation studies on unfeatured hypergraphs.

ManifoldNet Bench
Node Budget Minibatch OT ChamDist ↓ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 0.064±0.005 0.060±0.149 0.349±0.454 0.009±0.017 0.017±0.011 5.069±8.171 0.046±0.040 0.004±0.003

✗ ✓ 0.090±0.003 0.240±0.265 1.089±0.346 0.013±0.015 0.018±0.009 6.507±2.771 0.014±0.005 0.005±0.002

✓ ✗ 0.085±0.056 0.020±0.032 0.221±0.160 0.006±0.004 0.013±0.003 1.864±2.828 0.028±0.019 0.005±0.006

✗ ✗ 0.098±0.024 0.267±0.319 1.242±0.582 0.013±0.011 0.022±0.014 7.619±4.165 0.015±0.016 0.006±0.004

ManifoldNet Airplane
Node Budget Minibatch OT ChamDist ↓ NumDiff ↓ Deg ↓ EdgeSize ↓ Spectral ↓ Harmonic ↓ Closeness ↓ Betweenness ↓

✓ ✓ 0.048±0.003 0.017±0.070 0.218±0.085 0.004±0.007 0.010±0.003 2.428±1.455 0.032±0.007 0.003±0.001

✗ ✓ 0.079±0.019 0.426±0.820 0.588±0.451 0.024±0.021 0.014±0.007 2.429±1.394 0.033±0.028 0.003±0.002

✓ ✗ 0.050±0.005 0.052±0.065 0.235±0.063 0.014±0.027 0.012±0.005 1.604±1.400 0.022±0.007 0.003±0.001

✗ ✗ 0.100±0.023 0.304±0.437 0.864±0.358 0.020±0.016 0.019±0.009 4.184±2.176 0.025±0.009 0.005±0.002

Table 10: Detailed numerical results for ablation studies on 3D meshes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I COMPARISON BETWEEN TRAINING AND GENERATED SAMPLES

Train samples Generated samples
(i) Stochastic Block Model hypergraphs.

Train samples Generated samples
(ii) Ego hypergraphs.

Train samples Generated samples
(iii) Tree hypergraphs.

Train samples Generated samples
(iv) Bookshelf meshes topology.

Train samples Generated samples
(v) Piano meshes topology

Train samples Generated samples (sequential) Generated samples (joint)
(vi) Bench 3D meshes.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Train samples Generated samples (sequential) Generated samples (joint)
(vii) Airplane 3D meshes.

Train samples Generated samples
(iii) ManifoldNet Airplane point clouds.

Train samples Generated samples
(iii) ManifoldNet Bench point clouds.

30

	Introduction
	Related Work
	Feature-aware (Hyper)graph Generation via Next‑scale Prediction
	Overview
	Budgeted Coarsening
	Budgeted Expansion and Refinement
	Probabilistic Modeling
	Minibatch OT-Coupling
	Generalization to Graphs

	Experiments and Results
	Datasets and Experimental Setup
	Results and Discussion
	Ablation studies
	Limitations

	Conclusion
	Proofs
	Averaging Node Features for Clusters' Features
	Minibatch OT-coupling

	Coarsening Sequence Sampling
	Examples of Coarsening Sequences
	Experimental Details
	Unfeatured Hypergraphs
	3D Meshes
	Graph Point Clouds

	Implementation Details
	Flow-matching Framework
	Model Architecture
	Additional Details

	Training and Sampling Procedures
	Complexity Analysis
	Detailed Numerical Results
	Comparisons with the Baselines
	Ablation Studies

	Comparison between Training and Generated Samples

