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ABSTRACT

The volume of freely scraped data on the Internet has driven the tremendous success
of deep learning. Along with this comes the rising concern about data privacy
and security. Numerous methods for generating unlearnable examples have been
proposed to prevent data from being illicitly learned by unauthorized deep models
by impeding generalization. However, the existing approaches primarily rely on
empirical heuristics, making it challenging to enhance unlearnable examples with
solid explanations. In this paper, we analyze and improve unlearnable examples
from a novel perspective: mutual information reduction. We demonstrate that
effective unlearnable examples always decrease mutual information between clean
features and poisoned features, and when the network gets deeper, the unlearnability
goes better together with lower mutual information. Further, we prove from a
covariance reduction perspective that minimizing the conditional covariance of
intra-class poisoned features reduces the mutual information between distributions.
Based on the theoretical results, we propose a novel unlearnable method called
Mutual Information Unlearnable Examples (MI-UE) that reduces covariance by
maximizing the cosine similarity among intra-class features, thus impeding the
generalization effectively. Extensive experiments demonstrate that our approach
significantly outperforms previous state-of-the-art methods, even under defense
mechanisms.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented performance across various fields in
the past decade (LeCun et al., 2015). This progress is largely reliant on the availability of large-
scale datasets freely scraped from the Internet, such as ImageNet (Deng et al., 2009) and LAION-
5B (Schuhmann et al., 2022), which keep advancing the state-of-the-art deep models (Achiam et al.,
2023; Liu et al., 2024d). However, a concerning fact is that some of this data collection occurs without
authorization (Birhane and Prabhu, 2021). Users may be reluctant to contribute their privacy-sensitive
data, such as face images and medical reports, to training large-scale commercial models (Achiam
et al., 2023; Team et al., 2023; Liu et al., 2024d). Indeed, according to a report (Hill, 2020), a tech
company illicitly acquired over three billion facial images to develop a commercial facial recognition
model. Other investigations revealed an increasing number of lawsuits between data owners and
machine learning companies (Vincent, 2019; Burt, 2020; Conklin, 2020; Dunn, 2024). Consequently,
there is a growing emphasis on safeguarding data from unauthorized use for training.

Tremendous efforts have been made to craft unlearnable examples (UEs) in order to prevent data
from being illicitly learned by unauthorized deep models (Feng et al., 2019; Huang et al., 2020; Fowl
et al., 2021; Sandoval-Segura et al., 2022b). They add elaborate and imperceptible perturbations
into the training data so that models cannot learn meaningful information and thereby significantly
degrading the test accuracy. A representative method in this domain is the error-minimization
poisoning approach (Huang et al., 2020), which employs iterative optimization of a bi-level min-min
problem to create poisoning noise. The underlying intuition is that smaller losses trick models into
believing there is nothing to learn from datasets. Recently, several methods (Fowl et al., 2021; Yuan
and Wu, 2021; Sandoval-Segura et al., 2022b; Liu et al., 2024a) have been developed to further
enhance the effectiveness of UEs.
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However, existing methods primarily rely on empirical heuristics, lacking of convincing explanations.
Some studies (Yu et al., 2022; Zhu et al., 2024b) interpret UEs as attempts to create linear shortcuts that
obtain linear separability, leading models to overwhelmingly depend on spurious features. However,
we find that linear classifiers trained on UEs achieve fair generalization (over 30% test accuracy on
CIFAR-10), suggesting that interpreting UEs merely as linear shortcuts does not fully account for their
worse generalization in deep neural networks (10% on CIFAR-10, equivalent to random guessing
levels). Besides, not all UEs are linearly separable, such as autoregressive poisons (Sandoval-Segura
et al., 2022b; 2023). Therefore, the prevailing explanation regarding the linear separability of UEs is
incomplete in its applicability. There are still unclear of why UEs are effective, posing significant
challenges to further enhancing UEs with better principled approaches.

Unlearnable examples, containing elaborately injected poisons, making them be out-of-distribution.
Recently, MI in representation learning, which quantifies the degree of correlation between random
variables from two distributions, has gained widespread attention (Oord et al., 2018; Chen et al.,
2020). This inspires us to use MI as a surrogate metric to evaluate the unlearnability of UE poisoned
dataset. Specifically, we introduce a novel perspective: the reduction of mutual information, to
elucidate the underlying mechanism of UEs. We evaluate both test accuracy drop and MI reduction
between clean and poisoned features on many UEs, showcasing that effective UEs always decrease
MI with clean features. Beyond exploring different UEs, we also test the decrease of MI across
networks of varying depths. When networks become deeper, MI between features becomes smaller,
resulting in the test accuracy gets lower. The harmonious relationship between MI reduction and
accuracy drop demonstrate our findings.

Based on these analyses, we further enhance the efficacy of UEs by directly decreasing MI between
poisoned distribution and clean distribution in the feature space. However, the complexity of
estimating MI poses significant challenges to optimization (Paninski, 2003; McAllester and Stratos,
2020). To tackle this issue, we prove from the perspective of covariance reduction that reducing MI
can be achieved by minimizing the conditional covariance of the poisoned data’s intra-class features,
and then introduce a novel poisoning method called Mutual Information Unlearnable Examples
(MI-UE). Specifically, MI-UE optimizes a mutual information reduction loss that maximizes the
cosine similarity among intra-class features for covariance reduction, while minimizing the cosine
similarity between inter-class features to prevent class collapse. We conduct extensive experiments to
validate that our MI-UE significantly outperforms the previous state-of-the-art UEs in reducing the
model’s generalization ability. Remarkably, even under defenses such as adversarial training, MI-UE
still achieves superior poisoning effects.

2 RELATED WORK

Unlearnable examples. Privacy issues have received extensive attention in the domain of privacy-
preserving machine learning (Shokri and Shmatikov, 2015; Abadi et al., 2016; Shokri et al., 2017),
including studies on UEs (Huang et al., 2020). Unlearnable examples are a type of data poisoning,
which allow the attacker to perturb the training dataset under a small norm restriction. These attacks
aim to induce errors during test-time while maintaining the semantic integrity and ensuring the normal
usage by legitimate users. A representative method in this field is the error-minimization poisoning
strategy (Huang et al., 2020), which employs iterative optimization of a bi-level minimization problem
to generate poisoning noise by minimizing loss. Following the initial work (Huang et al., 2020),
additional UE strategies (Yuan and Wu, 2021; Yu et al., 2022; Sandoval-Segura et al., 2022b; Fu et al.,
2022; Ren et al., 2022; Liu et al., 2024c;a) have also been proposed. However, existing methods
predominantly rely on empirical heuristics and lack a convincing framework to explain the efficacy
of UEs, posing significant challenges for advancing UEs in a principled manner.

Mutual information in machine learning. Mutual Information (MI) (Shannon, 1948) serves as a
metric for quantifying the dependency between two random variables and has been widely applied in
machine learning (Bell and Sejnowski, 1995; Butte and Kohane, 1999; Alemi et al., 2016; Gabrié et al.,
2018). Recently, MI maximization in representation learning has gained widespread attention (Oord
et al., 2018; Chen et al., 2020). People maximize MI to improve domain adaption (Zhao et al.,
2022), and have achieved domain generalization by conducting MI regularization with pre-trained
models (Cha et al., 2022). People also have tried to maximize the natural MI and minimize the
adversarial MI to enhance adversarial robustness (Zhou et al., 2022). Additionally, MI has been
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utilized in disentangled representation learning (Chen et al., 2018), cascaded learning (Zhang et al.,
2021) and fairness (Zhu et al., 2021). A recent work (Wang et al., 2025) tries to generate UE by
minimizing MI between model inputs and outputs. Unlike these approaches, we utilize MI between
clean and poisoned features to establish a generalization upper bound when trained on UEs.

Mutual information estimation. Despite the broad application of MI, precise computing or approxi-
mating it remains a challenging task (Paninski, 2003; McAllester and Stratos, 2020). Due to exponen-
tial growth in sample complexity, traditional approximation methods based on histogram (Pizer et al.,
1987; Moddemeijer, 1989), kernel density (Moon et al., 1995), k-th nearest neighborhood (Kraskov
et al., 2004) struggle in high-dimensional data contexts. Some methods Goldfeld and Greenewald
(2021); Goldfeld et al. (2022); Tsur et al. (2023) have used sliced mutual information as a surrogate
metric in high-dimensional case. Advanced estimation methods based on deep learning, such as
mutual information neural estimator (Belghazi et al., 2018), copula density estimation (Letizia and
Tonello, 2022), diffusion-based estimation (Franzese et al., 2023), have been proposed. Chen et al.
(2016); Oord et al. (2018); Chen et al. (2020) have introduced lower bound estimation of MI, while
another work (Cheng et al., 2020) has proposed an upper bound estimation. However, the complexity
of MI estimation still poses significant challenges to optimizing existing approximation methods.

3 PRELIMINARY AND MOTIVATION

Notations. We denote the data distribution as D, and let (X,Y ) ∼ D = DX ×DY represent the
random variables of data instances and their corresponding labels. Consider a classification model
f = h ◦ g, where g is a feature extractor and h is a linear classifier. The feature is Z = g(X).

Mutual information. Mutual Information (MI) (Shannon, 1948) serves as a metric for quantifying
the dependency between two random variables. Let X1 and X2 be random variables from domains
X1 and X2, respectively, with marginal probability measures PX1 and PX2 , and joint probability
measures PX1,X2 . MI measures the discrepancy between PX1,X2 and PX1 × PX2 :

I(X1, X2) =

∫
X1×X2

log

(
dPX1,X2

d(PX1
× PX2

)

)
dPX1,X2

.

Unlearnable examples. Unlearnable example (UE) is a type of clean-label data poisoning attack,
which allows the poison generator to perturb all training data with a small budget (Huang et al.,
2020; Feng et al., 2019; Yuan and Wu, 2021; Yu et al., 2022; Sandoval-Segura et al., 2022b).
Specifically, the attacker can perturb the training dataset D = {(xi, yi)}Ni=1 into a poisoned version
D′ = {(xi + δi, yi)}Ni=1, while controlling the p-norm of perturbation ∥δi∥p ≤ ϵ to maintain the
imperceptibility of poisons. The goal of UEs is to reduce the model’s generalization, i.e., degrade the
test accuracy, to prevent privacy data from malicious abuse.

Motivation: why do UEs work? Yu et al. (2022) has found that UE noises are typically linearly
separable, and Zhu et al. (2024b) has further proved that some unlearnable poisoned datasets possess
linear separability with high probability when data dimension is large, and use simple networks
to detect potential unlearnable datasets. These studies interpret UEs as attempting to create linear
shortcuts for recognition that result in linear separability, leading models to overwhelmingly rely on
spurious features for predictions rather than capturing the core features of the images. However, we
find that linear classifiers trained on UEs can achieve certain generalization (over 30% test accuracy
on CIFAR-10, see Figure 2 and Table 14). Thus, interpreting UEs merely as linear shortcuts does
not fully account for why such examples result in worse generalization in deep neural networks (as
low as 10% on CIFAR-10, which is equivalent to random guessing levels, see Table 1). Besides,
previous work (Sandoval-Segura et al., 2023) has discovered that not all UEs are linearly separable.
For instance, the linear separability of autoregressive poisons (Sandoval-Segura et al., 2022b) is even
lower than that of clean images on CIFAR-10. We have also evaluated the linear separability of both
unulearnable noises and unlearnable datasets in Appendix G.5. It demonstrates that although many of
existing unlearnable examples show linear separability, some methods like AP and AR has poor linear
separability close to clean data. Thus, the existing explanation concerning the linear separability
of UEs is incomplete in its applicability. To address these issues and improve the effectiveness of
UEs, we propose a novel perspective: the reduction of mutual information, to explain the core reason
behind the poisoning effect of UEs.
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Table 1: The Mutual Information (MI) estimation between clean and poison features on the histogram-
based estimator and test accuracy for different UEs on CIFAR-10, along with their gaps from the
results for clean data. Compared to random noises, MI for all UEs are significantly reduced.
Victim ResNet-18 Clean Random EM AP NTGA AR REM SEM GUE TUE MI-UE

Test Acc(%) 94.45 94.11 24.17 11.21 23.11 17.41 22.94 14.78 12.04 11.25 9.95
Acc Gap(%) - 0.34 70.28 83.24 71.34 77.04 71.51 79.67 82.41 83.20 84.50

MI 0.7122 0.6747 0.6400 0.5871 0.6126 0.5622 0.6290 0.5747 0.5895 0.6094 0.4969
MI Gap - 0.0375 0.0722 0.1251 0.0996 0.1500 0.0832 0.1375 0.1227 0.1028 0.2153
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Figure 1: The estimation of MI between clean and unlearnable poisoned features on different MI
estimators. (a): MI metrics under histogram-based estimator and kernel density estimator (KDE). (b):
MI metrics under histogram-based estimator and k-NN estimator. (c): MI metrics under histogram-
based method and mutual information neural estimator (MINE). Green triangles represent clean
or ineffective UEs, blue circles mean existing effective UEs, orange square denotes our MI-UE.
It demonstrates that although different estimation methods show different quantitative results, the
effectiveness of UEs is always positively related with the MI between clean and poisoned features.

4 A NOVEL PERSPECTIVE: MI REDUCTION

Unlearnable examples, containing elaborately injected poisons, do not belong to the clean data distri-
bution and violate the i.i.d. assumption, posing significant challenges to analyze their generalization
power. Recently, MI in representation learning, which quantifies the degree of correlation between
random variables from two distributions, has gained widespread attention (Oord et al., 2018; Chen
et al., 2020). This inspires us to use MI as a surrogate metric to evaluate the unlearnability.

Effective UEs have MI reduction. Existing studies have empirically constructed UEs from various
perspectives, such as deceiving models into perceiving no learnable content (Huang et al., 2020),
creating shortcuts (Yu et al., 2022), injecting non-robust features (Fowl et al., 2021), and fooling
simple CNNs through autoregressive signals (Sandoval-Segura et al., 2022b). However, our findings
indicate that these empirical methods indeed exhibit the reduction of MI on clean features g(X) and
poisoned features g(X ′). We conduct quantitative experiments to measure the changes of MI across
different UEs. To facilitate better estimates, we employ sliced mutual information (SMI) (Goldfeld
and Greenewald, 2021) to mitigate challenges on MI estimation for high-dimensional data, and utilize
histogram-based estimator (Moddemeijer, 1989), for one-dimensional MI estimation. Table 1 shows
the test accuracy and MI estimation on histogram-based estimator for different UEs, along with
their gaps from the results on clean data. We have evaluated the Spearman correlation between Acc
gap and MI gap across different unlearnable examples shown in Table 1, the correlation score of
0.7818, demonstrating decent positive correlation. The results in Table 1 demonstrate a significant
reduction of I(g(X), g(X ′)) for all UEs compared to those perturbed randomly, which our findings
that effective UEs have MI reduction.

Only use one type of MI estimator may be not convincing as estimating MI is not easy for high-
dimensional data (Paninski, 2003; McAllester and Stratos, 2020). To further ensure the confidence
of MI estimation, we also evaluate the estimation of feature MI on other approximation methods,
including kernel density estimator (KDE) (Moon et al., 1995), k-NN estimator Kraskov et al. (2004),
and mutual information neural estimator (MINE) (Belghazi et al., 2018). Details for these estimation
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Figure 2: The drop of test accuracy (Acc Gap) and the reduction of MI (MI Gap) of various UEs on
different models, including linear, 2-NN, 3-NN, LeNet-5(LN5), VGG-11(V11), ResNet-18(RN18).
The results indicate that as the depth and complexity of the models increase, both the drop of test
accuracy and the reduction of MI become more pronounced.

methods can be founded in Appendix F.1. The relationship of them compared with Histogram-based
estimator is displayed in Figure 1. For every estimator we first conduct SMI estimator to convert the
high dimensional features to one-dimensional ones. Although different estimators show different
estimated values, the similar trends unfold for all of these estimators. Specifically, the clean dataset,
or ineffective UEs against standard training, ENTF, denoted by green triangles in Figure 1, have
shown quite high MI. Existing effective UEs, denoted by blue circles, have demonstrated relatively
lower MI. Our proposed MI-UE, by directly minimizing feature’s MI, denoted by orange square,
has achieved lowest MI for all estimators. Therefore, Figure 1 further increases the confidence of
our claim, UEs are caused by MI reduction. Beyond experimental foundations, we also provide
explanation on relationship between UEs and MI reduction from theoretical views based on some
Gaussian assumptions in Appendix A.

Shallower networks are less affected by UEs. In addition to exploring different UEs, we conduct
experiments to evaluate the decrease of MI across models of varying depths. Similar to ResNet-18
as shown in Table 1, we assess shallower networks including linear model, 2-NN (two-layer neural
network), 3-NN (three-layer neural network), LeNet-5 (LeCun et al., 1998), and VGG-11 (Simonyan
and Zisserman, 2014). As shown in Figure 2, shallower networks (such as linear model and 2-NN)
exhibit smaller reductions of MI (i.e., MI Gap), less drop in test accuracy (i.e., Acc Gap), meaning
less effects from UEs. Although shallower networks perform poorly, they are less susceptible to
UE attacks. Taking linear network as example, this can be attributed to the feature extractor g
being an identity mapping, thus f = h, which causes I(g(X), g(X ′)) to degenerate to I(X,X ′).
Consequently, the small norm constraints on perturbations X ′ to X severely limit the reduction of
MI. In contrast, deeper network’s feature extractors g demonstrate superior performance, and due to
the error amplification effect (Liao et al., 2018), even norm-constrained perturbations do not limit
changes of MI. Therefore, as shown in Figure 2 and Table 14, UEs have a more potent poisoning
effect on deeper networks. These results on models of different depths further corroborate the validity
of our MI reduction explanation. To further validate the influence of network depth, we also evaluate
the test accuracy and MI estimation on ResNet and ViT with different depths in Appendix F.4.

5 ACHIEVING UNLEARNABILITY BY MINIMIZING MI

As analyzed in Section 4, the reduction of MI is the primary cause behind the effectiveness of UEs.
Therefore, it is natural to consider directly decreasing MI to achieve better unlearnability. However,
the difficulty in optimizing MI poses significant challenges to the existing optimization methods
(Treves and Panzeri, 1995; Bach and Jordan, 2002; Paninski, 2003). Previous works (McAllester and
Stratos, 2020; Belghazi et al., 2018) have noted that all these methods inherently suffer from severe
statistical limitations, and have highlighted that optimizing MI using SGD is biased. To address this
challenge, we theoretically derive MI from the perspective of covariance reduction. Based on this
analysis, we propose a novel unlearnable method, Mutual Information Unlearnable Examples
(MI-UE), to generate more effective UEs.

5
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5.1 COVARIANCE REDUCTION INDUCES LOW MI

To address the challenges of MI estimation, we present a theorem that introduces a simple assumption
on the feature distribution for each class and prove that minimizing the conditional covariance of
intra-class features implicitly minimizes MI between distributions.
Theorem 5.1 (Proof in Appendix B). Assume that for every Y ∈ Y , poison distribution g(X ′)|Y is
close to a Gaussian mixture distribution under KL-divergence, i.e., there exists N (µY ,ΣY ), such
that KL(N (µY ,ΣY )∥p(g(X ′)|Y )) ≤ ϵ for some 0 < ϵ < 1. Then, we have:

I(g(X), g(X ′)) ≤ d

2
log(2πe) +

1

2
EY log(detΣY ) +H(g(X ′)|g(X)) + EY CY

√
ϵ, (1)

where CY =
√
2 max
u∈[mY ,MY ]

| log u| + 1,mY = min p(g(X ′)|Y ),MY = max p(g(X ′)|Y ), I(·, ·)

denotes the mutual information,H(·|·) denotes the conditional entropy, and d is the feature dimension.
Remark 5.2. Rationality of assumptions in Theorem 5.1 is discussed in Appendix F.5. It is noteworthy
that the uncertainty ofH(g(X ′)|g(X)) arises solely from two factors: the UE generator G : X → X ′

and the training algorithm A : X ′ → F . Therefore, if both G and A are predefined, for example G as
EM and A as SGD, the third term H(g(X ′)|g(X)) in the equation can be considered as a constant.
The term d

2 log(2πe) is clearly a constant, thus the critical variable is the covariance ΣY in the
second term.
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Figure 3: Feature covariance of dif-
ferent unlearnable examples. Results
show that all unlearnable methods re-
duce both MI and covariance, with our
MI-UE achieving the lowest values.

As discussed in Section 4, to ensure the effectiveness of
UEs, we need to ensure that MI between the poisoned
and clean features is minimized. According to Theorem
5.1, this can be achieved by minimizing the conditional
covariance of the poisoned features g(X ′)|Y , namely ΣY

when it obeys Gaussian mixture distribution.

5.2 MUTUAL
INFORMATION UNLEARNABLE EXAMPLES

Based on the theoretical analysis in Section 5.1, we aim to
reduce the covariance of g(X ′)|Y . A straightforward ap-
proach is to minimize the Euclidean distance between intra-
class features g(X ′). However, normalization techniques
such as batch normalization (Ioffe and Szegedy, 2015) and
layer normalization (Ba et al., 2016) are commonly em-
ployed to enhance the performance of deep models, and
the accompanying scaling often leads to the minimization of Euclidean distances between features
becoming ineffective. Consequently, we additionally employ cosine similarity loss as a more robust
metric (Nguyen and Bai, 2010; Oord et al., 2018). Specifically, we introduce a novel MI reduction
loss Lmi to generate UEs:

Lmi(x+ δ, y; θ)j = log

(
1 +

∑
k∈B,ybk

̸=ybj
exp(g(xbj + δbj )

T g(xbk + δbk)/τ)∑
k∈B,ybk

=ybj
exp(g(xbj + δbj )

T g(xbk + δbk)/τ)

)
+ ζ · log(1 +

∑
k∈B

∥g(xbj + δbj )− g(xbk + δbk)∥2), (2)

where θ denotes the model parameters, B = {(xbj , ybj )}
NB
j=1 is a mini-batch, j is the batch index,

g is the feature extractor, τ is the loss temperature, and ζ represents the balancing hyperparameter.
Within Lmi, we further reduce covariance by maximizing the cosine similarity between intra-class
features. Moreover, we minimize the cosine similarity between inter-class features to prevent class
collapse. Inspired by Chen et al. (2020), we employ the exponential operation to simulate the softmax
process in cross-entropy loss and the logarithm operation, facilitating better optimization. Beyond
optimizing poisons, we also update the shadow model θ with the cross-entropy loss Lce, resulting in
bi-level optimization by the min-min approach:

min
δ
Lmi(x+ δ, y; θ∗(δ)),

s.t. θ∗(δ) = argmin
θ
Lce(x+ δ, y; θ). (3)
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Table 2: Quantitative results(%) of baseline methods and our MI-UE for ResNet-18 on three bench-
mark datasets. Our MI-UE achieves the lowest test accuracy compared to other unlearnable examples,
indicating excellent poisoning effectiveness.

Dataset/Method Clean EM AP NTGA REM SEM TUE MI-UE(ours)

CIFAR-10 94.45 24.17 11.21 23.11 22.94 14.78 11.25 9.95
CIFAR-100 76.65 2.09 3.73 3.08 7.52 6.29 1.34 1.17
ImageNet-subset 80.43 1.26 9.10 8.42 13.74 4.10 4.95 1.03

Table 3: Quantitative results(%) of baseline methods and our MI-UE on transferability across
different models on CIFAR-10. All of unlearnable examples are generated by ResNet-18. Above the
dashline represents modern deep networks, while below the dashline represents shallow networks.
Our MI-UE consistently results in the lowest test accuracy across all network architectures.

Model/Method Clean EM AP NTGA AR REM SEM GUE TUE MI-UE(ours)

ResNet-18 94.45 24.17 11.21 23.11 17.41 22.94 14.78 12.04 11.25 9.95
ResNet-50 95.16 23.57 11.66 19.01 15.28 23.33 13.61 12.99 10.01 9.98
DenseNet-121 94.91 24.87 11.80 19.83 16.50 21.87 15.19 12.46 11.41 9.93
WRN34-10 96.03 24.25 11.28 21.92 14.62 21.64 13.64 13.22 12.11 10.68
ViT-B 90.92 27.35 24.21 43.55 24.16 21.67 25.52 17.72 35.54 15.51
LeNet-5 80.68 26.30 31.38 44.06 73.33 29.97 22.94 13.30 28.37 10.80
3-NN 62.12 28.54 61.03 44.81 62.02 48.61 54.44 16.97 56.55 14.16
2-NN 56.15 32.50 55.78 39.34 56.75 47.37 50.79 22.08 48.75 17.82

The detailed algorithm, denoted as Mutual Information Unlearnable Examples (MI-UE), is outlined
in Algorithm 1. We evaluate the MI and feature covariance of different UEs in Figure 3, compared
to clean samples, all UE methods reduce both MI and covariance of poisoned features, with our
proposed MI-UE achieving the lowest values of both metrics.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and models. In our experiments, we employ three common benchmark datasets: CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-subset (Russakovsky
et al., 2015) containing the first 100 classes of ImageNet. We evaluated a variety of network archi-
tectures, including ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016), DenseNet-121 (Huang
et al., 2017), WRN-34-10 (Zagoruyko and Komodakis, 2016), and ViT-B (Dosovitskiy et al., 2020).
Additionally, we utilize shallower networks such as linear network (Linear), two/three-layer fully-
connected feed-forward network (2/3-NN) and a classical convolutional network, LeNet-5 (LeCun
et al., 1998) for evaluation. More details are provided in Appendix E.

Baseline methods. We compare our MI-UE methods with various baseline UEs, including error-
minimizing noises (EM) (Huang et al., 2020), strong adversarial poisons (AP) (Fowl et al., 2021),
neural tangent attacks (NTGA) (Yuan and Wu, 2021), auto-regressive noises (AR) (Sandoval-Segura
et al., 2022b), robust error-minimizing noises (REM) (Fu et al., 2022), stable unlearnable examples
(SEM) (Liu et al., 2024c), game-theoretical unleanrable attacks (GUE) (Liu et al., 2024a) and
transferable unlearnable examples (TUE) (Ren et al., 2022). For EM, AP, REM, SEM, GUE and
TUE, the source model for poison generation is ResNet18. For TUE, the unsupervised backbone is
SimCLR. For NTGA, the ensemble model employed is FNN.

Implementation details. For UE generation under the l∞ norm, we set the total poison budget at
8/255. In the generation of MI-UE, for CIFAR-10/100, the poisoning epoch is set to 100, at each
epoch we conduct 10 steps PGD attack with a step size of 0.2/255. For ImageNet-subset, we set the
poisoning epoch to be 50, and the step size of PGD be 0.4/255. The balancing hyperparameter ζ is
set to 0.1 by default. For standard training (ST) evaluation, we use cosine scheduler with an initial
learning rate of 0.5, setting the total evaluation epochs at 200. For adversarial training (AT) evaluation,
following Fu et al. (2022); Liu et al. (2024c), we set the initial learning rate at 0.1, decaying it by
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a factor of 10 at epochs 40 and 80, with the total evaluation epochs established at 100. For further
details and additional experimental results, please refer to Appendices E and G.

6.2 MAIN RESULTS

We evaluate our MI-UE method compared with other baseline methods on three benchmark datasets,
CIFAR-10, CIFAR-100 and ImageNet-subset. As demonstrated in Table 2, MI-UE achieves the
lowest test accuracy compared to other UEs on the three benchmark datasets, indicating superior
poisoning effectiveness. Further assessments are conducted on the transferability across different
victim models, including modern deep neural networks such as ResNet, DenseNet, Wide-ResNet, and
Vision Transformer, as well as shallower architectures including 2-NN, 3-NN and LeNet-5. As shown
in Table 3, our MI-UE consistently results in the lowest test accuracy across all network architectures,
establishing it as the most effective form of UEs. Notably, some well-known UEs, such as AP, AR,
SEM, and TUE, perform well on modern deep networks but poorly on shallower networks (i.e., 2-NN,
3-NN, and LeNet-5). This disparity suggests a potential sensitivity of these methods to different
network architectures. In contrast, our MI-UE exhibits robust transferability across both deep models
and shallower architectures. Additional results and analyses are available in Appendix G.3.

6.3 EVALUATION UNDER DEFENSE STRATEGY

Table 4: Quantitative results(%) of baseline meth-
ods and our MI-UE under adversarial training with
different budget on CIFAR-10. AT-i means AT with
budget i/255, ST means standard training. Our
MI-UE achieves state-of-the-art performance, par-
ticularly achieving an impressive 45.55% at AT-6.

Method AT-8 AT-6 AT-4 AT-2 ST

Clean 85.10 87.54 89.77 91.95 94.45
EM 84.57 85.42 84.29 52.81 24.17
AP 82.70 85.48 88.14 22.48 11.21
NTGA 84.22 86.27 88.36 87.87 23.11
AR 84.54 87.09 89.81 92.45 17.41
SEM 85.99 86.82 29.77 19.41 14.78
REM 85.99 81.91 39.45 30.64 22.94
ENTF 75.72 76.84 77.95 81.38 91.96
TUE 84.10 86.07 89.29 91.70 11.25
GUE 84.37 86.54 71.21 17.66 12.04
MI-UE 70.56 45.55 31.79 17.39 9.95

Adversarial training. For UEs, adversar-
ial training (Madry et al., 2017) is the most
straightforward defense mechanism, as UE
noises are always constrained by a small norm
budget. Adversarial training with the same bud-
get of UEs theoretically minimizes the upper
bound of UE generalization risk (Tao et al.,
2021). Recent developments have introduced
robust UEs specifically targeting adversarial
training, such as REM (Fu et al., 2022) and
SEM (Liu et al., 2024c). However, these meth-
ods are only effective when the adversarial
training budget is less than half of the poison
budget and fail under larger defense budgets.
Another type of UE called ENTF (Wen et al.,
2023), that can diminish the efficacy of adver-
sarial training. However, this method is only
applicable to large budget of AT and is inef-
fective for smaller budgets or standard training.
Our MI-UE method combines the strengths of the above methods, achieving outstanding poisoning
effects under both smaller and larger AT budgets. As shown in Table 4, MI-UE achieves the lowest
test accuracy under AT settings of 8/255, 6/255, 2/255, and standard training (ST), and it matches
the performance of the state-of-the-art robust UE, SEM, at AT-4. Notably, MI-UE demonstrates a
significant advantage at AT-8 and AT-6, particularly achieving an impressive 45.55% at AT-6. Thus,
our MI-UE achieves state-of-the-art performance under adversarial training defenses. Further details
are provided in Appendix G.7.

Table 5: Quantitative results(%) of baseline methods and MI-
UE under various defense on CIFAR-10. Our MI-UE achieves
the lowest test accuracy under the majority of defense methods.
Defense Cutout Cutmix Mixup UER ISS OP AVA D-VAE LE

Clean 95.53 96.43 95.83 93.28 82.71 88.82 89.15 93.29 92.32
EM 22.90 24.08 27.22 91.41 82.78 71.70 86.62 91.42 90.93
NTGA 17.65 25.53 19.04 93.39 80.84 78.14 85.13 89.21 87.31
AR 12.84 16.20 16.24 93.32 82.79 84.69 88.38 91.11 89.75
REM 26.49 24.44 18.74 69.63 82.59 29.61 86.28 86.38 90.14
SEM 14.25 15.39 15.06 70.53 81.86 23.72 87.30 88.55 88.25
GUE 13.98 20.01 12.13 85.39 83.10 86.96 86.63 90.58 84.83
TUE 11.01 10.95 11.26 92.60 82.61 85.28 88.72 91.49 85.12
MI-UE 10.13 10.17 10.78 67.14 81.35 19.29 86.18 84.86 84.30

Data augmentations. Standard
training often incorporates vari-
ous data augmentation techniques
to improve generalization, such
as horizontal flipping and random
cropping. To further enhance gen-
eralization and prevent overfitting,
advanced data augmentation meth-
ods have been developed, includ-
ing Cutout (DeVries and Taylor,
2017), Cutmix (Yun et al., 2019),
and Mixup (Zhang et al., 2017). To
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further evaluate the ability of UEs, we train the victim models under these three augmentation
respectively. As shown in the first three columns of Table 5, all existing UEs are highly insensitive to
these data augmentations, whereas our MI-UE still achieves the best performance.

Tailored defense for unlearnable examples. We evaluate four recent defenses specifically designed
for UEs, namely UER (Qin et al., 2023), ISS (Liu et al., 2023), OP (Sandoval-Segura et al., 2023),
AVA (Dolatabadi et al., 2023), D-VAE (Yu et al., 2024a) and LE (Jiang et al., 2023). The experimental
results are presented in the last four columns of Table 5. UER and OP exhibit inconsistent defensive
performance across different UEs. Specifically, they seems work not well for AP, REM, SEM, and
our MI-UE. UER achieves an accuracy of approximately 70% on these UEs, while OP only manages
about 20%. Under these two defenses, our MI-UE maintains the best unlearnability. In contrast,
ISS and AVA demonstrate robust performance against existing UEs, with accuracy recovery rates
exceeding 80% for all UEs, indicating that bypassing state-of-the-art defenses for UEs remains a
challenge, which may be the intrinsic drawback of UEs. Nevertheless, our MI-UE still achieves the
best unlearnability in worst-case scenario (86.18% under AVA), the second-best, SEM is 88.55%
under D-VAE, other UEs are over 90% in worst-case defenses.

6.4 ABLATION STUDIES

Table 6: The ablation study on two terms of MI-UE
loss. ImageNet-S means ImageNet-subset. Results
show that the similarity term play a more important role
for unlearnability.

Method/Dataset CIFAR-10 CIFAR-100 ImageNet-S

MI-UE 9.95 1.17 1.03
w/o Distance Term 10.09 2.52 1.46
w/o Similarity Term 51.65 26.72 23.38

Table 7: Sensitive analysis of the balancing hyperpa-
rameter strength for MI-UE.
Strength 0 0.001 0.01 0.1 1 10 100

Test Acc 10.09 10.03 10.08 9.95 10.31 45.90 45.47

Table 8: Sensitive analysis of the balancing hyperpa-
rameter strength for MI-UE.

Method Acc(Acc Gap)(%) MI(MI Gap)

UE 24.17(70.28) 0.6400(0.0722)
UE+MI reg. 15.62(78.83) 0.5336(0.1786)
AP 11.21(83.24) 0.5871(0.1251)
AP+MI reg. 10.01(84.44) 0.5183(0.1939)
MI-UE(Ours) 9.95(84.50) 0.4969(0.2153)

Two terms of the MI-UE loss. Our MI-
UE loss Lmi includes both similarity term
and distance term, so we investigate the
effect of them in Table 6. Results show
that the similarity term play a more impor-
tant role for unlearnability, only distance
term will significantly degrade the power
of MI-UE. Nevertheless, MI-UE with dis-
tance term will still increase the unlearn-
ability although it seems a little marginal.

The strength of balancing hyperparam-
eter. We conduct the sensitive analysis of
the balancing hyperparameter ζ. Results
provided in Table 7 demonstrate that the
strength be 0.1 or less will slightly increase
the effectiveness of MI-UE, while a larger
strength like 10 or 100 will significantly
destroy the unlearnable power. This phe-
nomenon further reveals the superiority of
the similarity measure compared with the
simple distance measure.

Compared with MI-based regularizers.
Inspired by Belghazi et al. (2018), we con-
struct an additional MI regularization network to minimize MI. Specifically, we optimize the unlearn-
able poisons from both the classifier network (ResNet-18) with cross-entropy loss (e.g., UE and AP),
and the MINE network (MLP) with MINE loss (a lower bound of MI). All these experiments are
conduct on CIFAR-10 dataset. Results in Table 8 demonstrate that under MI loss regularization, both
UE and AP show further reduction of MI and drop of test accuracy, further validate our findings:
unlearnable examples work because of MI reduction. Moreover, we find that MI regularizations
are still suboptimal compared with our MI-UE, indicating that our algorithm can induce better MI
reduction.

Table 9: Quantitative results(%) of MI-UE
with different poison generation step sizes.

Step size CIFAR-10 CIFAR-100

0.1/255 9.93 1.13
0.2/255 (default) 9.95 1.17
0.4/255 10.00 1.14
0.8/255 9.96 1.09

Various training step sizes. To further demonstrate
the soundness of our proposed MI-UE, we conduct
experiments on CIFAR-10/100 with various poison
generation step sizes, including 0.1/255, 0.2/255 (de-
fault), 0.4/255 and 0.8/255. Results in Table 9 show
that different step sizes do not affect the unlearnable
power of MI-UE.
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Table 10: Quantitative results(%) of MI-UE
with different poisoning epochs.

Epochs/Test Acc(%) CIFAR-10 CIFAR-100

100 (default) 9.95 1.17
50 10.25 1.66
20 15.39 3.23

Table 11: Quantitative results(%) of MI-UE
with different poisoning budgets.

Budgets/Test Acc(%) CIFAR-10 CIFAR-100

4/255 10.49 1.16
6/255 10.09 1.19
8/255 (default) 9.95 1.17
12/255 9.83 1.17
16/255 9.97 1.09

Different training epochs. As shown in Appendix
G.6, generate MI-UE poisons on CIFAR-10/100 re-
quires about 3.6 hours, which is about 1.5x time com-
pared with standard UE’s generation like EM. To
mitigate the potential computational overheads, we
test MI-UE with smaller poisoning epochs in Table
10. Results demonstrate that with half of the gener-
ation time (50 epochs), MI-UE still outperforms on
CIFAR-10 and achieves the second-best performance
on CIFAR-100 compared with existing UEs (Table 2).
Furthermore, MI-UE still gains comparable results
with other UEs even the poisoning epochs are re-
duced to 20. Similar results for ImageNet-subset are
provided in Appendix G.6. The effectiveness of MI-
UE under economic scenarios further demonstrate
MI-UE’s real-world applications.

Different poisoning budgets. We set the poisoning
budget ϵ = 8/255 as default to make sure a fair comparison with existing UEs. To validate our MI-UE
in broader scenarios, we further generate MI-UE with different poisoning budget from 4/255 to
16/255, and evaluate the unlearnability in Table 11. Results demonstrate that even though poisoning
budgets across from 4/255 to 16/255, MI-UE always results in the unlearnability to a random guess
level (i.e., 10% for CIFAR-10, 1% for CIFAR-100).

Table 12: Quantitative results(%) of baseline methods and MI-
UE under various JPEG compression quality in ISS defense (Liu
et al., 2023). “Average” means the average performance across
these compression quality.

Quality 6 8 10 12 15 20 30 Average

Clean 78.52 81.35 83.12 83.97 85.41 86.57 88.17 83.87
EM 77.57 80.96 82.94 83.63 84.91 85.67 86.30 83.14
NTGA 76.39 78.63 79.38 79.64 81.68 81.59 81.50 79.83
AR 78.89 81.55 82.83 84.18 85.39 86.68 88.41 83.99
REM 78.04 81.30 82.20 83.23 84.50 84.60 85.24 82.73
GUE 78.27 80.69 83.00 83.97 85.39 86.46 88.06 83.69
TUE 78.48 81.83 83.23 84.13 85.12 85.88 86.38 83.58
MI-UE 77.55 80.86 81.93 83.37 84.61 85.26 84.99 82.65

Defenses under different JPEG
quality in ISS. We select the JPEG
compression in ISS (Liu et al.,
2023) with different strengths 6, 8,
10, 12, 15, 20 and 30 as the de-
fense of unlearnable examples, the
quantitative results are provided in
Table 12. NTGA outperforms on
these JPEG quality compressions.
Our MI-UE are comparable with
REM, achieving the second-best
unlearnable performance on aver-
age of these JPEG compressions
quality. All these unlearnable ex-
amples become ineffective against
JPEG compression, with accuracy recovery to over 80%, indicating that bypassing tailored defense
for UEs remains a challenged problem.

7 CONCLUSION

In this paper, we introduce a novel perspective for elucidating the mechanisms underlying unlearnable
examples: mutual information reduction. We showcase that the harmonious relationship between
MI reduction and accuracy drop can be founded in all effective unlearnable examples. Additionally,
we derive the mutual information from a covariance reduction standpoint. Based on thi theoretical
analysis, we propose a new poisoning method, Mutual Information Unlearnable Examples (MI-
UE), which aims to create more effective unlearnable examples by reducing covariance. Extensive
experiments consistently demonstrate the superiority of our MI-UE. A limitation of our method is
its suboptimal performance under state-of-the-art defenses. However, it is noteworthy that these
advanced defenses themselves moderately reduce the accuracy of models trained on clean datasets.
We leave further investigation of this aspect to our future work.
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This work aims at designing a more effective unlearnable example. Because unlearnable examples
are considered as a privacy preserving method to protect data from malicious abuse, we believe our
work can bring positive societal impacts in the domain of privacy preserving. For potential negative
societal impacts, a malicious entity may seek unlearnable examples to impair normal deep models,
defenders can utilize defense strategies on unlearnable examples to avoid this case.

REPRODUCIBILITY STATEMENT

We provide the implementation details in Section 6.1 and Appendix E to ensure reproducibility. We
also provide our codes in the supplementary material.
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A THEORETICAL VIEWS OF RELATIONSHIP BETWEEN UES AND MI
REDUCTION

Definition A.1 (H-Divergence, (Ben-David et al., 2010)). Give the domain X with P and P ′

probability distributions over X , let H be a hypothesis class on X and I(h) be the set of which
h ∈ H is the characteristic function, i.e., x ∈ I(h) ⇐=⇒ h(x) = y, where y is the label of x. The
H-Divergence between P and P ′ is defined as

dH(P,P ′) = 2 sup
h∈H
|ProbP [I(h)]− ProbP′ [I(h)]| (4)

Definition A.2 (H∆H Space, (Ben-David et al., 2010)). For a hypothesis spaceH, the symmetric
difference hypothesis spaceH∆H is the set of hypotheses that

g ∈ H∆H ⇐=⇒ g(x) = h(x)⊕ h′(x) for some h, h′ ∈ H, (5)

where ⊕ is the XOR function. In other word, g ∈ H∆H is the set of disagreement between two
hypotheses inH.

Theorem A.3 (Proof in Appendix B). Consider two data distributions D and D′, with variables
X ∼ DX , X ′ ∼ D′

X , and Y ∼ DY = D′
Y . Let the classifier be f = h ◦ g, where g is a

feature extractor and h is a linear classifier. Denote Z = g(X), Z ′ = g(X ′). For any label
Y , Assume Z|Y follows a multivariate Gaussian distribution N (µ1,Y ,Σ1,Y ), Z ′ relies on Z with
Z ′|Y = Z|Y +N (µ2,Y ,Σ2,Y ), and H(g(X+X′

2 )) ≥ H(Z+Z′

2 ). Then we have:

RD(f) ≤ RD′(f)− 4I(Z,Z ′) + 4H(Y ) +
1

2
dH∆H(p(Z), p(Z ′)), (6)

as long as detΣ2,Y ≥ ( 2
πe )

d. Here, RD and RD′ represent the expected population risks over
distributions D and D′, respectively, I(·, ·) denotes the mutual information, H(·) represents the
entropy, dH∆H(·, ·) is theH∆H-divergence, used to measure the marginal distributions between two
logits, p(·) is the probability density function, and d is the feature dimension.

Remark A.4. We assume that Z ′ relies on Z because unlearnable examples are crafted from clean
dataset. Therefore, their corresponding features Z ′ and Z should have certain relationship. In our
theorem, we assume that they are different by a certain distribution shift.

Remark A.5. The entropy of g(X+X′

2 ) is not less than Z+Z′

2 means that the uncertainty of the
former is not less than the latter, this is reasonable when g is a good representation for both D and
D′, the uncertainty of features Z and Z ′ is relatively low, but the uncertainty of the feature on the
mixup data X+X′

2 is relatively high.

Remark A.6. To further make sure the conditional inequality detΣ2,Y ≥ ( 2
πe )

d holds, we may
simply add some random noises for each variable Z ′, which induce negligible change on performance,
to ensure the covariance matrix detΣ2,Y is not nearly singular.

The last term of Eq. (6) is theH∆H-divergence between the probability density function of clean
feature g(X) and poisoned feature g(X ′). As shown in Definition A.1,H∆H-divergence represents
the supremum of absolute probability gap on the true function over hypothesis space H∆H. As
shown in Definition A.2,H∆H space is the symmetric difference space. For instance, with regard to
neural network, this space represents the potential different outputs of the neural network on various
weights. TheH∆H space reflects the expression power of the hypothesis spaceH. Because when the
H becomes more complex, there exists more types of h ∈ H and h′ ∈ H, such that h(x) and h′(x)
represent different functions, making their difference becomes larger. Back to theH∆H-divergence,
if the divergence between clean feature Z = g(X) and poisoned feature Z ′ = g(X ′) becomes larger,
the results of h⊕ h′(z) and h⊕ h′(z′) will possibly have much more difference. More simply, we
can just regardH∆H asM, and the function h⊕h′ as the function m. If the divergence of Z and Z ′

is small, the gap between m(z) and m(z′) is small too. Conversely, if the divergence becomes larger,
the gap of m(z) and m(z′) will also become larger, resulting in largerM-divergence. Therefore, the
last term somehow represents a divergence between clean and unlearnable features. Furthermore, as
the divergence between Z and Z ′ is getting larger, their MI is expected to become smaller because
their relationship becomes weaker. Hence theH∆H-divergence is expected to harmouniouls change
with the negative MI.
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Theorem A.3 indicates that generalization upper bound under distribution D increases as the MI
between the distributions of features Z and Z ′ decreases. The condition of Σ2,Y is easy to hold
(see Remark A.6). Unlearnable examples aim to degrade the generalization on clean distribution
D for classifier f trained on poisoned distribution D′, i.e., increasing RD(f). Notably, RD′(f)
remains minimal since the training set sampled fromD′. Furthermore, H(Y ) remains constant, as the
setting of unlearnable examples does not allow label poisoning. Additionally, theH∆H-divergence
somehow represents a divergence between clean and unlearnable features, that can harmoniously
change with the negative MI. Therefore, we focus primarily on the MI term I(Z,Z ′). In this context,
Theorem A.3 employs the MI term to establish the generalization upper bound when trained on
unlearnable examples.

To ensure the poisoning effect of unlearnable examples, namely higherRD(f), the post-poisoning
distribution D′ must exhibit a decrease of mutual information I(Z,Z ′). In the next section, we will
demonstrate through experiments that all effective unlearnable examples indeed imply the reduction
of MI, validating the correctness and rationality of our proposed theoretical framework.

B PROOFS

Lemma B.1 (Cover (1999)). If a random variable X obeys the multivariate Gaussian distribution
N (µ,Σ), then the entropy of X is

H(X) =
1

2
log
[
det (2πeΣ)

]
. (7)

Theorem B.2 (Restate of Theorem 5.1). Assume that for every Y ∈ Y , poison distribution Z ′|Y is
close to a Gaussian mixture distribution under KL-divergence, i.e., there exists N (µY ,ΣY ), such
that KL(N (µY ,ΣY )∥p(Z ′|Y )) ≤ ϵ for some 0 < ϵ < 1. Then, we have:

I(Z,Z ′) ≤ d

2
log(2πe) +

1

2
EY log(detΣY ) +H(Z ′|Z) + EY CY

√
ϵ, (8)

where CY =
√
2 max
u∈[mY ,MY ]

| log u| + 1,mY = min
Z′

p(Z ′|Y ),MY = max
Z′

p(Z ′|Y ), I(·, ·) denotes

the MI, H(·|·) denotes the conditional entropy, and d is the feature dimension.

Proof. Let PY = Z ′|Y,QY = N (µY ,ΣY ). As we consider the single-label classification task, for
any feature Z = g(X) ∼ Z , there exists an unique label Y such that p(Z|Y ) ̸= 0. As UE attack is
the clean-label attack, Z and Z ′ are always assigned with the same label. It holds that

I(Z,Z ′) =

∫
z∼Z,z′∼Z′

pZ,Z′(z, z′) log(
pZ,Z′(z, z′)

pZ(z)pZ′(z′)
)dzdz′

=

∫
z∼Zy,z′∼Z′

y,y∼DY

pY (y)pZ|Y,Z′|Y (z|y, z′|y) log(
pZ|Y,Z′|Y (z|y, z′|y)
pZ|Y (z|y)pZ′|Y (z′|y)

)dzdz′dy

= EY I(Z|Y, Z ′|Y ).

Therefore, by the equation between MI and entropy, it has

I(Z,Z ′) = EY∼DY I(Z|Y,Z ′|Y ) (9)

= EY∼DY

[
H(Z|Y )−H(Z ′|Z, Y )

]
= EY∼DY [H(Z ′|Y )]−H(Z ′|Z)
= EY∼DY [H(PY )]−H(Z ′|Z) (10)

As QY = N (µY ,ΣY ) be the multivariate normal distribution with mean µY and covariance ΣY , by
Lemma B.1, it holds that the entropy of

H(QY ) =
1

2
log
[
(2πe)d detΣY

]
=
d

2
log(2πe) +

1

2
log(detΣY ).

By Pinsker’s inequality, it holds that

TV(PY , QY ) ≤
√

1

2
KL(QY ∥PY ) ≤

√
ϵ

2
.
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Furthermore, it has

H(PY )−H(QY ) =

∫
[−pY (z) log pY (z) + qY (z) log qY (z)] dz

=

∫
[qY (z)− pY (z)] log pY (z)dz +KL(QY ∥PY )

≤ max
z
| log pY (z)|

∫
|qY (z)− pY (z)|dz + ϵ

≤ 2 max
u∈[mY ,MY ]

| log u| · TV(PY , QY ) + ϵ

≤ (
√
2 max
u∈[mY ,MY ]

| log u|+ 1)
√
ϵ

= CY

√
ϵ. (11)

Then the inequality holds when taking the expectation for every Y ∼ DY .

Lemma B.3 ((Zhao et al., 2022)). For two different data distributionD andD′,X ∼ DX , X
′ ∼ DX ′ .

Denote the classifier f = h ◦ g, in that g is the feature extractor and h is the linear classifier. Then it
holds that

RD′(f) ≤ RD(f)− 4ID+D′
2

(Z1, Z2) + 4H(Y ) +
1

2
dH∆H(p(g(X)), p(g(X ′)), (12)

where D+D′

2 represents the average mixture of distribution D and D′, Z1 = g(X1), Z2 = g(X2), X1

and X2 are sampled from D+D′

2 . RD is the expected risk, dH∆H(·, ·) is theH∆H-divergence.

Proof of Theorem A.3. By Lemma B.3, it holds that

RD(f) ≤ RD′(f)− 4I(g(
X +X ′

2
), g(

X +X ′

2
)) + 4H(Y ) +

1

2
dH∆H(P (Z), P (Z ′)).

Therefore, we only need to prove that

I(Z,Z ′) ≤ I(g(X +X ′

2
), g(

X +X ′

2
))

to make the inequality in the theorem holds. By the property of mutual information, it holds that

I(Z,Z ′) = H(Z ′)−H(Z ′|Z)

and

I(g(
X +X ′

2
), g(

X +X ′

2
)) = H(g(

X +X ′

2
)) ≥ H(

Z + Z ′

2
)

by the assumption. Hence what we need to prove is

H(Z ′)−H(Z ′|Z) ≤ H(
Z + Z ′

2
).

As we are considering the single-label classification task, for any feature Z = g(X) ∼ Z , there
exists an unique label Y such that p(Z|Y ) ̸= 0, it holds that

H(Z) =

∫
z∼Z

pZ(z) log pZ(z)dz

=

∫
z∼Zy,y∼DY

pY (y)pZ|Y (z|y) log pZ|Y (z|y)dzdy

= EDYH(Z|Y ),

Therefore, it has
H(Z ′) = EYH(Z ′|Y ).

Similarly, it holds that
H(Z ′|Z) = EyH(Z ′|Z, Y ),
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H(
Z + Z ′

2
) = EYH(

Z|Y + Z ′|Y
2

).

We only need to prove that for all Y ∈ DY ,

H(Z ′|Y )−H(Z ′|Z, Y ) ≤ H(
Z|Y + Z ′|Y

2
).

By Lemma B.1, it has

H(Z ′|Y ) = H(N (µ1,Y ,Σ1,Y ) +N (µ2,Y ,Σ2,Y )) =
1

2
log
[
(2πe)d det (Σ1,Y +Σ2,Y )

]
,

H(Z ′|Z, Y ) = H(Z ′|Z, Y ) = H(N (µ2,Y ,Σ2,Y ))
1

2
log
[
(2πe)d det (Σ2,Y )

]
.

H(
Z|Y + Z ′|Y

2
) = H(

1

2
Z|Y +

1

2
N (µ2,Σ2))

=
1

2
log
[
(2πe)d det (

2Σ1,Y +Σ2,Y

4
)
]
.

Thus we need to have the condition provided in the theorem:

det (Σ1,Y +Σ2,Y ) ≤ (
πe

2
)d · det (Σ2,Y ) · det (2Σ1,Y +Σ2,Y ).

Furthermore, when detΣ2,Y ≥ ( 2
πe )

d, the above condition can be relaxed to

det (Σ1,Y +Σ2,Y ) ≤ det (2Σ1,Y +Σ2,Y ),

as covariance matrix is always semi-definite, the eigenvalues of 2Σ1,Y +Σ2,Y will always be non-less
than those of Σ1,Y +Σ2,Y , resulting in the above inequality holds.

C MORE DISCUSSIONS ON RELATED WORK

Unlearnable examples. Privacy issues have received extensive attention in the domain of privacy-
preserving machine learning Shokri and Shmatikov (2015); Abadi et al. (2016); Shokri et al. (2017),
including studies on unlearnable examples Huang et al. (2020); Yu et al. (2022); Sandoval-Segura
et al. (2022a). Unlearnable examples(UEs) are a type of data poisoning, which allow the attacker to
perturb the training dataset under a small norm restriction. These attacks aim to induce errors during
test-time while maintaining the semantic integrity and ensuring the normal usage by legitimate users.
Many UEs are proposed in recent years, include generating bi-level error-minimizing noises (Huang
et al., 2020), using non-robust features for strong adversarial poisons (Fowl et al., 2021), attacking
by neural tangent kernels (Yuan and Wu, 2021), inducing linear shortcuts (Yu et al., 2022), fooling
convolutional networks by autoregressive signals (Sandoval-Segura et al., 2022b), injecting class-
wise separability discriminant (Ren et al., 2022), solving Stackelberg equilibrium of UE game (Liu
et al., 2024a). Furthermore, UEs have been extended to adversarial training (Fu et al., 2022;
Wen et al., 2023; Liu et al., 2024c), self-supervised learning (He et al., 2022; Ren et al., 2022),
unsupervised learning (Zhang et al., 2023), natural language processing (Li et al., 2023), multimodal
contrastive learning (Liu et al., 2024b), securing medical data (Sun et al., 2024), 3D point clouds (Zhu
et al., 2024a; Wang et al., 2024a). Recent works try to detect UEs by linear separability (Zhu
et al., 2024b),iterative filtering (Yu et al., 2024b) and edge pixel detector (Li et al., 2025). Defense
methods for UEs have also been developed recently, including adversarial training (Tao et al., 2021),
shortcuts squeezing (Liu et al., 2023), orthogonal projection (Sandoval-Segura et al., 2023), stronger
data augmentations (Qin et al., 2023; Zhu et al., 2024b), diffusion purification (Jiang et al., 2023;
Dolatabadi et al., 2023; Yu et al., 2024a). Discussions and measures of UEs across multiple tasks
have also been studied recently (Ye et al., 2025).
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D ALGORITHM

Our generating process of Mutual Information Unlearnable Examples (MI-UE) has provided in
Algorithm 1. It is shown that our MI-UE adopts the bi-level min-min optimization, at each epoch,
we first update the source model to mimic the training process of victim models who use UEs as
their training set. Then we update our MI-UE poisons using Lmi by PGD attacks. Source model
optimization tries to makeRD′(f) minimal since f in trained on the UE dataset sampled from D′.
UE poison optimization tries to minimize the feature MI between g(X) and g(X ′) to increase the
generalization upper bound of clean data distributionRD(f) to enhance the unlearnability.

Algorithm 1 Mutual Information Unlearnable Examples (MI-UE)
Input: A training dataset D = {(xi, yi)}Ni=1. Total epoch T . Batch size NB . MI reduction loss
Lmi. Model optimization parameters αθ and Tθ. UEs optimization parameters αδ, Tδ and Ta,
poison budget ϵ.
Output: Poisons {δi}Ni=1
Initialize: δi ← 0, i = 1, 2, · · · , N
for t = 1, · · · , T do

for tθ = 1, · · · , Tθ do ▷ Source model optimization
Sample a mini batch B = {(xbj , ybj )}

NB
j=1.

θ ← θ − αθ · ∇θE(xbj
,ybj

)∈B

[
Lce(xbj + δbj , ybj ; θ)

]
for tθ = 1, · · · , Tδ do ▷ Unlearnable examples optimization

Sample a mini batch B = {(xbj , ybj )}
NB
j=1.

for ta = 1, · · · , Ta do ▷ PGD attacks
δbj ← δbj − αδ · ∇δbj

E(xbj
,ybj

)∈B

[
Lmi(xbj + δbj , ybj ; θ)

]
δbj ← Π(δbj ,−ϵ, ϵ) ▷ Clip poisons to ϵ-ball

E EXPERIMENTAL DETAILS

E.1 DATASETS

CIFAR-10/100. CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) contain 50000 training images
and 10000 test images, with 10 and 100 classes respectively. The image size is 32× 32 with 3 color
channels.

ImageNet-subset. ImageNet-subset contains the first 100 classes of the ImageNet-1k dataset from
ImageNet ILSVRC (Russakovsky et al., 2015). It has 130000 images as the training set, and 5000
images as the test set. The images have been processed to 224× 224 size with 3 color channels.

E.2 MODELS

ResNet. We use the Deep Residual Network (He et al., 2016) with 18 layers and 50 layers respectively,
denoted ResNet-18 and ResNet-50.

DenseNet. We employ the Densely Connected Convolutional Networks (Huang et al., 2017) with
121 layers, denoted as DesNet-121.

Wide ResNet. We conduct the Wide Residual Networks (Zagoruyko and Komodakis, 2016) with
depth be 34 and width factor be 10, denoted as WRN34-10.

ViT. We use the vision transformer proposed by (Dosovitskiy et al., 2020) with their base configura-
tion, denoted as ViT-B. For CIFAR-10/100, we change the patch size from 16 to 4.

E.3 DATA AUGMENTATION

For CIFAR-10/100, we include standard data augmentations for both UE generation and victim
model evaluation. We use the Random Crop with the size be 32 and padding be 4, and the Random
Horizontal Flip with probability be 0.5. For test set we do not conduct any data augmentation.
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For ImageNet-subset, as each raw image is with different size, for both UE generation and victim
model evaluation, in the training set, we directly resize the image to the size of 224× 224, follow
with the Random Horizontal Flip with probability be 0.5. In the evaluation phase, for the test set,
we first resize the image to the size of 256 × 256, then we conduct the Center Crop to the size of
224× 224.

E.4 TRAINING DETAILS

For UE generation, we set the total epoch T be 100 for CIFAR-10/100, and 50 for ImageNet-subset.
The batch size NB is set to be 512. For source model optimization, we use the cross-entropy loss and
the mini-batch SGD optimizer, with initial learning rate be 0.5, momentum be 0.9 and weight decay
be 1× 10−4. We also conduct the cosine annealing schedule to adjust learning rate at each epoch,
with the final minimum learning rate be 1 × 10−6. For poison optimization, we use our proposed
MI reduction loss with PGD attacks. The temperature of similarity term is set to be 0.1, the strength
of distance item is set to be 0.1 by default. We use 10 steps of PGD attack, with each step size be
0.4/255 for ImageNet-subset, and use 10 steps with each step size be 0.2/255 for CIFAR-10/100, and
the overall poison budget is set to be 8/255 under l∞ norm.

For victim model evaluation, we set the training epoch be 200, the batch size be 128 and use SGD
optimizer with initial learning rate be 0.5, momentum be 0.9 and weight decay be 1× 10−4, while
adjusting learning rate by cosine annealing schedule with the final minimum learning rate be 1×10−6.
For adversarial training on victim models, similar with (Fu et al., 2022) and (Liu et al., 2024c), we
change the training epoch to 100, and use the multi step learning rate scheduler, with the learning rate
decay by 0.1 at the 40-th and 80-th epoch.

F MORE DISCUSSION AND EXPERIMENTS ON MUTUAL INFORMATION

In the domain of UEs, any feature Z ∼ Z will have a unique label Y such that the conditional
probability p(Z|Y ) ̸= 0 because we consider the single-label classification task. In other words, the
feature distribution Z is class-wise separable. We assume that the data distribution is balanced, i.e.,
the label distribution is uniform, pY (y) = 1

C , where C is the number of classes. The feature of X ,
under label Y , i.e., g(X)|Y satisfies certain distribution. This is reasonable since people usually use
class-conditional distribution pX|Y (x|y) to depict data distribution for classification tasks (Bishop,
2006). Therefore, a well-trained feature extractor g will divide data from different labels into different
feature region, then a linear classifier h can easily grasp features of each class to their corresponding
logits.

In this case, as shown in Equation (9) in the proof of Theorem 5.1, the feature mutual infor-
mation I(g(X), g(X ′)) can be divided into the class-conditional one, i.e., I(g(X), g(X ′)) =
EY I(g(X)|Y, g(X ′)|Y ). Therefore, we evaluate the feature MI for data in each class, and then
take the average of them as the final estimation of I(g(X), g(X ′)). For class-wise feature MI esti-
mation, as we assume that they satisfy certain distribution, we can estimate them by various density
estimators, details are provided in the following section.

F.1 DETAILS ON ESTIMATION OF MUTUAL INFORMATION

Histogram-based estimator. Histogram is a traditional method for density estimation (Pizer et al.,
1987; Moddemeijer, 1989), which is to partition the data set into several bins and use the count of
bins as the estimation of density. Precisely, denote the (one-dimensional) data lies in [0, 1], the space
is divided into b disjoint bins, written as Bi = [(i − 1)/b, i/b], i = 1, 2, · · · , b. For x ∈ Bi, the
density p(x) is estimated as

p(x) =
b

n

n∑
j=1

I(Xj ∈ Bi), (13)

where n is the number of samples. In our paper, we set the bin to be 100 by default. The MI is then
estimated by corresponding marginal distribution p(x), p(y) and joint distribution p(x, y).
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Kernel density estimator. Kernel density estimator (Moon et al., 1995) uses the KDE function

p(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (14)

as the estimation of one-dimensional data x, where K(·) is the kernel function and h is the band-
width. In our paper, we use the Gaussian kernel and Silverman rule-of-thumb bandwidth estimator
(Silverman, 2018) for the bandwidth selection. The MI is then estimated by corresponding marginal
distribution p(x), p(y) and joint distribution p(x, y).

k-NN estimator. k-nearest neighbor (Kozachenko and Leonenko, 1987; Kraskov et al., 2004) is
another estimator for entropy and MI. They first compute the k-th neighbor distance ρi,k on joint
distribution for each data point Zi = (Xi, Yi), i = 1, · · · , N , and then compute the number of
neighbors for each Xi and Yi respectively, denoted as NXi

and NYi
. In detail, it holds that

NXi =
∣∣{xj ; d(xi, xj) < ρi,k, i ̸= j}

∣∣.
After that the mutual information I(X,Y ) is estimated by

Î(X,Y ) = ψ(k) + ψ(N)− 1

N

n∑
i=1

[ϕ(NXi
+ 1) + ϕ(NYi

+ 1)], (15)

where ψ(x) is the digamma function defined as ψ(x) = dΓ(x)
Γ(x)dx , Γ(·) is the Gamma function. In this

paper, we set k = 3 by default.

Mutual information neural estimator (MINE). MINE (Belghazi et al., 2018) proposed to use
neural network as the estimator of MI, by approximating a variational lower bound of MI under
Donsker-Varadhan representation (Donsker and Varadhan, 1983):

Î(X,Y ) = sup
θ

E(X,Y )∼p(x,y)[Tθ(X,Y )]− logEX∼p(x),Y∼p(y)[e
Tθ(X,Y )], (16)

where Tθ is the function parameterized by neural network θ which can be trained on data points Xi

and Yi. In this paper, we set the batch size be 1000 and the training iteration be 500 when training the
MINE.

Sliced mutual information. Sliced mutual information (SMI) (Goldfeld and Greenewald, 2021) is a
surrogate measure of MI for high dimensional data, which is defined as

SI(X,Y ) =
1

Sdx−1Sdy−1

∮
Sdx−1

∮
Sdy−1

I(θTX,ϕTY )dθdϕ, (17)

in that Sd−1 is the d-dimensional unit sphere, Sd−1 is the surface area of Sd−1. In practice, as shown
on Algorithm 1 in (Goldfeld and Greenewald, 2021), SMI can be estimated by randomly sampled
coefficient on dx and dy-dimensional unit sphere, then compute the one-dimensional MI based on
other estimation methods. In this paper, we set the slices number m be 2000 by default.

F.2 MORE RESULTS ON MI OF UES UNDER VARIOUS DEFENSES

In this section, we provide the quantitative results of MI and accuracy on several defense methods,
including AT, Cutout, UER and ISS, for various UEs on CIFAR-10 dataset.

Results shown in Table 13 that the Acc Gap have quite strong correlation with the MI gap. For
instance, the traditional data augmentation technique, Cutout, which are ineffective, show similar
MI gaps compared with standard training, that all of existing UEs obtain MI reduction, while
our MI-UE achieves the largest. For adversarial training, all of existing UEs become ineffective
as well as approaching MI gap compared with random noises, while our MI-UE achieves decent
unlearnability as well as further MI drop. For tailored defenses (UER and ISS), similar trends also
display, showcasing that MI gaps successfully reflect the unlearnability across different attacks and
defense mechanisms.
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Table 13: Test accuracy and MI estimation on various UEs compared with clean CIFAR-10 dataset
under defense mechanism including AT, Cutout, UER and ISS.

Defense Method Clean Random EM AP NTGA AR REM SEM GUE TUE MI-UE

AT

Acc(%) 85.10 85.07 84.57 82.70 84.22 84.54 85.99 85.99 84.37 84.10 70.56
Acc Gap(%) - 0.03 0.53 2.40 0.88 0.56 -0.79 -0.79 0.73 1.00 14.54

MI 0.7040 0.6516 0.6309 0.6348 0.6330 0.6377 0.6396 0.6323 0.6388 0.6400 0.6125
MI Gap - 0.0524 0.0731 0.0692 0.0710 0.0663 0.0644 0.0717 0.0652 0.0640 0.0915

Cutout

Acc(%) 95.53 95.57 22.90 11.30 17.65 12.84 26.49 14.25 13.98 11.01 10.13
Acc Gap(%) - -0.04 72.63 84.23 77.88 82.69 69.04 81.28 81.55 84.52 85.40

MI 0.7157 0.6739 0.6385 0.5992 0.5883 0.5820 0.6326 0.5753 0.5914 0.5937 0.4982
MI Gap - 0.0418 0.0772 0.1165 0.1274 0.1337 0.0831 0.1404 0.1243 0.1220 0.2175

UER

Acc(%) 93.28 93.30 91.41 70.65 93.39 93.32 69.63 70.53 85.39 92.60 67.14
Acc Gap(%) - -0.02 1.87 22.63 -0.11 -0.04 23.65 22.75 7.89 0.68 25.14

MI 0.7127 0.6725 0.6688 0.6323 0.6604 0.6701 0.6436 0.6260 0.6593 0.6526 0.5819
MI Gap - 0.0402 0.0439 0.0804 0.0523 0.0426 0.0691 0.0867 0.0534 0.0601 0.1308

ISS

Acc(%) 82.71 82.66 82.78 82.50 80.84 82.79 82.59 81.86 83.10 82.61 81.35
Acc Gap(%) - 0.05 -0.07 0.21 1.87 -0.08 0.12 0.85 -0.39 0.10 1.36

MI 0.7059 0.6709 0.6680 0.6543 0.6552 0.6598 0.6722 0.6532 0.6688 0.6683 0.6327
MI Gap - 0.0350 0.0379 0.0516 0.0507 0.0461 0.0337 0.0527 0.0371 0.0376 0.0732

F.3 MORE RESULTS ON MI OF UES UNDER DIFFERENT NETWORK STRUCTURES

In this section, we provide detailed results of the test accuracy and MI of EM, REM, GUE and MI-UE
unlearnable examples compared with clean CIFAR-10 dataset on different networks, including Linear
Models, 2-NN, 3-NN, LeNet-5, VGG-11 and ResNet-18. The results provided in Table 14 further
show that shallower networks (such as Linear and 2-NN) exhibit relatively higher test accuracy, with
lesser declines in test accuracy, and smaller reductions of MI. When the networks become deeper and
more complex, the test accuracy on UEs become smaller, with the drop of test accuracy as well as the
reduction of MI become greater.

Table 14: Test accuracy and MI estimation between EM, REM, GUE and MI-UE unlearnable
examples compared with clean CIFAR-10 dataset under victim linear classifiers (Linear), two-layer
neural network (2-NN), three-layer neural network (3-NN), LeNet-5, VGG-11 and ResNet18.

Method Model Linear 2-NN 3-NN LeNet-5 VGG-11 ResNet-18

Clean Acc(%) 39.13 56.15 62.41 80.68 91.44 94.45
MI 0.6682 0.6850 0.7197 0.7222 0.7583 0.7122

EM

Acc(%) 32.09 32.5 29.63 26.30 26.34 24.17
Acc Gap(%) -7.04 -23.65 -32.78 -54.38 -65.10 -70.28

MI 0.6310 0.6396 0.6718 0.6647 0.6865 0.6400
MI Gap -0.0372 -0.0454 -0.0479 -0.0575 -0.0718 -0.0722

REM

Acc(%) 34.37 47.37 48.22 29.97 27.09 22.94
Acc Gap(%) -4.76 -8.78 -14.19 -50.71 -64.35 -71.51

MI 0.6304 0.6503 0.6776 0.6567 0.6778 0.6290
MI Gap -0.0378 -0.0347 -0.0421 -0.0655 -0.0805 -0.0832

GUE

Acc(%) 33.41 22.08 17.33 13.3 15.8 12.04
Acc Gap(%) -5.72 -34.07 -45.08 -67.38 -75.64 -82.41

MI 0.6307 0.6274 0.6472 0.6286 0.6455 0.5895
MI Gap -0.0375 -0.0576 -0.0725 -0.0936 -0.1128 -0.1227

MI-UE

Acc(%) 36.60 17.82 11.43 10.01 10.98 9.95
Acc Gap(%) -2.53 -38.33 -50.98 -70.67 -80.46 -84.50

MI 0.6305 0.6273 0.6504 0.5892 0.5997 0.4969
MI Gap -0.0377 -0.0577 -0.0693 -0.1330 -0.1586 -0.2153

F.4 MORE RESULTS ON MI OF UES UNDER DIFFERENT NETWORK DEPTHS

To further validate the influence of network depth, we evaluate the test accuracy and MI estimation
between UE, REM, GUE and MI-UE unlearnable examples compared with clean CIFAR-10 dataset

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

on ResNet-34, ResNet-50, ResNet-101 and ResNet-152. (parentheses mean the gap of given method
compared with clean data.)

Table 15: Test accuracy and MI estimation between EM, REM, GUE and MI-UE unlearnable
examples compared with clean CIFAR-10 dataset under ResNet-18, ResNet-34, ResNet-50, ResNet-
101 and ResNet-152.

Method Model ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

Clean Acc(%) 94.45 94.63 95.16 95.43 95.55
MI 0.7122 0.7067 0.7078 0.7022 0.7035

EM

Acc(%) 24.17 23.96 23.57 23.75 23.32
Acc Gap(%) -70.28 -70.67 -71.59 -71.68 -72.23

MI 0.6400 0.6318 0.6285 0.614 0.6149
MI Gap -0.0722 -0.0749 -0.0793 -0.0876 -0.0886

REM

Acc(%) 22.94 22.99 23.33 21.12 20.75
Acc Gap(%) -71.51 -71.64 -71.83 -74.31 -74.80

MI 0.6290 0.6228 0.6169 0.6100 0.6072
MI Gap -0.0832 -0.0839 -0.0909 -0.0922 -0.0963

GUE

Acc(%) 12.04 12.02 12.99 12.93 11.85
Acc Gap(%) -82.41 -82.61 -82.17 -82.50 -83.70

MI 0.5895 0.5787 0.5704 0.5623 0.5610
MI Gap -0.1227 -0.1280 -0.1374 -0.1399 -0.1425

MI-UE

Acc(%) 9.95 9.97 9.98 9.99 9.90
Acc Gap(%) -84.50 -84.66 -85.18 -85.44 -85.65

MI 0.4969 0.4857 0.4802 0.4621 0.4338
MI Gap -0.2153 -0.2210 -0.2276 -0.2401 -0.2697

We also evaluate Acc gap and MI gap with UE, REM, GUE, MI-UE unlearnable examples on
CIFAR-10 dataset under three types of vision transformer proposed by Dosovitskiy et al. (2020),
namely, ViT-Base (depth=12), ViT-Large (depth=24) and ViT-Huge (depth=32).

Table 16: Test accuracy and MI estimation between EM, REM, GUE and MI-UE unlearnable
examples compared with clean CIFAR-10 dataset under ViT-Base, ViT-Large and ViT-Huge.

Method Model ViT-Base ViT-Large ViT-Huge

Clean Acc(%) 90.92 91.35 91.93
MI 0.7285 0.7297 0.7274

EM

Acc(%) 27.35 26.26 25.87
Acc Gap(%) -63.57 -65.09 -66.06

MI 0.6531 0.6449 0.6370
MI Gap 0.0754 -0.0848 -0.0904

REM

Acc(%) 21.67 21.37 20.49
Acc Gap(%) -69.25 -69.98 -71.44

MI 0.6427 0.6241 0.6183
MI Gap -0.0858 -0.1056 -0.1091

GUE

Acc(%) 17.72 17.03 16.58
Acc Gap(%) -73.20 -74.32 -75.35)

MI 0.5988 0.5923 0.5806
MI Gap -0.1297 -0.1374 -0.1468

MI-UE

Acc(%) 15.51 14.43 13.78
Acc Gap(%) -75.41 -76.92 -78.15)

MI 0.5332 0.5296 0.5180
MI Gap -0.1953 -0.2001 -0.2094

Results in Tables 15 and 16 show that, as the network become deeper, the drop of test accuracy (Acc
Gap) and the MI reduction (MI Gap) always become bigger harmoniously, further validate the rela-
tionship between unlearnability and MI reduction. Our MI-UE achieves both greatest unlearnability
(lowest Acc) as well as best MI reduction (Highest MI Gap).
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F.5 RATIONALITY OF ASSUMPTION FOR GAUSSIAN MIXTURE DISTRIBUTION

From an empirical perspective, modern neural networks in feature space, after normalization op-
erations such as BatchNorm/LayerNorm, often present a nearly isotropic distribution, which has a
similar covariance structure to the Gaussian distribution (Daneshmand et al., 2021). Even if the actual
distribution deviates from Gaussian (with ϵ KL divergence gap), the upper bound given by Theorem
5.1 is still a function of ΣY , and our MI-UE actually optimizes by maximizing the cosine similarity
of similar features to compress the intra-class covariance. Therefore, MI-UE doesn’t rely on strict
Gaussianity, as long as the inter-class/intra-class covariance is controllable, it can play a role in MI
reduction and achieving unlearnability.

Even if the actual distribution deviates from Gaussian (with ϵ-KL divergence gap), the upper bound
given by Theorem 5.1 is still a function of ΣY , and our MI-UE actually optimizes by maximizing
the cosine similarity of similar features to compress the intra-class covariance. Therefore, MI-UE
doesn’t rely on strict Gaussianity, as long as the inter-class/intra-class covariance is controllable, it
can play a role in MI reduction and achieving unlearnability.

G ADDITIONAL EXPERIMENTS

G.1 ONE-CLASS UNLEARNABLE EXAMPLES

In real-world scenarios, the privacy protector sometimes only have access to their own class of data
rather than the whole dataset, for instance, when people upload their selfies into the social media, they
can only modify their own images. Therefore, we also investigate various UEs when only one class of
the whole dataset is perturbed. More precisely, we only add perturbations to the class 0 of CIFAR-10
(i.e., the class "plane"), and evaluate the "plane" class accuracy as well as accuracy of other classes.
Results provided in Table 17 reveal that, existing one-class UEs can make the perturbed class be
unlearnable, while keeping the accuracy of other classes remain or become even higher. Furthermore,
our MI-UE shows best unlearnability on the poisoned class and keep decent performance on other
classes. Therefore, by only perturbing one class of dataset (10% in CIFAR-10, 1% in CIFAR-100
and ImageNet-subset), UEs can make this class be unlearnable, without effecting model’s ability for
other classes.

Table 17: The unlearnable class accuracy and other classes accuracy of various one-class UEs on
CIFAR-10.

Test Acc(%) Unlearnable Class Other Classes

Clean 95.9 94.3
EM 2.2 95.4
AP 0.2 95.3
NTGA 4.0 95.1
AR 0.7 94.9
SEM 0.3 94.9
REM 0.5 95.6
TUE 0.1 95.0
GUE 0.3 95.1
MI-UE (ours) 0.0 95.1

Table 18 presents the experimental results of one-class UEs (only poisoned class 0) on CIFAR-100.
Similar to CIFAR-10, our MI-UE still obtains the best unlearnabilty for targeted Class 0, while
keeping the accuracy on other classes. It is worth noting that some UEs, namely AR and GUE,
become ineffective when only poisoned one class on CIFAR-10. This may because CIFAR-100 has
100 classes, poisoned one class for CIFAR-100 only give room for 1% poisoned ratio, making the
UEs more difficult. Therefore, some unstable UEs will fail to achieve their unlearnability.

Table 19 shows the performance of our MI-UE under one-class perturbations on ImageNet-subset. It
displays similar trends from those on CIFAR-10/100, our MI-UE can destroy the generalization of
the poisoned class while maintain decent accuracy of other classes.
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Table 18: The unlearnable class accuracy and other classes accuracy of various one-class UEs on
CIFAR-100.

Test Acc(%) Unlearnable Class Other Classes

Clean 88 76.6
EM 8 76.7
AP 3 76.2
NTGA 26 77.0
AR 90 77.1
SEM 18 75.9
REM 12 76.8
TUE 7 76.5
GUE 86 77.4
MI-UE (ours) 1 77.1

Table 19: The unlearnable class accuracy and other classes accuracy of our MI-UE on ImageNet-
subset.

Test Acc(%) Unlearnable Class Other Classes

Clean 92 80.31
MI-UE 16 72.61

G.2 VISUALIZATION

We display some clean images, MI-UE unlearnable noises and corresponding poisoned images of
CIFAR-10 and ImageNet-subset dataset in Figures 4 and 5. The MI-UE noises are normalized to
[0, 1] for visualization. It can be seen that MI-UE noises are relatively regular than random noises,
showing certain local isotropy.

Figure 4: Visualization of MI-UE unlearnable noises and their corresponding clean and poisoned
images on CIFAR-10. The first row is the clean images, the second row is the MI-UE noises, the last
row is the poisoned images.
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Figure 5: Visualization of MI-UE unlearnable noises and their corresponding clean and poisoned
images on ImageNet-subset. The first row is the clean images, the second row is the MI-UE noises,
the last row is the poisoned images.

G.3 MORE RESULTS ON TRANSFERABILITY

The test accuracy of various baseline UEs, including EM, AP, NTGA, AR, REM, SEM, GUE and
TUE, corresponding with our proposed MI-UE on CIFAR-100 dataset are provided in Table 20. The
results show that MI-UE obtains superiority on ResNet-18, ResNet-50, DenseNet-121, WRN34-10
and ViT-B. Therefore, MI-UE demonstrates the superior transferability across six modern deep
networks, leading to the corresponding UE most successful.

Table 20: Test accuracy(%) of various UEs under different victim models on CIFAR-100. Our MI-UE
achieves the lowest test accuracy compared to other UEs, indicating excellent poisoning effectiveness.
Model/Method Clean EM AP NTGA AR REM SEM GUE TUE MI-UE (ours)

ResNet-18 76.65 2.09 3.73 3.08 6.19 7.52 6.29 22.79 1.34 1.17
ResNet-50 78.25 2.14 4.51 5.21 9.05 7.63 4.55 23.51 3.91 1.72
DenseNet-121 77.78 2.69 3.90 6.04 5.26 7.63 4.54 24.35 2.10 1.11
WRN34-10 80.46 2.45 3.16 3.37 5.21 5.77 5.00 31.21 4.64 1.48
ViT-B 66.54 4.25 3.23 11.52 24.10 8.44 8.80 24.01 9.42 2.62

G.4 MI-UE UNDER CONTRASTIVE LEARNING

Although our MI-UE is designed on supervised learning paradigm, we can also extend it to constrative
learning paradigm directly. Inspired by (Wang et al., 2024b), we incorporate stronger contrastive
augmentation into our MI-UE, denoted as A-MI-UE. Results in Table 21 show that the modified
A-MI-UE outperforms both EM and contrastive UEs, TUE (Ren et al., 2022), on SimCLR (Chen
et al., 2020), achieving stronger contrastive unlearnability.

Table 21: The performance of our A-MI-UE method compared with UE and TUE on SimCLR
contrastive learning paradigm.

SimCLR Clean EM TUE A-MI-UE

Test Acc(%) 91.71 89.54 56.32 52.84

G.5 LINEAR SEPARABILITY OF VARIOUS UNLEARNABLE NOISES AND DATASETS

We evaluate the linear separability of both unlearnable noises and unlearnable datasets for various
existing methods. Specifically, we check the training accuracy of noise dataset {ϵi, yi}Ni=1 fitted by
the linear network as the result of Unlearnable Noises, and check the training accuracy of unlearnable
dataset {xi + ϵi, yi}Ni=1 fitted by the linear network as the result of Unlearnable Datasets. It is
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noteworthy that we do not include any data augmentations when training the linear network, like
Random Crop and Random Horizontal Flip, as suggested in Zhu et al. (2024b). The results are shown
in Table 22. It reveals that although many unlearnable noises and datasets indeed have decent linear
separability, some effective unlearnable methods like AP and AR demonstrate poor linear separability,
especially for the AR method, their linear separability is almost approaching to the clean dataset. To
quantify the correlation between linear separability and unlearnable power, we evaluate the Spearman
correlation score between Acc gap with Training Acc on both Unlearnable Noises and Unlearnable
Datasets, the score is 0.0333 and 0.2833 respectively, significantly lower than the score between Acc
gap and MI gap, 0.7818.

Table 22: The training accuracy of unlearnable noises and unlearnable datasets by the linear network.
Training Acc(%) Unlearnable Noises Unlearnable Datasets

Clean — 47.99
EM 99.32 99.37
AP 86.53 56.96
NTGA 99.94 95.02
AR 42.09 48.13
SEM 96.66 83.01
REM 92.97 81.46
TUE 100.0 100.0
GUE 98.92 99.63
MI-UE (ours) 99.89 99.91

G.6 COMPUTATIONAL COST

On CIFAR-10 and CIFAR-100, the generation of MI-UE requires about 3.6 hours. On ImageNet-
subset, the generation of MI-UE requires about 45 hours. All of the experiments are conducted on a
single NVIDIA A800 GPU.

Due to incorporation of the similarity matrix of our MI reduction loss Lmi, the generation of poisons
results in computational overhead to a certain extent, especially for larger-resolution datasets like
ImageNet.

To mitigate the potential computational overheads, we test MI-UE with smaller poisoning epochs, 15
epochs and 30 epochs, for ImageNet-subset. Results are provided in Table 23. Compared with Table
2, MI-UE under 30 poisoning epochs demonstrates the state-of-the-art unlearnability across existing
UEs. Even for 15 poisoning epochs, MI-UE still achieves the second-best performance, slightly
behind EM. The effectiveness of MI-UE under economic scenarios further demonstrate MI-UE’s
real-world applications.

Table 23: Test accuracy of MI-UE with different poisoning epochs for ImageNet-subset.
Epochs Test Acc(%)

50 (baseline) 1.03
30 1.09
15 1.95

G.7 LEARNING PROCESS

In this section, we visualize the evolution of training and test accuracies of our MI-UE, two represen-
tative baseline UEs, EM and AP, and two robust UEs, REM and SEM, on CIFAR-10 dataset. Figure
6 shows the learning process at each epoch for standard training. It suggests that the unlearnability
of EM and REM are relatively weak, the training accuracy for SEM is relatively unstable. AP and
our MI-UE hold both stable learning process and decent performance for standard training, and our
MI-UE is slightly outperforming AP while displaying more stable test accuracy than AP at different
epochs.
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Figure 6: Learning process of standard training on EM, AP, REM, SEM and our MI-UE unlearnable
examples, the solid lines represent the training accuracy, while the hollow lines represent the test
accuracy.

Meanwhile, Figures 7, 8, 9, and 10 represents the learning process for adversarial training with
defense budget be 8/255, 6/255, 4/255 and 2/255. Figures 7 and 8 reveals the learning process
under larger adversarial training budget, suggesting the superiority of our MI-UE. The proposed
robust UEs, REM and SEM, lose their unlearnability when the adversarial budget is larger than 1/2
of poisoned budget. Figure 9 represents the learning process under adversarial training budget be
1/2, in that case robust UEs (REM and SEM) work well, but traditional UEs (EM and AP) still
be poor. Our MI-UE achieves comparable unlearnability with existing state-of-the-art UE, namely
SEM, showing strong stability of our method. Figure 10 represents learning process under smaller
adversarial training budget, in that case not only robust UEs, but also traditional UEs have shown
unlearnability. Our MI-UE keeps the unlearnabilty in this scenario, achieve the best performance
compared with existing methods.
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Figure 7: Learning process of adversarial training on EM, AP, REM, SEM and our MI-UE unlearnable
examples with the perturbation budget be 8/255, the solid lines represent the training accuracy, while
the hollow lines represent the test accuracy.
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Figure 8: Learning process of adversarial training on EM, AP, REM, SEM and our MI-UE unlearnable
examples with the perturbation budget be 6/255, the solid lines represent the training accuracy, while
the hollow lines represent the test accuracy.
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Figure 9: Learning process of adversarial training on EM, AP, REM, SEM and our MI-UE unlearnable
examples with the perturbation budget be 4/255, the solid lines represent the training accuracy, while
the hollow lines represent the test accuracy.
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Figure 10: Learning process of adversarial training on EM, AP, REM, SEM and our MI-UE unlearn-
able examples with the perturbation budget be 2/255, the solid lines represent the training accuracy,
while the hollow lines represent the test accuracy.
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