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Abstract

Contextual Bandits with Knapsacks (CBwK) is a fundamental and essential frame-1

work for modeling a dynamic decision-making scenario with resource constraints.2

Under this framework, an agent selects an action in each round upon observing a3

request, leading to a reward and resource consumption that are further associated4

with an unknown external factor. The agent’s target is to maximize the total reward5

under the initial inventory. While previous research has already established an6

Õ(
√
T ) worst-case regret for this problem, this work offers two results that go7

beyond the worst-case perspective, one for worst-case locations, and another for8

logarithmic regret rates. We start by demonstrating that the unique-optimality and9

degeneracy of the fluid LP problem, which is both succinct and easily verifiable,10

is a sufficient condition for the existence of an Ω(
√
T ) regret lower bound. To11

supplement this worst-case location result, we merge the re-solving heuristic with12

distribution estimation skills and propose an algorithm that achieves an Õ(1) regret13

as long as the fluid LP has a unique and non-degenerate solution. This condition14

is mild as it is satisfied for most problem instances. Furthermore, we prove our15

algorithm maintains a near-optimal Õ(
√
T ) regret even in the worst cases, and16

extend these results to the setting where request and external factor are continuous.17

Regarding information, our regret results are obtained under two feedback models,18

respectively, where the algorithm accesses the external factor at the end of each19

round and at the end of a round only when a non-null action is executed.20

1 Introduction21

In the contextual bandits problem with knapsack constraints (CBwK problem for short), an agent is22

required to make sequential decisions over a finite time horizon to maximize the accumulated reward23

under initial resource constraints. To be more specific, in each round t = 1, · · · , T , a request θt and24

an external factor γt are independently generated from two distributions, and only θt is revealed to25

the agent. Based on the request, the agent should irrevocably choose an action at, which would result26

in a reward r(θt, at, γt) and a consumption vector c(θt, at, γt) of resources. The agent’s target is to27

optimize the sum of rewards
∑T

t=1 r(θt, at, γt) before the resources are depleted.28

The CBwK problem presents two key challenges when compared to closely related problems (e.g.,29

network revenue management problem) : (1) choices are made without observing external factors,30

and (2) distributions of requests and external factors are unknown. However, the complexity of CBwK31

makes it a suitable mathematical abstraction for many real-life scenarios, such as dynamic bidding in32

repeated second-price auctions with budgets [Balseiro et al., 2021, Balseiro and Gur, 2019]. In this33

circumstance, an advertiser (the agent) acquires the value of the ad slot (the request) at the start of34

each auction, and would choose a bid (the action) accordingly. The agent’s utility and payment in35
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this auction, as a consequence, are collaboratively determined by the value, the bid, and the highest36

competing bid (the external factor). It is to be noted that the highest competing bid is inaccessible37

to the agent before committing to the bid, as all advertisers bid simultaneously. Meanwhile, its38

distribution is decided by other advertisers, which is also unknown to the agent before the auctions.39

The CBwK model can also capture other well-discussed problems including multi-secretary, online40

linear programming, online matching, as discussed in Balseiro et al. [2021].41

Previous studies of the CBwK problem have shown that the worst-case regret of any online strategy42

is Õ(
√
T ) when the initial resources are linearly proportional to the horizon length T [Slivkins and43

Foster, 2022, Han et al., 2022]. 1 However, it is still unclear where worst-case scenarios occur,44

meaning under which condition(s) an Ω̃(
√
T ) regret is inevitable. Furthermore, we do not know45

whether we can achieve a better regret guarantee for the CBwK problem beyond worst-case scenarios.46

In particular, can we design algorithms to obtain an o(
√
T ) regret only under mild assumptions that47

hold for almost all possible CBwK instances? This work takes the first step in addressing these48

questions.49

1.1 Our Contributions50

This work mainly makes three contributions, summarized as follows.51

A precise sufficient condition for an Ω̃(
√
T ) regret lower bound. To move beyond worst-case52

analysis, we establish a precise sufficient condition for the Ω̃(
√
T ) regret lower bound to hold.53

Specifically, we demonstrate that when the fluid benchmark (also known as the deterministic LP)54

has a unique and degenerate solution, then an Ω(
√
T ) regret is unavoidable for any online decision55

strategy (Theorem 2.1). While Han et al. [2022] have also provided a regret lower bound result56

for the CBwK problem, their condition depends on the inseparability of the possible expected57

reward/consumption function set. In other words, their condition may not perform well when this58

feasible set is small. Furthermore, their condition is rather complicated to verify. In contrast, our59

condition only depends on the underlying problem instance, is concise, and is easy to check. The60

proof of our result extends the approach of Vera and Banerjee [2021] to the CBwK problem.61

An Õ(1) regret via re-solving under mild assumptions with full/partial information feedback.62

With the above result, we investigate how well an online algorithm can perform beyond worst cases,63

by applying the re-solving heuristic in conjunction with distribution estimation techniques, as given64

in Algorithm 1. Although this method has been considered in the problem of bandits with knapsacks65

(BwK) [Flajolet and Jaillet, 2015], to the best of our knowledge, we are the first to extend this66

method to the CBwK problem, which poses new challenge as decisions should be made according67

to the request. To avoid worst cases, we explicitly suppose that the fluid problem has a unique and68

non-degenerate solution (Assumption 3.1). This assumption is mild in three aspects: (1) it captures69

almost all CBwK problem instances, as slightly perturbing any LP can help it satisfy the unique70

optimality and non-degeneracy conditions; (2) it is almost necessary for an o(
√
T ) regret bound to71

establish by Theorem 2.1 as we just discussed, only left the case that the fluid problem has multiple72

optimal solutions; and (3) it is far less restrictive than the assumptions given in Sankararaman and73

Slivkins [2021], which require that there are at most two resources and the best-arm optimality, and74

almost surely excludes all problem instances. Under the assumption, our main results show that the75

re-solving heuristic reaches an O(1) regret with full information (Theorem 3.1) and an O(log T )76

regret with partial information (Theorem 4.1). To our knowledge, these are the first Õ(1) regret77

results in the CBwK problem beyond the worst case with only mild assumptions. Importantly, these78

regret bounds are also independent to the number of actions, unlike previous results.79

Within our results, the full information model assumes that the agents sees the external factor at80

the end of each round, while in the partial information model, the agent acquires the external factor81

only when a non-null action is adopted. Other state-of-the-art results consider bandit information82

feedback, in which the agent only sees the reward and the consumption rather than the external factor.83

1In this work, a strategy’s regret is defined as the gap between its expected total reward and the fluid
benchmark (to be introduced in Section 2), which has known to be an upper bound of the former. Such
a definition is implicitly yet widely adopted in the literature [Slivkins and Foster, 2022, Han et al., 2022,
Sivakumar et al., 2022].
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However, they explicitly assume a specific (e.g., linear) relationship between the conditional expected84

reward-consumption pair and the request [Agrawal and Devanur, 2016, Sankararaman and Slivkins,85

2021, Han et al., 2022, Slivkins and Foster, 2022], whereas our results do not impose any underlying86

distribution structures. On this side, our information model are comparable to those in existing work.87

A near-optimal regret even in worst cases with full/partial information feedback, and an88

extension to continuous randomness. We further explore how well our Algorithm 1 performs89

even in worst-case scenarios. With full information feedback, we show that an O(
√
T log T ) regret90

is achieved (Theorem 5.1). This bound is asymptotically equal to the state-of-the-arts with this91

information model [Han et al., 2022, Slivkins and Foster, 2022]. Even with partial information,92

we can still guarantee a universal O(
√
T log T ) regret (Theorem 5.2), which is optimal up to a93

logarithmic factor. These results demonstrate the applicability of the re-solving heuristic in CBwK94

problems, regardless of the specific instance. For completeness, we also extend our algorithm and95

analysis to the situation in which the randomness of request and external factor are continuous, and96

derive corresponding regret results (Theorems A.1 and A.2).97

1.2 Literature Review98

Contextual bandits with knapsacks. The contextual bandits with knapsacks framework was99

introduced by Agrawal and Devanur [2016]. Along this research line, two main methodologies100

have been proposed to solve the problem. The first approach aims to select the best probabilistic101

strategy within the policy set [Badanidiyuru et al., 2014], and Agrawal et al. [2016] adopts this102

approach to achieve an Õ(
√
T ) regret. This heuristic originates from the subject of contextual bandits103

[Dudik et al., 2011, Agarwal et al., 2014], and requires a cost-sensitive classification oracle to achieve104

computation efficiency.105

On the other hand, another approach views the problem from the perspective of the Lagrangian106

dual space. It uses a dual update method that reduces the CBwK problem to the online convex107

optimization (OCO) problem. In particular, some work [Agrawal and Devanur, 2016, Sankararaman108

and Slivkins, 2021, Sivakumar et al., 2022, Liu and Grigas, 2022] assumes a linear relationship109

between the conditional expectation of the reward-consumption pair and the request-action pair. This110

line adopts techniques for estimating linear function classes [Abbasi-Yadkori et al., 2011, Auer, 2002,111

Sivakumar et al., 2020, Elmachtoub and Grigas, 2022] and combines them with OCO methods to112

achieve sub-linear regret. Among these works, [Sankararaman and Slivkins, 2021] shows that when113

there are only two resources and a best-arm, this method can obtain an O(log T ) regret. Compared114

with their results, our assumptions are much milder, as we only assume non-degeneracy.115

From another angle, depending on the difficulty of overcoming the lack of distribution knowledge on116

the external factor, there are two types of feedback models in the literature: full or bandit information.117

In the former [Liu and Grigas, 2022], the agent sees the external factor at the end of each round and can118

derive the reward and consumption of each possible decision in the round ex-post. Meanwhile, in the119

latter, the agent can only observe the reward-consumption pair brought by the decision. Apparently,120

the bandit information feedback is harder to deal with since less information can be accessed. Our121

work further considers a partial feedback model, in which the agent observes the external factor when122

a non-null action is chosen. This model acts as an intermediate between full and partial information123

feedback models.124

Apart from the above work, two results [Han et al., 2022, Slivkins and Foster, 2022] concurrent with125

this work are not restricted to linear expectation functions. To deal with more general problems with126

bandit feedback, they plug model-reliable online regression methods [Foster et al., 2018, Foster and127

Rakhlin, 2020] into the dual update framework. As a result, the regret of their algorithms is the sum128

of the regret on online regression and online convex optimization, respectively. Nevertheless, the129

online regression technique still limits the conditionally expected reward-consumption functions.130

Network revenue management and the re-solving heuristic. Unlike the above approaches, our131

work adopts the re-solving method, also known as the “certainty equivalence” (CE) heuristic. Under132

this approach, the agent frequently solves the fluid optimization problem with the remaining resources133

to obtain a probability control in each round. This method comes from the literature on the network134

revenue management problem, which can be seen as a simplification of the CBwK problem without135

the existence of external factors, or that the external factor not getting involved in the resource136
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consumption [Wu et al., 2015]. Some work in this setting also assumes known request distributions.137

This line of research originates from Jasin and Kumar [2012], and also includes Jasin [2015], Ferreira138

et al. [2018], Bumpensanti and Wang [2020], Li and Ye [2021], Chen et al. [2022], Besbes et al.139

[2022]. They show that the re-solving method can obtain constant regret under certain non-degeneracy140

assumptions and can generally obtain square root regret [Chen et al., 2022]. Recently, the re-solving141

method is also extended to the general dynamic resource-constrained reward collection (DRCRC)142

problem in Balseiro et al. [2021], which assumes the knowledge of request and external factor143

distributions and achieves O(1) to O(log T ) regret for different action space cardinalities.144

We should mention that the re-solving technique has also been adopted to the bandits with knapsacks145

(BwK) problem [Flajolet and Jaillet, 2015] to achieve an O(log T ) regret. However, CBwK is a more146

challenging problem than BwK in the sense that the decision has to be made based on the received147

request. Thus, there is no optimal static action mode that is irrelevant to the round, which adds a layer148

of complexity to the re-solving method.149

2 Preliminaries150

We consider an agent interacting with the environment for T rounds. There are n kinds of resources,151

with an average amount of ρi for resource i in each round, resulting in a total of ρiT amount of152

resource i. We suppose that 0 < ρ = ρ1 = (ρi)i∈[n] ≤ 1 is independent of T , with a maximum153

entry of ρmax and a minimum entry of ρmin. At the beginning of each round t ≥ 1, the agent observes154

a request θt ∈ Θ drawn i.i.d. from a distribution U , and should choose an action at from a set of155

actions A. Given the request θt and the action at, the agent receives a random reward rt ∈ [0, 1] and156

consumption vector of resources ct ∈ [0, 1]n, both of which are related to an external factor γt ∈ Γ157

drawn i.i.d. from a distribution V . In other words, there is a reward function r : Θ×A× Γ→ [0, 1]158

and a consumption vector function c : Θ × A × Γ → [0, 1]n, such that rt = r(θt, at, γt) and159

ct = c(θt, at, γt). We suppose these two functions are pre-known to the agent. We further define160

R(θ, a) := Eγ [r(θ, a, γ)], and C(θ, a) := Eγ [c(θ, a, γ)].161

We impose minimum restrictions on the distributions U and V . Specifically, in the main body of this162

work, we suppose that both distributions are discrete without any further assumptions. In other words,163

Θ and Γ are finite. We denote the mass function of U and V by u(θ) and v(γ), respectively. We will164

extend to the situation that these two distributions can be continuous in Appendix A.165

The agent’s objective is to maximize her cumulative rewards over the period under initial resource166

constraints, which is a sequential decision-making problem. To ensure feasibility, we assume the167

existence of a null action (denoted by 0) in the action set A. Under the null action, the reward and the168

consumption of any resource are zero, regardless of the request and the external factor. In other words,169

we have r(θt, 0, γt) = 0 and c(θt, 0, γt) = 0 for any (θt, γt) ∈ Θ × Γ. We use A+ := A \ {0} to170

denote the set of non-null actions, and let m := |A+| be its size.171

We consider the set of non-anticipating strategies Π. In particular, let Ht be the history the agent172

could access at the start of round t. Then, for any non-anticipating strategy π ∈ Π, at should depend173

only on H̃t := (θt,Ht), that is, at = aπt (θt,Ht). For abbreviation, we write aπt = aπt (θt,Ht) when174

there is no confusion.175

Therefore, we can define the agent’s optimization problem as below:176

V ON := max
π∈Π

Eθ∼UT ,γ∼VT

[
T∑

t=1

r(θt, a
π
t , γt)

]
,

s.t.
T∑

t=1

c(θt, a
π
t , γt) ≤ ρT, ∀θ ∈ ΘT ,γ ∈ ΓT .

Benchmark. In practice, however, computing the expected reward of the optimal online strategy177

would require high-dimension (probably infinite) dynamic programming, which is intractable. Hence,178

we turn to consider the fluid benchmark to measure the performance of a strategy, which is defined as179
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Full information

Agent’s observation

t = 1 t = 2 t = 3 t = 4 t = 5

γ1 γ2 γ3 γ4 γ5

a1 ̸= 0 a2 ̸= 0 a3 = 0 a4 = 0 a5 ̸= 0

Partial information

Agent’s observation

t = 1 t = 2 t = 3 t = 4 t = 5

γ1 γ2 γ5

a1 ̸= 0 a2 ̸= 0 a3 = 0 a4 = 0 a5 ̸= 0

Figure 1: An illustration of the two information feedback models we consider in this work.

follows:180

V FL := T · max
ϕ:Θ×A+→R

Eθ∼U

[ ∑
a∈A+

R(θ, a)ϕ(θ, a)

]
,

s.t. Eθ∼U

[ ∑
a∈A+

C(θ, a)ϕ(θ, a)

]
≤ ρ,

∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

For a better understanding, V FL reflects the maximum expected total rewards an agent can win181

when a static strategy is adopted and the resource constraints are only to be satisfied in expectation.182

Therefore, this optimization problem is a linear programming, in which the decision variable ϕ(θ, a)183

represents the probability that the agent chooses action a upon seeing request θ. It is a well-known184

result that V FL gives an upper bound on V ON.185

Proposition 2.1 ([Balseiro et al., 2021]). V FL ≥ V ON.186

Thus, we evaluate the performance of a non-anticipating strategy π by comparing its expected187

accumulated reward Rewπ with the fluid benchmark V FL. We call their difference the regret of π for188

convenience. In this context, we prove that an Ω(
√
T ) regret lower bound is inevitable as long as189

V FL is degenerate.190

Theorem 2.1 (worst-case location). When V FL has a unique and degenerate optimal solution,191

V FL − V ON = Ω(
√
T ).192

Despite the worst-case lower bound, we prove in this work that for any CBwK instance in which V FL193

has a unique non-degenerate optimal solution (Assumption 3.1), we can obtain an O(1) regret via the194

re-solving approach.195

Information feedback model. In this work, we consider two types of information feedback models,196

with increasing levels of difficulty in obtaining a sample of the external factor γ.197

• [Full information feedback.] The agent is able to observe γt at the end of each round t.198

• [Partial information feedback.] The agent can observe γt at the end of round t only if at ̸= 0.199

The above two information feedback models are illustrated in Figure 1. In general, with full200

information feedback, the agent can observe an i.i.d. sample from V each round, which is the optimal201

scenario for learning the distribution. Nevertheless, such an assumption may be overly strong since202

the reward and consumption vector are irrelevant to the external factor when the agent chooses the203
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Algorithm 1: Re-Solving with Empirical Estimation.
Input: ρ, T .
Initialization: I1 ← ∅, B1 ← ρT .

1 for t← 1 to T do
2 Observe θt;

/* Solve a linear programming with estimates. */
3 ρt ← Bt/(T − t+ 1);
4 ϕ̂∗

t ← the solution to Ĵ(ρt,Ht);
5 Choose at ∈ A randomly such that for a ∈ A+, Pr[at = a] = ϕ̂∗

t (θt, a), and
Pr[at = 0] = 1−

∑
a∈A+ ϕ̂∗

t (θt, a);

/* Observe the sample. */
6 if (FULL-INFO) ∨ (PARTIAL-INFO ∧ at ̸= 0) then
7 Observe γt;
8 It+1 ← It ∪ {t};
9 end

10 else
11 It+1 ← It;
12 end

/* Update the remaining budget vector. */
13 Bt+1 ← Bt − ct;
14 if Bi

t+1 < 1 for some i ∈ [n] then
15 break;
16 end
17 end

null action a = 0. Thereby, a more realistic information model is partial feedback, where the external204

factor is only accessible when a ̸= 0. This limitation also increases the difficulty of learning the205

distribution V since the agent observes fewer samples under this model than under full information206

feedback. It is important to note that the partial information model represents a transition from full to207

bandit information feedback, under which only the reward and consumption vector are accessible in208

each round, rather than the external factor.209

3 The Re-Solving Heuristic210

In this work, we introduce the re-solving heuristic to the CBwK problem. The resulting algorithm is211

presented in Algorithm 1.212

To briefly describe the algorithm, we start by defining an optimization problem that captures the213

optimal fluid control for each round, assuming complete knowledge of U and V . For any κ ∈ [0, 1]n,214

we define J(κ) be the following optimization problem:215

J(κ) := max
ϕ:Θ×A+→R

Eθ∼U

[ ∑
a∈A+

R(θ, a)ϕ(θ, a)

]
,

s.t. Eθ∼U

[ ∑
a∈A+

C(θ, a)ϕ(θ, a)

]
≤ κ,

∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

Evidently, we have V FL = T · J(ρ) = T · J(ρ1) by definition. Intuitively, in each round t, the best216

fluid choice of the agent is given by the optimal solution ϕ∗
t of LP J(ρt), where ρt is the average217
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budget of the remaining rounds, including round t. Nevertheless, since the agent lacks full knowledge218

of the exact distributions U and V , she can only solve an estimated programming Ĵ(ρt,Ht) as219

outlined in Algorithm 1, with the following realization:220

Ĵ(ρt,Ht) := max
ϕ:Θ×A+→R

Eθ∼Ût

[ ∑
a∈A+

Eγ∼V̂t
[r(θ, a, γ)]ϕ(θ, a)

]
,

s.t. Eθ∼Ût

[ ∑
a∈A+

Eγ∼V̂t
[c(θ, a, γ)]ϕ(θ, a)

]
≤ ρt,∑

a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

Here, Ût and V̂t represent the empirical distribution of θ and γ, respectively, according to the sample221

history given byHt. Specifically, the mass functions of these two estimated distributions are standard222

as follows:223

ût(θ) :=
#[θ appears in previous t− 1 rounds]

t− 1
;

v̂t(γ) :=
#[γ appears in It]

|It|
.

It is worth noting that the estimated distribution of θ, Ût, is always based t − 1 samples since the224

agent received an independent sample from U at the beginning of each round. On the other hand,225

the empirical distribution of the external factor γ, V̂t, is estimated from |It| independent samples.226

With full information feedback, |It| = t− 1; whereas with partial information feedback, |It| ≤ t− 1227

equals the number of times the agent chooses an action a ̸= 0 before round t. For brevity, for the228

estimated programming, we write Ĉt(θ, a) := Eγ∼V̂t
[c(θ, a, γ)] and R̂t(θ, a) := Eγ∼V̂t

[r(θ, a, γ)].229

As per Algorithm 1, the agent’s decision mode in round t is given by the optimal solution ϕ̂∗
t230

of programming Ĵ(ρt,Ht). The algorithm stops when the resources are near depletion, that is,231

Bi ≤ 1 for some resource i ∈ [n], and we use T0 to denote the stopping time of Algorithm 1, i.e.,232

T0 := min{T,min{t : ∃i ∈ [n],Bi
t+1 < 1}}.233

For an analysis beyond the worst-case scenario, a crucial assumption we will make is that the fluid234

problem possesses good regularity properties, i.e., it is an LP with a unique and non-degenerate235

solution.236

Assumption 3.1. The optimal solution to J(ρ1) is unique and non-degenerate.237

The regularity assumption made Assumption 3.1 is commonplace in the linear programming literature238

[Chen et al., 2022, Li and Ye, 2021]. Further, any LP can easily avoid non-uniqueness or degeneracy239

through a slight perturbation [Megiddo and Chandrasekaran, 1989].240

With the assumption, below we present the main result of this work, which is proved in Appendix C.1.241

Theorem 3.1. Under Assumption 3.1, with full information feedback, the expected accumulated242

reward Rew brought by Algorithm 1 when T →∞ satisfies:243

V FL −Rew = O(1), T →∞,

which is independent of T .244

One of the key implications of Theorem 3.1 is that the re-solving heuristic’s regret is independent of245

the number of rounds beyond the worst-case with full information. This result represents a significant246

improvement over previous state-of-the-art results under mild assumptions, surpassing the solutions247

proposed by Slivkins and Foster [2022], Han et al. [2022]. In particular, their solutions come from248

the bandits with knapsacks (BwK) literature and rely on dual update and upper confidence bound249

(UCB) heuristics, which only provide a worst-case regret of O(
√
T log T ) even with full information250

feedback. Furthermore, the reduction proposed by Sankararaman and Slivkins [2021] can only grant251

an O(log T ) regret for linear CBwK problems, and relies on the strong assumption that there is a252
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Θ(log T )

O(T ) Overall O(1) frequency

Uniform O(1/ log T ) frequency

Figure 2: An illustration of Lemma 4.1.

universal best action and only n = 2 resources. In contrast, our assumption is more common and less253

restrictive.254

Additionally, as pointed out in Theorem 2.1, an Ω(
√
T ) lower bound is established when the primal255

LP J(ρ1) has a unique and degenerate optimal solution, while Theorem 3.1 provides an O(1) upper256

bound on the optimal regret of CBwK with full information under the uniqueness and non-degeneracy257

condition. It is interesting to consider the regret bound in the remaining cases when J(ρ1) has258

multiple optimal solutions.259

It is worth noting the relationship between our theoretical regret and the number of resources n and260

number of actions m. Generally, our analysis shows that the regret scales with (at most) the square261

of n. Further, a surprising result is that the regret is not explicitly related to m. This is superior262

to existing results, which report an Õ(
√
m) reliance [Slivkins and Foster, 2022, Han et al., 2022,263

Badanidiyuru et al., 2014, Agrawal et al., 2016]. As an intuitive reason, the number of actions does264

not explicitly appear in the re-solving algorithm but only contributes to the dimension of the linear265

programming. However, this is not the case for other existing algorithms, which explicitly incorporate266

the number of actions m into their algorithms, resulting in a correlation between the regret and m.267

4 Partial Information Feedback268

We now shift to consider the re-solving method’s performance with partial information feedback,269

under which the agent only sees the external factor γt when her choice is non-null in round t, i.e.,270

at ̸= 0. Apparently, with less information, the learning speed of the distribution V decreases,271

hindering the re-solving procedure’s quick convergence to an optimal solution. Nevertheless, we272

demonstrate that the performance of the re-solving method only faces an O(log T ) multiplicative273

degradation under partial information feedback. Our primary theorem in this section is as follows:274

Theorem 4.1. Under Assumption 3.1, with partial information feedback, the expected accumulated275

reward Rew brought by Algorithm 1 satisfies:276

V FL −Rew = O(log T ), T →∞.

Before we come to the technical parts, we first place Theorem 4.1 within the literature. As previously277

mentioned, Ω(
√
T ) is a worst-case lower bound on the regret even with full information feedback,278

and thus also serves as a lower bound with partial information feedback. However, Theorem 4.1 steps279

beyond the worst-case by providing an O(log T ) upper bound for most regular problem instances.280

This result outperforms the universal O(
√
T log T ) regret by Slivkins and Foster [2022], Han et al.281

[2022]. Although the result is asymptotically equivalent to that of Sankararaman and Slivkins [2021],282

it imposes fewer restrictions on the problem structure, as previously discussed. Moreover, the283

regret result’s dependence on the number of resources n and number of actions m is inherited from284

Theorem 3.1.285

We now provide an intuitive understanding of the proof of Theorem 4.1. The crux lies in analyzing286

the frequency that Algorithm 1 can access an independent sample of the external factor. To this end,287

we use Yt = |It| ≤ t− 1 to denote the times of choosing action a ̸= 0 before time t, or equivalently,288

the number of i.i.d. samples from V observed by the agent before time t, under partial information289

feedback. We have the following important lemma that presents a lower bound on Yt.290

Lemma 4.1. There is a constant 0 < Cb < 1/2, such that with probability 1−O(1/T ), the following291

hold for Algorithm 1:292

1. For any Θ(log T ) ≤ t ≤ Cb · T , Yt ≥ Cf · (t− 1)/ log T for some constant Cf ;293
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2. For any t > Cb · T , Yt ≥ Cr · T for some constant Cr.294

The proof of Lemma 4.1 is deferred to Appendix D.2, and an illustration is displayed in Figure 2. In295

simple terms, during the first Θ(log T ) rounds (the shaded segment), the re-solving method cannot296

guarantee the accessing frequency since the learning of the request distribution U has not converged297

sufficiently. However, after Θ(log T ) rounds, Algorithm 1 ensures a constant probability of obtaining298

a new example in each round, provided that the remaining resources are sufficient. As a consequence,299

before O(T ) rounds, we can guarantee an O(1/ log T ) accessing frequency at any time step and an300

overall O(1) frequency with high probability, by a concentration inequality. The remaining proof of301

Theorem 4.1 is provided in Appendix D.1.302

5 Relaxing the Regularity Assumption – A Worst-Case Guarantee303

In Sections 3 and 4, we have proved that can achieve an Õ(1) regret for CBwK problems under full or304

partial information feedbacks, assuming certain regular conditions (Assumption 3.1). Put differently,305

the re-solving heuristic nicely deals with regular scenarios. In this section, we complement this by306

showing that this method can also attain nearly optimal regret in the worst cases. Furthermore, we307

extend our analysis to cases where the context and external factor distributions can be continuous in308

Appendix A.309

Our main results are given below, and their proofs are provided in Appendices E.1 and E.2, respec-310

tively.311

Theorem 5.1. With full information feedback, the expected accumulated reward Rew brought by312

Algorithm 1 satisfies:313

V FL −Rew = O(
√

T log T ), T →∞.

Theorem 5.2. With partial information feedback, the expected accumulated reward Rew brought by314

Algorithm 1 satisfies:315

V FL −Rew = O(
√
T log T ), T →∞.

As given by Theorem 2.1, the worst-case regret of any online CBwK algorithm is Ω(
√
T ), while316

Theorems 5.1 and 5.2 indicate that the re-solving heuristic reaches near-optimality in such cases.317

Further, state-of-the-art algorithms [Han et al., 2022, Slivkins and Foster, 2022]) can at most obtain318

an Õ(
√
T ) regret with full/partial information feedback. Our algorithm also achieves this regret319

bound in worst cases.320

6 Concluding Remarks321

This work establishes the effectiveness of the re-solving heuristic in the contextual bandits with322

knapsacks problem. We first prove that any online algorithm incurs a regret of Ω(
√
T ) when the323

fluid LP has a unique and degenerate optimal solution. Building on this, we demonstrate that the324

re-solving method reaches an O(1) regret with full information and an O(log T ) regret with partial325

information when the fluid LP has a unique and non-degenerate optimal solution. Considering the326

sufficient condition for the Ω(
√
T ) lower bound, our non-degeneracy assumption is mild, especially327

when combined with the two-resource and best-arm-optimality condition required in Sankararaman328

and Slivkins [2021].329

Further, we show that even in the worst-case, the re-solving method achieves an O(
√
T log T ) regret330

with full information feedback and an O(
√
T log T ) regret with partial information feedback. These331

results are comparable to start-of-the-art results [Slivkins and Foster, 2022, Han et al., 2022]. We332

also extend our analysis to the continuous randomness case for completeness.333
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