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Abstract

We present a polarity-aware denoising-based001
sentiment transfer model, which accurately002
controls the sentiment attributes in generated003
text, preserving the content to a great ex-004
tent. Though current models have shown005
good results, still two major issues exist:006
(1) target sentences still retain the senti-007
ment of source sentences (2) content preser-008
vation in transferred sentences is insufficient.009
Our proposed polarity-aware enhanced denois-010
ing mechanism helps in balancing the style-011
content trade-off in sentiment-controlled gen-012
eration. Our proposed method is structured013
around two key stages in the sentiment trans-014
fer process: better representation learning us-015
ing a shared encoder (pre-trained on general016
domain) and sentiment-controlled generation017
using separate decoders. Our extensive exper-018
imental results show that our method achieves019
good results for balancing the sentiment trans-020
fer with the content preservation.021

1 Introduction022

Text sentiment transfer is the task of changing the023

sentiment properties of the text while retaining the024

sentiment-independent semantic content within the025

context (Shen et al., 2017; Prabhumoye et al., 2018;026

Li et al., 2018; Luo et al., 2019).027

With the success of deep learning in the last028

decade, a variety of neural methods have been029

recently proposed for this task (Toshevska and030

Gievska, 2021). If parallel data are provided, stan-031

dard sequence-to-sequence models can be directly032

applied (Rao and Tetreault, 2018). However, due to033

lack of parallel corpora (paired source data and tar-034

get data), sentiment transfer represents a research035

challenge. The first line of research disentangles036

text representation into its content and attribute in037

a latent space and applies generative modeling (Hu038

et al., 2017; Shen et al., 2017; Prabhumoye et al.,039

2018). Another line of research is prototype edit-040

ing (Li et al., 2018), which extracts a sentence tem-041

plate and its attribute markers to generate the text. 042

These research lines are further advanced with the 043

emergence of transformer-based models (Sudhakar 044

et al., 2019; Malmi et al., 2020). These methods 045

mainly focus on how to disentangle the content and 046

style in the latent space. The latent representation 047

needs to preserve the meaning of the text while ab- 048

stracting away from its stylistic properties, which 049

is not trivial (Lample et al., 2018). Theoretically, 050

disentanglement is impossible without inductive bi- 051

ases or other forms of supervision (Locatello et al., 052

2019). 053

Our work addresses this problem with more su- 054

pervision, which is obtained automatically by im- 055

plementing polarity-aware denoising. First, we 056

randomly delete (or mask) pivot word(s) of input 057

sentences. Then a shared encoder pre-trained on 058

general domain helps in preparing a latent represen- 059

tation, followed by separate sentiment-specific de- 060

coders that are used to change the sentiment of the 061

original sentence. We follow back-translation for 062

style transfer approach proposed by Prabhumoye 063

et al. (2018) to represent the sentence meaning in 064

the latent space. Our proposed model gets us the 065

best performance for a style-content trade-off. 066

Our contributions are summarized as follows: 067

• We design a sentiment transfer model us- 068

ing an extended transformer architecture and 069

polarity-aware denoising. Our extensions pro- 070

vide more control while generating outputs 071

with changed sentiment. 072

• We introduce polarity-masked BLEU (Mask- 073

BLEU) and similarity score (MaskSim) for 074

automatic evaluation of content preservation 075

in this task. These metrics are derived from 076

the traditional BLEU score (Papineni et al., 077

2002) and Sentence BERT-based cosine sim- 078

ilarity score (Reimers and Gurevych, 2019). 079

In our approach, we mask polarity words be- 080

forehand for sentiment-independent content 081
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evaluation.082

• We develop a new non-parallel sentiment083

transfer dataset derived from Amazon Review084

Dataset (Ni et al., 2019). It is more topi-085

cally diverse than earlier used datasets Yelp086

(Li et al., 2018) and IMDb (Lin et al., 2011),087

which were majorly focused on movie and088

restaurant/business-related reviews. We will089

publish our dataset with the final version of090

this paper.091

• Both automatic and human evaluations on092

our dataset show that our proposed approach093

generally outperforms state-of-the-art (SotA)094

baselines. Specifically, with respect to the095

content preservation, our approach achieves096

substantially better performance than other097

methods.098

2 Related Work099

Sentiment Transfer A common method for sen-100

timent transfer task is to separate content and style101

in a latent space, and then adjust the separated style.102

Hu et al. (2017) use the variational auto-encoder103

(Kingma and Welling, 2013) model to derive the104

disentanglement of the content between the gener-105

ated sentence and the original sentence through KL106

divergence loss. Fu et al. (2017) compare a multi-107

decoder model with a setup using a single decoder108

and style embeddings. Shen et al. (2017) proposed109

a cross-aligned auto-encoder with adversarial train-110

ing to learn a shared latent content distribution and111

a separated latent style distribution. Prabhumoye112

et al. (2018) propose to perform text style transfer113

through the back-translation method. In a recent114

work, He et al. (2020) present a new probabilistic115

graphical model for unsupervised text style trans-116

fer. Although their approach is able to successfully117

change the text style, it also changes the text con-118

tent, which is a major problem.119

Latent Representation Many previous methods120

(Hu et al., 2017; Shen et al., 2017; Fu et al., 2017;121

Prabhumoye et al., 2018) formulate the style trans-122

fer problem using the encoder-decoder framework.123

The encoder maps the text into a style-independent124

latent (vector) representation, and the decoder gen-125

erates a new text with the same content but with a126

different style using the latent representation and127

a style marker. The major issue of these models is128

poor preservation of non-stylistic semantic content.129

Content Preservation To further deal with the 130

above problem, Li et al. (2018) first extract con- 131

tent words by deleting phrases, then retrieves new 132

phrases associated with the target attribute, and fi- 133

nally uses a neural model to combine these into a 134

final output. Style transformer (Dai et al., 2019) 135

uses transformer as a basic module for training a 136

style transfer system. Luo et al. (2019) employs a 137

dual reinforcement learning framework with two 138

sequence-to-sequence models in two directions, us- 139

ing style classifier and back-transfer reconstruction 140

probability as rewards. Though these works have 141

shown some improvement over the previous works, 142

they are still not able to properly balance the objec- 143

tives of preserving the content while transferring 144

the style. Our polarity-aware denoising technique 145

aims to solve this problem by specifically targeting 146

and changing polarity words while preserving the 147

rest of the content. 148

Evaluation Another challenge remains in the 149

evaluation of controllable NLG models. There is 150

no clear standard for evaluating the output of nat- 151

ural language generation (Novikova et al., 2017). 152

Previous work on style transfer (Hu et al., 2017; 153

Prabhumoye et al., 2018; Dai et al., 2019; He et al., 154

2020) has re-purposed metrics from other fields 155

such as BLEU (Papineni et al., 2002) and PINC 156

(Chen and Dolan, 2011) for evaluation. However, 157

none of the techniques is capable of evaluating style 158

transfer methods specifically with respect to preser- 159

vation of content (Toshevska and Gievska, 2021). 160

These metrics do not take into account the neces- 161

sity of changing individual words while altering 162

the sentence style. Intended differences between 163

the source sentence and the transferred sentence 164

are thus penalized. In this regard, we have intro- 165

duced polarity masked BLEU score (MaskBLEU) 166

and polarity masked similarity measure (MaskSim), 167

where we have masked the polarity words before- 168

hand. 169

3 Method 170

Given two datasets, Xpos = {x(pos)1 , . . . , x
(pos)
m } 171

and Xneg = {x(neg)1 , . . . , x
(neg)
n } which represent 172

two different sentiments pos and neg , respectively, 173

our task is to generate sentences of the desired 174

sentiment while preserving the meaning of the 175

input sentence. Specifically, we generate sam- 176

ples of dataset Xpos such that they belong to sen- 177

timent neg and samples of Xneg such that they 178

belong to sentiment pos . We denote the output 179
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of dataset Xpos transferred to sentiment neg as180

Xpos→neg = {x̂(neg)1 , . . . , x̂
(neg
n )} and the output181

of dataset Xneg transferred to sentiment pos as182

Xneg→pos = {x̂(pos)1 , . . . , x̂
(pos)
n }.183

In all our experiments, we train the sentiment184

transfer models using back-translation between En-185

glish and German (Section 3.1). First, we present186

transformer-based baselines for sentiment transfer187

with style-conditioning (Section 3.2). Next, we188

propose an approach based on the extended trans-189

former architecture, in which we use separate mod-190

ules (either the whole transformer model, or the191

transformer decoder only) for the respective target192

sentiment (Section 3.2). We further improve upon193

our approach using polarity-aware denoising (Sec-194

tion 3.3) which we propose as a new scheme for195

pre-training the sentiment transfer models.196

3.1 Back-translation197

Back-translation for style transfer was introduced198

in Prabhumoye et al. (2018). Following their ap-199

proach, we use back-translation for getting a latent200

text representation for our sentiment transfer task.201

We refer to this experiment as Back-Translation.202

Prior work has also shown that the process of trans-203

lating a sentence from a source language to a target204

language retains the meaning of the sentence but205

does not preserve the stylistic features related to206

the author’s traits (Rabinovich et al., 2016).207

We also experimented with an auto-encoder, but208

we have found that the back-translation model gives209

better results for sentiment transfer. We hypothe-210

sise that it is due to the fact that back-translation211

allows to neglect word boundaries, resulting in a212

more abstract latent representation.213

3.2 Our Base Models214

We present several straight-forward baseline ap-215

proaches. The first baseline is a back-translation216

model based on a vanilla transformer architecture217

(Vaswani et al., 2017) in which we add source sen-218

timent identifiers (<pos> or <neg>) to the output.219

At the time of sentiment transfer we interchange220

the sentiment identifiers (<pos> → <neg>, <neg>221

→ <pos>). We refer to this experiment as Style222

Tok.223

We extend the first baseline by adding a sentence-224

style loss and a style embedding. For the style loss,225

we use a pre-trained transformer-based sentiment226

classifier’s1 (Wolf et al., 2020) polarity score as227

1https://github.com/huggingface/transformers

sentence-style loss and we add the same to the 228

translation loss (from the back-translation process, 229

Section 3.1). For better supervision during training, 230

we also add randomly initialized style embedding 231

along with the transformer’s token and position 232

embeddings. We refer to this experiment as Style 233

(Tok + Embedd + Loss) . 234

We then extend the transformer’s encoder- 235

decoder architecture to have more control over the 236

sentiment-specific generation. We train two sepa- 237

rate transformer models for the positive and nega- 238

tive sentiment text generation, using only sentences 239

of the target sentiment in training. During infer- 240

ence, the model is fed with inputs of the opposite 241

sentiment, which it did not see during training. We 242

refer to this experiment as Two Sep. transformers. 243

We further extend the above approach by using 244

a shared encoder and separate decoders. During 245

training, both negative and positive text is passed 246

through the same shared encoder and the positive 247

and negative texts are generated by the respective 248

decoders. The sentiment transfer is achieved by 249

decoding the shared latent representation using the 250

decoder for the opposite sentiment. We refer to this 251

experiment as Shrd Enc + Two Sep Decoders. 252

3.3 Polarity-Aware Denoising 253

We devise a task-specific pre-training (Gururangan 254

et al., 2020) scheme for improving the style transfer 255

abilities of the model. Our pre-training scheme— 256

polarity-aware denoising—uses polarity labels for 257

adding more supervision on the word level. 258

We experiment with three approaches: delet- 259

ing or masking (1) general words (i.e., all the 260

words uniformly), (2) polarity words (i.e., only 261

high-polarity words according to a lexicon), or (3) 262

general and polarity words together (with a differ- 263

ent probability for each). We use a German polarity 264

lexicon to automatically identify the pivot words. 265

We prepared the German polarity lexicon by first 266

translating the words from German to English us- 267

ing an off-the-shelf translation system, followed by 268

labeling the words with positive and negative labels 269

using the English NLTK Vader lexicon (Hutto and 270

Gilbert, 2014). 271

We use polarity-aware denoising for pre-training 272

the encoder, following the shared encoder and sepa- 273

rate decoders design from Section 3.2. The encoder 274

is further fine-tuned during the sentiment transfer 275

training. 276
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3.4 Summary of Our Method277

Here we summarize the final design of our pro-278

posed method, in which we combine our proposed279

model and our new denoising scheme.280

We translate English input text xen to German281

text xde using our translation model (Section 3.1).282

Next, we prepare a noisy text xnoise from xde using283

the polarity-aware denoising technique (Section284

3.3) as follows:285

xnoise = Noise(xde; θN ). (1)286

We provide xnoise to the shared encoder of the Ger-287

man → English back-translation model. The model288

converts the text to the latent representation z as289

follows:290

z = Encoder(xnoise; θE) (2)291

where, θE represent the parameters of the shared292

encoder and z is derived from a pre-trained encoder293

trained with general domain data (this encoder is294

not style specific).295

During training, the latent representation z (of296

positive/negative text) is passed through respective297

decoders as follows:298

x̂pos = Decoderpos(z; θDpos) (3)299

x̂neg = Decoderneg(z; θDneg) (4)300

Finally, the sentiment transfer is achieved by301

decoding the shared latent representation using the302

decoder for the opposite sentiment as follows:303

x̂neg = Decoderpos(z; θDpos) (5)304

x̂pos = Decoderneg(z; θDneg) (6)305

where x̂neg, x̂pos are the sentences with trans-306

ferred sentiment conditioned on z and θDpos and307

θDneg represent the parameters of the positive and308

negative decoders, respectively.309

Figure 1 shows the overview of our proposed310

architecture.311

4 Experiments312

4.1 Datasets313

For our back-translation process and model pre-314

training, we have used the WMT14 English-315

German (en-de) dataset (1M sentences) from Nei-316

dert et al. (2014).317

For finetuning and experimental evaluation, we318

built a new English sentiment dataset, based on the319

Amazon Review Dataset (Ni et al., 2019). We have 320

selected Amazon Review because it is more di- 321

verse topic-wise (books, electronics, movies, fash- 322

ion, etc.) than existing datasets Yelp (Li et al., 323

2018) and IMDb (Lin et al., 2011), which are ma- 324

jorly focused on movie and restaurant/business- 325

related reviews. While the data is originally in- 326

tended for recommendation, it lends itself easily 327

to our task. We have split the reviews to sentences 328

using NLTK (Bird et al., 2009) and then used a 329

pre-trained transformer-based sentiment classifier 330

(Wolf et al., 2020) to select the sentences with high 331

polarity. Our intuition is that high-polarity sen- 332

tences are more informative for the sentiment trans- 333

fer task than neutral sentences. 334

We filter out short sentences (less than 5 words) 335

since it is hard to evaluate content preservation for 336

these sentences. We also ignored sentences with 337

repetitive words (e.g., "no no no no thanks thanks.") 338

because these sentences are noisy and do not serve 339

as good examples for the sentiment transfer model. 340

We evaluated and compared our approaches with 341

several state-of-the-art systems (Shen et al., 2017; 342

Prabhumoye et al., 2018; Li et al., 2018; Luo et al., 343

2019; Wang et al., 2019; He et al., 2020) on our 344

dataset. 345

The statistics of our sentiment dataset are shown 346

in Table 1. We aim for comparable size to existing 347

datasets (Li et al., 2018). 348

Dataset Positive Negative

Train 100k 100k
Valid 1k 1k
Test 1k 1k

Avg sent. length (words) 13.04

Table 1: Our sentiment dataset statistics.

4.2 Training Setup 349

In all our experiments, we have used a 4-layer trans- 350

former (Vaswani et al., 2017) with 8 attention heads 351

in each layer. The hidden size, embedding size, and 352

positional encoding size in transformer are all set 353

to 512. During our experiments, we have tested 354

various combinations of noise settings w.r.t. noise 355

probability, noise type (general or polarity-aware 356

denoising), and noise mode (deleting or masking). 357

These parameters are selected based on our prelim- 358

inary experiments with the translation model (see 359

Section 3.1). The parameters are encoded in the 360
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MT System
(English - German)(x,s) Add Noise

MT System
(German - English)

Encoder

Decoder (Pos)

Decoder (Neg)

(x',s')

(x',s')

Polarity-aware
 Denoising

Input Text (EN)
Pos/Neg German TextTransformer

(Encoder + Decoder)

Transformer

Pre-trained
(with general Domain Data)

x: Source Sentence
s: Source Sentiment

x': Target Sentence
s': Target Sentiment

Noisy 
German Text

Back-Translation

using a German
Polarity Lexicon

Figure 1: Our sentiment transfer pipeline. In the pipeline, we (1) translate the source sentence from English to
German using a transformer-based machine translation (MT) system; (2) apply noise on the German sentence using
a German polarity lexicon; (3) encode the German sentence to latent representation using an encoder of German-to-
English translation model; (4) decode the shared latent representation using the decoder for the opposite sentiment.

name of the model as used in Table 2 (see the table361

caption for details).362

4.3 Evaluation and Results363

To evaluate the performance of the models, we364

compare the generated samples along three differ-365

ent dimensions using automatic metrics, following366

previous work: (1) style control, (2) content preser-367

vation, and (3) fluency. Furthermore, we perform368

human evaluation of the model outputs.369

4.3.1 Automatic Evaluation370

Style Accuracy We measure sentiment accuracy371

automatically by evaluating the target sentiment372

accuracy of transferred sentences. Instead of using373

our own data-based sentiment classifier, we use the374

pre-trained transformer based sentiment analysis375

pipeline (Wolf et al., 2020) for unbiased evaluation.376

Content Preservation: Common Metrics To377

measure content preservation, we calculate the378

BLEU score (Papineni et al., 2002) between the379

transferred sentence and its source. Higher BLEU380

score indicates higher n-gram overlap between the381

sentences, which correlates with better content382

preservation. We also compute Sentence BERT383

(Reimers and Gurevych, 2019) based cosine sim-384

ilarity score to match the vector space semantic385

similarity between the source and the transferred386

sentence. None of the techniques is capable of387

evaluating style transfer methods specifically with388

respect to preservation of content in style transfer 389

(Toshevska and Gievska, 2021). These metrics do 390

not take into account the necessity of changing in- 391

dividual words while altering the sentence style. 392

Intended differences between the source sentence 393

and the transferred sentence are thus penalized. 394

Content Preservation: Newly Introduced Met- 395

rics To avoid the problems of the commonly used 396

metrics, it makes sense in sentiment transfer to eval- 397

uate the content and similarity while ignoring any 398

polarity tokens. Thus, we introduce MaskBLEU 399

and MaskSim scoring methods – these are identical 400

to BLEU and cosine similarity, but they are com- 401

puted on sentences where polarity words (found by 402

NLTK Vader (Hutto and Gilbert, 2014)) have been 403

masked. This allows measuring content preserva- 404

tion while ignoring the parts of the sentences that 405

need to be changed. 406

Fluency We use the negative log-likelihood score 407

from the GPT-2 (Radford et al., 2019) language 408

model as an indirect metric for evaluating the sen- 409

tence fluency. We also calculate average sentence 410

lengths of the sentiment-transferred sentences. We 411

normalize the score from GPT-2 by the sentence 412

length. 413

4.3.2 Human Evaluation 414

Automatic metrics are not sufficient to evaluate the 415

quality of the transferred sentence (Novikova et al., 416

2017). Therefore, we also conduct human evalu- 417
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Models Accuracy Sim MaskSim BLEU MaskBLEU LM Score Avg-SL-Tg Avg (AC-MS-MB)
Back-Translation Only (Section 3.1)

Back-translation only 0.4 0.8282 0.7684 27.99 45.30 -78.61 11.90 40.85

Our Models (Vanilla) (Section 3.2)
Style Tok 13.2 0.5356 0.5596 4.77 8.64 -52.08 7.64 25.93

Style (Tok + Embedd + Loss) 19.4 0.6719 0.6553 8.43 18.04 -116.76 20.96 34.32
Two Sep. transformers 89.3 0.3940 0.6109 6.78 19.59 -79.04 13.74 56.66

Shrd Enc + Two Sep Decoders 88.1 0.3968 0.6001 7.35 20.05 -77.98 12.50 56.03
Pre Training Enc 55.3 0.5916 0.7317 22.65 33.92 -93.34 13.40 54.13

Our Models (w/ Denoising) (Section 3.3)
WG01-AG01-D 71.4 0.5173 0.6944 17.07 29.78 -88.73 13.71 56.87
WG01-AG01-M 68 0.5361 0.7108 19.45 31.06 -86.31 12.63 56.71
WG03-AG03-D 83 0.4466 0.6481 11.71 24.45 -82.97 13.72 57.42
WG03-AG03-M 78.8 0.4815 0.6686 14.23 28.20 -82.73 12.98 57.96
WP08-AP08-D 66.9 0.5276 0.7010 19.47 31.34 -82.81 12.38 56.12
WP08-AP08-M 64 0.5475 0.7260 21.37 33.99 -89.10 12.87 56.86

WP1-AP1-D 58.7 0.5703 0.7265 22.70 33.06 -87.21 12.23 54.81
WP1-AP1-M 58.9 0.5673 0.7156 22.25 32.97 -86.55 12.22 54.48

WG03-AG01-D 68 0.5294 0.6966 17.87 30.86 -89.50 13.26 56.17
WG03-AG01-M 80.7 0.4730 0.6649 13.95 27.47 -82.75 13.07 58.22
WG01-AG03-D 85.2 0.4411 0.6461 11.75 25.38 -79.77 13.05 58.40
WG01-AG03-M 70 0.5339 0.7111 19.66 32.26 -84.34 12.38 57.80
WP08-AP1-D 61.6 0.5778 0.7362 22.54 34.95 -94.42 13.42 56.73
WP08-AP1-M 60.9 0.5543 0.7244 21.97 33.34 -85.54 12.55 55.56
WP1-AP08-D 68.5 0.5255 0.6987 19.27 31.15 -83.99 12.42 56.51
WP1-AP08-M 61.1 0.5603 0.7142 21.46 32.88 -85.99 12.12 55.13
WG03-AP08-D 67 0.5335 0.6968 20.26 31.73 -84.31 12.54 56.13
WG03-AP08-M 65.7 0.5464 0.7249 21.21 33.49 -85.02 12.53 57.23
WP08-AG03-D 83.3 0.4360 0.6354 11.00 24.32 -80.50 13.31 57.05
WP08-AG03-M 79.6 0.4730 0.6647 13.22 26.87 -83.14 13.21 57.65

WG03P08-AG03P08-D 65.5 0.5466 0.7045 20.31 32.56 -90.43 13.17 56.17
WG03P08-AG03P08-M 82 0.4600 0.6647 13.69 27.45 -79.60 12.75 58.64

State-of-the-Art Models
Shen et al. (2017) 88.6 0.3462 0.5129 3.23 18.31 -73.99 10.95 52.73

Li et al. (2018) 69.9 0.4573 0.6318 14.69 25.33 -85.13 12.19 52.80
Luo et al. (2019) 92.4 0.2786 0.4684 0.00 9.14 -42.00 7.81 49.43

Prabhumoye et al. (2018) 93.5 0.3078 0.5042 0.86 15.16 -61.05 10.28 53.03
Wang et al. (2019) 79.3 0.3850 0.5449 10.56 20.28 -116.84 15.13 51.36

He et al. (2020) 91.5 0.3516 0.5422 9.53 21.78 -65.89 8.23 55.83

Table 2: Automatic evaluation. Accuracy: Sentiment transfer accuracy. Sim and BLEU: Cosine similarity and
BLEU score between input and sentiment-transferred sentence. MaskSim and MaskBLEU: Masked similarity
and BLEU score (same as conventional similarity and BLEU score, but polarity words are masked beforehand).
LM Score: Average log probability assigned by vanilla GPT-2 language model. Avg-SL-Tg: Average length of
transferred sentences. Avg(AC-MS-MB): Average score between sentiment transfer accuracy, masked similarity
score and masked BLEU score. Back-Translation Only model is explained in Section 3.1, Our Models (Vanilla)
are explained in Section 3.2. Our models (w/Denoising) involve our polarity-aware denoising technique, explained
in Section 3.3. All numbers are based on a single run, with identical random seeds. Model names reflect noise
settings as follows: W denotes WMT pretraining data, A denotes Amazon finetuning data, the following tokens
denote noise probability values are associated with the respective data. G/P represents general/polarity token
noising, D/M represents noising mode deletion/masking (e.g, WG03P08-AG03P08-D: noise probabilities on WMT
data and Amazon data are identical. Both general and polarity token noising are applied (with probabilities 0.3 and
0.8, respectively). Deletion is applied in this specific setting.

ation experiments on same dataset. We randomly418

select 100 source sentences (50 for each sentiment)419

from each test set. For each example, the original420

sentence and the sentence with the changed senti-421

ment are shown to the annotator. The annotators422

rate the outputs using a 1-5 Likert scale (Likert,423

1932) for style control, content preservation, and424

fluency.425

4.4 Results 426

Results of the automatic metrics are presented in Ta- 427

ble 2. Compared to the state-of-the-art approaches, 428

our model achieves better trade-off between preser- 429

vation of semantic content and sentiment transfer. 430

We also plot the correlations between the automatic 431

metrics in Figure 2. The results clearly indicate 432

that accuracy is negatively correlated with BLEU 433

score, similarity measures and their corresponding 434
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masked scores.435

Figure 2: Correlations between all the automatic eval-
uation metrics. This figure indicates that accuracy is
negatively correlated (value towards -1.0) with BLEU
score, similarity measures and their corresponding
masked scores. It also indicates LM Score negatively
correlates with the average length of the sentence.

Our baseline models do not perform well in436

changing the sentiment even after adding style em-437

bedding and style loss. Using two separate de-438

coders lead to major improvements on sentiment439

transfer over baseline methods. However, preserva-440

tion of the content is very poor according to BLEU441

and similarity scores (and their polarity-masked442

equivalents). Using the pre-trained encoder has443

helped to improve the content preservation, but444

sentiment transfer accuracy degrades significantly.445

The main motivation for our work was to find446

a denoising strategy which offers the best balance447

between sentiment transfer and content preserva-448

tion. Our results suggest putting an emphasis on449

denoising high-polarity words results in the best450

ratio between the sentiment transfer accuracy and451

content preservation metrics.452

Overall, our denoising approaches are able to453

balance well between sentiment transfer and con-454

tent preservation. The models which perform the455

best on sentiment transfer usually achieve worse456

results on content preservation and similarity met-457

rics.458

For the human evaluation, we have chosen two459

models (WG01-AG03-D and WG03P08-AG03P08-460

M) which performed the best according to the aver-461

age between accuracy, MaskSim and MaskBLEU462

score (Table 2). We have also chosen four state-463

of-the-art models for comparison: two of the most464

recent models (Wang et al., 2019; He et al., 2020), 465

and the models with best accuracy (Prabhumoye 466

et al., 2018) and MaskBLEU score (Li et al., 2018). 467

We have evaluated over 600 model outputs. Re- 468

sults are presented in Table 3. The human evalua- 469

tion results mostly agree with our automatic evalu- 470

ation results. The results also show that our models 471

are better in content preservation than the competi- 472

tor models. 473

Finally, to illustrate the behavior of different 474

models, we picked one positive and one negative 475

sentence from our sentiment dataset and the respec- 476

tive outputs from the models, which are shown in 477

Table 4. 478

5 Conclusions and Future Work 479

In this paper, we proposed an approach for the text 480

sentiment transfer task based on polarity-aware de- 481

noising. Experimental results on our sentiment 482

dataset have shown that our method achieved a 483

competitive or better performance compared to 484

state-of-the-art approaches. While our extended 485

transformer-based architecture provides more con- 486

trol for generating sentiment transferred outputs, at 487

the same time polarity-aware enhanced denoising 488

technique helps to achieve good style-content trade- 489

off. As shown by both human evaluation scores and 490

our manual inspection, our models still sometimes 491

fail to preserve the meaning of the original. While 492

we improve upon previous works in this respect, 493

this still remains a limitation. 494

In the future, we plan to adapt our method to the 495

different kind of style transfer tasks such as formal- 496

ity transfer or persona based text generation. We 497

also intend to focus on better controlling content 498

preservation with the use of semantic parsing. 499
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