Single-stream Policy Optimization

Zhongwen Xu* and Zihan Ding*
Tencent

Abstract

We revisit policy-gradient optimization for Large Language Models (LLMs) from
a single-stream perspective. Prevailing group-based methods like GRPO reduce
variance with on-the-fly baselines but suffer from critical flaws: frequent degenerate
groups erase learning signals, and synchronization barriers hinder scalability. We
introduce Single-stream Policy Optimization (SPO), which eliminates these issues
by design. SPO replaces per-group baselines with a persistent, KL-adaptive value
tracker and normalizes advantages globally across the batch, providing a stable, low-
variance learning signal for every sample. Being group-free, SPO enables higher
throughput and scales effectively in long-horizon or tool-integrated settings where
generation times vary. Furthermore, the persistent value tracker naturally enables
an adaptive curriculum via prioritized sampling. Experiments using Qwen3-8B
show that SPO converges more smoothly and attains higher accuracy than GRPO,
while eliminating computation wasted on degenerate groups. Ablation studies
confirm that SPO’s gains stem from its principled approach to baseline estimation
and advantage normalization, offering a more robust and efficient path for LLM
reasoning. Across five hard math benchmarks with Qwen3-8B, SPO improves the
average maj @32 by +3.4 percentage points (pp) over GRPO, driven by substantial
absolute point gains on challenging datasets, including +7.3 pp on BRUMO 25,
+4.4 pp on AIME 25, +3.3 pp on HMMT 25, and achieves consistent relative gain
in pass@F across the evaluated k values. SPO’s success challenges the prevailing
trend of adding incidental complexity to RL algorithms, highlighting a path where
fundamental principles, not architectural workarounds, drive the next wave of
progress in LLM reasoning.

1 Introduction

Reinforcement learning (RL) [36] has become a cornerstone for advancing the reasoning capabilities
of Large Language Models (LLMs), notably the Reinforcement Learning with Verifiable Reward
(RLVR) paradigm [21} [11]. Methods like Group Relative Policy Optimization (GRPO) [34, [11]
have achieved remarkable success by adopting a multi-outcome approach, generating a group of
responses for each prompt to construct an on-the-fly baseline for variance reduction. While this
“group-based” paradigm has pushed the state of the art, it suffers from fundamental inefficiencies.
When all responses in a group share the same outcome (e.g., all correct or all incorrect), the relative
advantage collapses to zero, yielding no learning signal. This degeneracy represents a fundamental
waste of computation and data. To counteract this, a series of engineering heuristics like dynamic
sampling [42] have been developed. These workarounds, while functional, add significant complexity
and create a less principled, more convoluted optimization process.

Group-based architectural choice also imposes a critical synchronization barrier. In distributed
training, the entire group must wait for its slowest member, a bottleneck that becomes particularly
acute in complex agentic tasks requiring multi-turn tool use or long-horizon reasoning [[15} 141} 145]].

*Equal contributions, corresponding to: zhongwenxu@tencent.com, dingzihan737 @ gmail.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

In these settings, interaction times are highly variable (e.g., number of interaction turns, time per
interaction, etc), and a single slow-running agentic trajectory can stall its entire group, severely
hindering training throughput and scalability.

We advocate for returning to the classic single-stream paradigm for policy gradient optimization [36]],
where each training sample is a single stream of prompt-response pair. This is not a mere simplifica-
tion, but a deliberate re-alignment with foundational RL principles to address the aforementioned
architectural flaws. To overcome the critical challenge of high gradient variance in this setting, we
introduce Single-stream Policy Optimization (SPO). SPO replaces the noisy, on-the-fly group baseline
with three synergistic components for stable and efficient learning. First, it employs a lightweight
Bayesian value tracker to maintain a persistent, temporally-informed estimate of the success probabil-
ity for each prompt, serving as a low-variance baseline. Second, it normalizes advantages globally
across the entire batch, avoiding the instability of per-group statistics. Finally, this architecture
naturally enables an adaptive curriculum via prioritized sampling, focusing computational resources
on the most informative prompts.

The benefits of this principled approach are clear: SPO is inherently more scalable and eliminates the
computational waste of degenerate groups. Our experiments confirm these advantages, demonstrating
that SPO consistently outperforms GRPO on challenging reasoning benchmarks, improving the
absolute point gains on challenging datasets, including 7.3 percentage points (pp) on BRUMO 25,
4.4 pp on AIME 25, 3.3 pp on HMMT 25, and the pass@Fk curves of SPO are above GRPO for all
ks. The scalability benefit is particularly pronounced in agentic settings. Our simulations, designed
to model these variable-time scenarios, show that SPO’s group-free design can achieve a 4.35x
training throughput speedup by eliminating group synchronization bottlenecks. SPO thus provides a
more robust foundation for modern LLM optimization, prompting a re-evaluation of essential versus
incidental complexity in the field.

2 Method

We introduce Single-stream Policy Optimization (SPO), a method designed for policy optimization in
settings with verifiable feedback (RLVR) [21]]. We assume the feedback is binar% i.e., +1 for success
and O for failure. SPO addresses the challenge of estimating a non-stationary success probability for
a policy that evolves over training iterations. It integrates a Bayesian value tracker with an adaptive
memory mechanism into a policy gradient framework. The core components are: (1) a KL-adaptive
tracker that provides a low-variance, single-sample estimate of the success probability; (2) a global
advantage normalization scheme that ensures high sample efficiency and stable learning dynamics;
and (3) prioritized sampling across training prompts to focus on prompts with high learning potential.
The following subsections detail each component.

2.1 A KL-Adaptive Value Tracker

The definition of a value function is the expected reward of the prompt x under policy T, i.e.,
Ve(x) = Eyr(jz)[R(z,y)]. We use 0(z) to denote the tracker’s running estimate of Vy(x); that
is, 0(x) &~ Vi (x). To estimate the non-stationary success probability of a prompt x, we use a
Bayesian tabular tracker instead of a separate value networ For the binary success/failure rewards
common in RLVR, this is elegantly modeled using a Beta distribution, which is the conjugate prior
for the Bernoulli process governing the outcomes. We therefore model the success probability ©(x)
using a Beta distribution: 9(z) ~ Beta(a(x), 3(x)), where the value estimate is the posterior mean
() = a(z)/(a(z) + B(z)).

The tracker adapts to policy changes by dynamically adjusting its memory of past rewards. When the
policy changes significantly, older observations become less relevant and should be downweighted.
After each new observation r(x, y) € {0, 1}, we discount the prior Beta parameters (a_1,3_1) by a
factor p(z) before incorporating the new evidence r(z, y):

a(z) = p(x)a(z)+r(z,y), B(z)=p@)fa(r)+(1-r(z,y),)= ————7—. (1)

2Generalizing to non-binary rewards is straightforward, as discussed at the end of Section
3The development of core RL algorithms was on tabular representation [36]).

The discount factor p(z) = 2~ P@)/DPwi s determined by the KL divergence D(z) between the
current policy and the last policy that acted on prompt z, causing the tracker to forget faster as
the policy changes more significantly. The hyperparameter Dy, controls this forgetting rate p €

[pmim pmax] .

Initialization. To initialize, we collect ny samples to compute an initial value estimate 9o ().
To avoid transient instability, we set the initial effective sample size to its expected equilibrium,
No = 1/(1 — pmin), where ppi, is the minimum allowed forgetting factor. The initial parameters are
then:

ao(z) = No - 0g(x), Bo(z) = No - (1 = Do(x)). 2

This Bayesian update is equivalent to an adaptive Exponential Moving Average (EMA) on the value
estimate:

b(x) = 0-1(x) + n(x)(r(z, y) = 0-1(2)), ©)
where the learning rate 7(x) = (p(z) Nefr,—1(z) + 1) ! naturally adapts to both policy shifts (via
p(x)) and statistical confidence (via Negr = () + B(x) + 1). This formulation highlights how our
tracker balances new evidence against accumulated knowledge. For general rewards beyond binary
ones, we can just use the same EMA formulation to directly track o, rather than relying on « and S in
the binary cases.

2.2 Advantage Estimation and Policy Optimization

SPO uses the tracker’s estimate 0 as a baseline for advantage calculation in a policy gradient algorithm.
At iteration ¢, for a single reward r(x, y) obtained with policy mp,, the advantage is computed using
the pre-update baseline (denoted with subscript _1):

Az, y) = r(z,y) — 0-1(2). Q)

Using the baseline from the previous step ensures that it is independent of the action taken at
step i, preserving the unbiasedness of the policy gradient estimate. While the reward r(x,y) is
typically a direct outcome signal, SPO’s framework is also compatible with more sophisticated
reward functions. For instance, recent work like InfAlign [4] demonstrates how to calibrate and
transform the reward signal to be “inference-aware,” directly optimizing for procedures like Best-
of-N sampling. Such transformed rewards can be seamlessly integrated into SPO by replacing
the standard r(x,y) in the advantage calculation. Since v_1(z) is independent of y ~ 7, (-|x),
E[(r — vi—1(z)) Vg logn] = V.J(0) [39]. Instead of normalizing advantages on a per-prompt basis
in a group [34} [11]], SPO normalizes them across an entire batch of prompts B [[19, 31} 3, 23]. The
normalized advantage A(z,y) is computed as:

_ A _
Aay) = AU =tE,)

where up and o are the mean and standard deviation of advantages in the batch { A(z, y) }zen. We

then apply the advantage fl(m, y) to each foken in the response sequence y and update the policy
parameters using a standard PPO-Clip policy loss [31ﬂ

L), min(ﬂewtlsw o ctp(o) fL> ©

0014 (at I St) T4 (at | St

Methods like Clip-Higher [42], Clip-Cov [10] and KL-Cov [10] to retain policy entropy are applicable
here. Other policy optimization algorithms like CISPO [27] (similar to vtrace [12, 40]) and
GSPO [43] (use sequence-level likelihood instead of token-level) are compatible with our advantage
estimator. Advanced methods to control policy behaviors like ASPO [22] can be utilized to modulate
the advantage values. We note that if we use “no baseline” (i.e., v = 0), it is an extremely simple and
valid algorithm but may suffer from high policy gradient variance.

2.3 Prioritized Prompt Sampling

*The term “PPO” is frequently used with ambiguity. It may denote the entire algorithm suite (e.g., clipped
policy and value losses), refer narrowly to just the clipped policy objective, or describe the broader training
framework, including mechanisms like mini-batch updates.

Algorithm 1 Single-stream Policy Optimization

1: foriterationi =1,2,...,T do

2 For each « € X, compute sampling weight w;(x) according to Eqn. .
3 Sample a batch of B prompts B; C X according to weights {w;(z)}.

4 D+

5: for each prompt z € B; do

6: Sample action y ~ 7y, , (- | «) and observe reward r(x,y) € {0,1}.
7: Compute raw advantage A(z,y) < r(x,y) — ;-1 (z).

8 Store (z,y, A(z,y)) in D.

9: Update tracker o(z).
10 Normalize advantages: A(z,y) « (A(z,y) — ps,) /05,
11

Update 6;_; to ; using mini-batches with a policy gradient algorithm (e.g., PPO-Clip).

To further enhance data efficiency, SPO em-
ploys a curriculum learning strategy by prior-
itizing prompts with the highest learning po-
tential [30, [36]]. At each iteration, we sample
a batch of prompts based on a score that em-
phasizes prompts with high uncertainty, while
ensuring a minimum level of exploration. The
sampling weight w;(x) for prompt x is defined
as:

wix) o \fooi (@) (1~ 021 (2) e (D)

The first term corresponds to the estimated stan- Figure 1: Illustrations of GRPO and SPO.
dard deviation of a Bernoulli outcome, which

naturally allocates more weight to prompts that are neither almost always solved (0 ~ 1) nor almost
always failed (0 = 0). The exploration bonus ¢, set to 0.05 by default, prevents curriculum collapse by
ensuring that every prompt retains a non-zero probability of being sampled, thereby maintaining broad
coverage of the data distribution. The complete SPO training procedure is outlined in Algorithm I]

2.4 Advantages over GRPO

Group-Free for Scalable Infrastructure. SPO’s design is inherently “group-free”, a significant
advantage in distributed training frameworks for LLMs. Each sample, consisting of a single stream
of (prompt, response) pair, is a self-contained data point for the policy update. GRPO, however,
requires the generation and evaluation of an entire group of GG samples for a single prompt before any
training signal can be computed. We provide our illustrations in Figure[I] In a distributed setting,
this introduces a synchronization barrier: the processing of a given prompt is not complete until
all G responses have been generated. This is particularly problematic in the presence of long-tail
generation times, where a single slow response generation can stall the processing for its entire group.
For constructing a training batch, SPO only needs to collect B independent (prompt, response) pairs,
which is far more flexible and efficient than waiting for B entire groups to complete. This makes
SPO’s architecture significantly more infrastructure-friendly and scalable. The advantage is amplified
in agentic training, especially in settings that require multi-turn interactions with tools [15} 9] or
long-horizon agent rollouts [4541]. The scale of these interactions can be substantial: state-of-the-art
open-source models (gpt-oss-120b) may average 20 search turns per task [9]], with other agentic
sessions reaching over 40 tool calls and generating up to 150,000 tokens of context [15].

Adaptive Curriculum. To further enhance training efficiency, SPO integrates a prioritized sampling
scheme. This mechanism naturally creates an adaptive curriculum by focusing computational
resources on prompts with the highest learning potential. This ensures that the model’s training is
concentrated on the most informative examples at any given point in time. GRPO, in its standard
formulation, typically relies on uniform sampling of prompts. This may waste computation on
prompts that are already mastered or are currently too difficult to yield useful learning signals. While
dynamic sampling [42] and repeat strategies [2] have been proposed to mitigate this issue, they
often discard samples after generation, wasting computation. SPO’s prioritized sampling addresses

the scheduling problem before response generation, leading to a more natural and efficient training
process. More discussions on the inefficiency of dynamic sampling and the variance reduction of
policy gradient are outlined in Appendix [E] where we provide detailed analysis.

3 Experiments

3.1 Empirical Comparison with GRPO

Our experiments demonstrate that SPO outperforms the GRPO baseline on aggregate metrics when
training the Qwen-8B model. As shown in Table[I] SPO achieves superior weighted average scores
on both primary metrics. It obtains a maj@32 of 63.8 compared to GRPO’s 60.4, a significant
improvement of +3.4 percentage points (pp). This aggregate strength is driven by remarkable
consistency, as SPO outperforms GRPO on the maj@32 metric across all five benchmarks. The
performance gap is most pronounced on BRUMO 25, where SPO achieves a substantial +7.3 pp
(64.0 vs. 56.7). Further significant gains are seen on AIME 25 (+4.4 pp) and HMMT 25 (+3.3 pp
points), underscoring the robustness of SPO’s improvements. Notably, these benchmarks have
minimal data contamination [3]], allowing them to serve as a true test of generalization. This
demonstrates that our SPO method improves the model’s ability to generalize rather than simply
overfit to the training data, a risk exemplified by the DAPO dataset’s strong correlation with AIME
24. While GRPO remains competitive on the avg @32 metric in some cases, SPO’s consistent and
significant advantage in maj @32 suggests it learns more robust and repeatable solutions, a key goal
for reliable reasoning models. Training and evaluation details are shown in Appendix [F}

Table 1: Comparison of GRPO and SPO on five benchmarks using maj@32 and avg@32. Averages
are shown in the last column. Bold indicates the better-performing method for each metric.

Method AIME 24 AIME 25 BeyondAIME BRUMO 25 HMMT 25 Average
maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32 maj@32 avg@32
Qwen3-8B 77.8 64.4 70.5 584 45.2 38.0 55.1 49.4 36.8 30.3 57.1 48.1
GRPO 83.3 77.6 72.1 64.2 45.6 39.0 56.7 56.9 442 40.9 60.4 55.7
SPO 84.0 74.9 76.5 65.0 46.9 40.3 64.0 59.0 47.5 40.6 63.8 56.0

These findings are mirrored in the pass @k performance shown in Figure[6] The weighted average
curve (Figure[6f) shows a clear and consistent advantage for SPO across all values of k, translating
to an average improvement of approximately 2.4 pp. While the performance on avg@32 is more
competitive on a per-benchmark basis, SPO’s strong overall performance underscores the stability
and effectiveness of its learning signal. We provide additional ablation studies on A*-PO, SPO with
no baseline, and SPO with no offline initialization in Appendix [G} Furthermore, we examine the
method’s signal efficiency and stability (Appendix [H) and demonstrate its practical advantages in
agentic training (Appendix [[).

4 Conclusions

We identified critical inefficiencies in group-based policy optimization methods for LLMs, namely
computational waste from degenerate groups and scalability bottlenecks from synchronization. To
address these, we proposed Single-stream Policy Optimization (SPO), a principled return to the classic
single-stream paradigm. SPO replaces the noisy, per-group baseline with a persistent KL-adaptive
value tracker and global advantage normalization, creating a more stable and efficient learning signal.

Our empirical results demonstrate that SPO’s design is not merely simpler, but superior. It consistently
outperformed GRPO on complex reasoning tasks while eliminating the systemic flaws of its group-
based counterpart. By demonstrating that a well-designed single-stream approach can surpass more
complex methods, our work challenges the prevailing trend of adding incidental complexity to RL
algorithms for LLMs. SPO provides a robust, scalable, and efficient foundation for future research in
agentic and reasoning model training, highlighting the enduring power of foundational reinforcement
learning principles. Future work can focus on refining the best practices for applying SPO and
exploring its limits, pushing its effectiveness to power the next generation of reasoning and agentic
LLMs.

References

[1] Arash Ahmadiar'l', Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier
Pietquin, Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization
for learning from human feedback in LLMs. arXiv preprint arXiv:2402.14740, 2024.

[2] Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. POLARIS: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp
.github.io/blog/2025/Polaris.

[3] Marcin Andrychowicz, Anton Raichuk, Piotr Stariczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters in on-policy reinforcement learning? A large-scale empirical study. arXiv preprint
arXiv:2006.05990, 2020.

[4] Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian
Hutter, Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, et al. InfAlign: Inference-
aware language model alignment. arXiv preprint arXiv:2412.19792, 2024.

[5] Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovi¢, and Martin Vechev.
MathArena: Evaluating LLMs on uncontaminated math competitions. arXiv preprint
arXiv:2505.23281, 2025.

[6] Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D Lee, Wen Sun, Wenhao Zhan, and
Xuezhou Zhang. Accelerating RL for LLM reasoning with optimal advantage regression. arXiv
preprint arXiv:2505.20686, 2025.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. Acereason-Nemotron: Advancing math and code reasoning through
reinforcement learning. arXiv preprint arXiv:2505.16400, 2025.

[9] Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, et al. BrowseComp-Plus: A more fair and transparent
evaluation benchmark of deep-research agent. arXiv preprint arXiv:2508.06600, 2025.

[10] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning
for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

[11] Team DeepSeek. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633-638, 2025.

[12] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, lain Dunning, et al. IMPALA: Scalable distributed deep-RL
with importance weighted actor-learner architectures. In International conference on machine
learning, pages 1407-1416. PMLR, 2018.

[13] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in
LLMs. arXiv preprint arXiv:2504.11536, 2025.

[14] Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

[15] Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and
Yi Wu. Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous
RL. arXiv preprint arXiv:2508.07976, 2025.

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

[16] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research, S(Nov):
1471-1530, 2004.

[17] Yaru Hao, Li Dong, Xun Wu, Shaohan Huang, Zewen Chi, and Furu Wei. On-policy RL with
optimal reward baseline. arXiv preprint arXiv:2505.23585, 2025.

[18] Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
Fuxiang Zhang, Jiacheng Xu, Wei Shen, et al. SkyWork Open Reasoner 1 technical report.
arXiv preprint arXiv:2505.22312, 2025.

[19] Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. REINFORCE++: An efficient RLHF
algorithm with robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262,
2025.

[20] Team Kimi. Kimi K1.5: Scaling reinforcement learning with LLMs. arXiv preprint
arXiv:2501.12599, 2025.

[21] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[22] Heng Lin and Zhongwen Xu. Understanding Tool-Integrated Reasoning. arXiv preprint
arXiv:2508.19201, 2025.

[23] Zichen Liu, Anya Sims, Keyu Duan, Changyu Chen, Diyi Yang, Wee Sun Lee, and Min Lin.
GEM: A gym for generalist LLMs, 2025. URL https://axon-rl.notion.site/gem.

[24] Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. AceReason-Nemotron 1.1: Advancing math and code reasoning through SFT
and RL synergy. arXiv preprint arXiv:2506.13284, 2025.

[25] Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
Xiong, Ju Huang, Jian Hu, et al. Part I: Tricks or traps? A deep dive into RL for LLM reasoning.
arXiv preprint arXiv:2508.08221, 2025.

[26] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing
ol-Preview with a 1.5B model by scaling RL. https://pretty-radio-b75.notion.site
/DeepScaleR-Surpassing-01-Preview-with-a-1-5B-Model-by-Scaling-RL-196
81902c1468005bed8ca303013ade2, 2025. Notion Blog.

[27] Team MiniMax. MiniMax-M1: Scaling test-time compute efficiently with lightning attention.
arXiv preprint arXiv:2506.13585, 2025.

[28] Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Bjorn Ommer, and Xiangyang Ji. Can prompt
difficulty be online predicted for accelerating RL finetuning of reasoning models? arXiv
preprint arXiv:2507.04632, 2025.

[29] Team Qwen. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

[30] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[32] Team Seed. Seed1.5-thinking: Advancing superb reasoning models with reinforcement learning.
arXiv preprint arXiv:2504.13914, 2025.

[33] Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang,
Bingcheng Dong, Xudong Zhou, Bowen Zhang, et al. rStar2-Agent: Agentic Reasoning
Technical Report. arXiv preprint arXiv:2508.20722, 2025.

https://axon-rl.notion.site/gem
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

[34] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[35] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework.
arXiv preprint arXiv: 2409.19256, 2024.

[36] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[37] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations (ICLR), 2023.
URL https://openreview.net/forum?id=ySyClPaTKAq.

[38] Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. OctoThinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025.

[39] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229-256, 1992.

[40] Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, E1yk Helenowski, Liang Tan, Tengyu Xu, Tushar
Gowda, Zhengxing Chen, Chen Zhu, et al. LlamaRL: A distributed asynchronous reinforcement

learning framework for efficient large-scale LLM training. arXiv preprint arXiv:2505.24034,
2025.

[41] Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, and Wei Yang. Agents
play thousands of 3D video games. arXiv preprint arXiv:2503.13356, 2025.

[42] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. DAPO: An open-source LLM reinforcement
learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

[43] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

[44] Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao,
and Beidi Chen. Act only when it pays: Efficient reinforcement learning for LLM reasoning via
selective rollouts. arXiv preprint arXiv:2506.02177, 2025.

[45] Team Zhipu. GLM-4.5: Agentic, reasoning, and coding (ARC) foundation models. 2025.

A Related Work

Group Relative Policy Optimization (GRPO) [34] addresses the computational overhead and training
instability of PPO-style algorithms [31]] by eliminating the need for a separate critic network. Instead,
GRPO constructs baselines on-the-fly using multiple responses generated for each prompt. Specif-
ically, GRPO samples a group of multiple responses for each prompt and normalizes the rewards
within this group to have zero mean and unit variance, creating relative advantages for policy updates.
However, this approach can be inefficient if all responses in a group receive the same reward (e.g., all
incorrect or all correct), resulting in a zero-advantage for all samples and providing no learning signal.
To address this, DAPO [42] enhances GRPO with engineering treatments like dynamic sampling,
which continues generating responses until non-zero advantages are achieved, ensuring meaningful
gradients.

Several other works have proposed improvements to group-based methods. Zheng et al. [44]] introduce
GRESO, an online filtering algorithm that leverages reward training dynamics to predict and skip
uninformative prompts before generation, Qu et al. [28] introduce a Bayesian estimation of the
prompt accuracy and use it to form a bandit strategy, significantly reducing rollout overhead. Liu

https://openreview.net/forum?id=ySyClPaTKAq

et al. [25]] propose “Lite PPO”, which simplifies RLVR training to only advantage normalization and
token-level loss aggregation.

Other group-based approaches include RLOO [[1], which returns to the simpler REINFORCE [39,[36]
algorithm using a Leave-One-Out baseline that treats entire generations as single actions. Similarly,
Hao et al. [17] propose On-Policy RL with Optimal Baseline (OPO), which uses a length-weighted
average of rewards as an optimal simplified baseline. Despite these improvements, all group-based
methods share fundamental limitations. They construct baselines from concurrently generated
responses rather than persistent, historical estimates, inheriting the same core architectural constraints
as GRPO: synchronization overhead and increased generation costs in distributed settings.

Moving beyond group-based methods, Brantley et al. [6] propose A*-PO, a two-stage framework for
single-sample efficiency. In its first stage, A*-PO performs offline estimation of the optimal value
function V*, not the policy-specific V.. The second stage then uses this pre-computed value to build
optimal advantage estimates A*. However, A*-PO has key limitations: its fixed, offline-computed
estimate does not adapt as the policy evolves, and it is constrained by KL-regularized optimization,
restricting deviation from a reference policy.

B Background

Reinforcement learning (RL) algorithms have been used to align Large Language Models (LLMs)
with human preferences (RLHF) and to optimize verifiable reward signals (RLVR; e.g., 21} [34]]).

B.1 Policy Gradient and the REINFORCE Algorithm

The foundational method for this optimization is the policy gradient theorem [39,[36]. For LLMs, a
trajectory consists of generating a single response y from a prompt . The objective function is the

expected reward:
J(a) = EmND,y~ﬂ9(~\m) [R(xv y)]v (8)

where D is the prompt distribution and R(x, y) is the reward for generating response y for prompt x.
The gradient of this objective is given by:

VoJ(0) = Exnp ymmy (o) [R(7,y) Vo log mo (y|x)].)
This formulation gives rise to the REINFORCE algorithm [39, 136], which updates the policy by
taking a step in the direction of this estimated gradient. A significant drawback of REINFORCE is
the high variance of its gradient estimator. The raw reward R(z,y) can fluctuate widely, leading to
noisy updates and unstable training.

To mitigate high variance, a baseline b(x) that is conditionally independent of the action y can be
subtracted from the reward. This results in an unbiased gradient estimator with provably lower
variance [[16]:

VoJ(0) = Eqnp ymmy (12) [(R(2,y) — b(2)) Vg log mo(y|)]. (10)
The term A(z,y) = R(x,y) — b(x) is known as the advantage. The optimal baseline that minimizes
variance is the true value function Vz(z) = Eyr,(.|»)[R(z, y)], which is the expected reward for a
given prompt x. In practice, V;:(z) is unknown and must be estimated. The quality of this estimation
is crucial for the stability and efficiency of the RL algorithm.

B.2 Variance Reduction Baselines for Large Language Models

Several strategies have been developed to estimate the baseline b(z) in the context of LLM training.
PPO [31]] trains a parameterized critic network v,. However, learning v is notoriously unstable and
resource-intensive, as ¢ typically matches the size of the LLM policy parameters 6.

A common approach is to construct an empirical, on-the-fly baseline from multiple samples. Group
Relative Policy Optimization (GRPO) [34} [11]] generates a group of G responses {y1, ...,y } fora
single prompt x, then uses the mean rewards of the group as the baseline bgrpo. Another popular
baseline is the Leave-One-Out (RLOO). For a given sample y;, the baseline is the average reward of
the other G — 1 samples in the group, denoted as bgri oo:

1 1
boreo(z) = el > R(z,y;), brLoo (@, Yi) = o1 > R(x,y;). (11)
J j#i

The raw advantage for sample y; is then A(z,y;) = R(z,y;) — bgreo(z), then it is normalized with
the standard deviation 0. While simple to implement, this approach suffers from two key limitations.
First, it is sample-inefficient, requiring G > 1 generations per prompt for each gradient step. Second,
the baseline is estimated from a very small group (&), making it a high-variance estimate of the true
value function, which in turn leads to noisy advantage estimates.

C SPO Algorithm

The complete Single-stream Policy Optimization (SPO) procedure is detailed below. It begins with an
offline initialization phase to establish a robust baseline tracker, followed by the main online policy
optimization loop.

The SPO initialization procedure is shown in Algorithm [2] In the experiments, we use ng = 8 to
have a good estimation of the initial baseline tracker. We ablate the setting where we use no offline
estimation and rely on the online moving estimator in Section[G]

Algorithm 2 SPO Initialization

1: Set initial effective sample size No = 1/(1 — pmin)-

2: for each prompt x € A do

3: Collect ng outcomes {r®)}72 | with an initial policy o.
Compute initial value estimate o () = =32, r*).
Set Oéo(l‘) =Ny - ’00(1‘) and 60(1‘) =Ny - (1 — 170(.13))

A

Practically, one may concern about the extra cost during the offline estimation of . We note that we
share the offline estimation for our experiments so that people could skip this process and directly
load our datasets, and there are datasets like Polaris [2] that pre-compute accuracy for Deepseek-R1-
Distill-Qwen-7B [[L1]. The cost can be amortized across the experiments people run themselves, and
we will share more (dataset, base_model) combinations to facilitate experiment efficiency.

D Batch Extensions

We could adapt Single-stream Policy Optimization (SPO) into a prompt-repetition schemeﬂ pro-
cessing each prompt G times per batch with a shared baseline estimator ¢ to better handle sparse
rewards. Our method’s primary advantage over GRPO lies in its asynchronous nature, achieved by
removing the group synchronization barrier. Treating repeated prompts as independent trajectories
unlocks two key efficiency improvements. First, it enables robust handling of long-tail generation
issues, as slow or problematic trajectories can be terminated early, discarded, or managed via partial
rollouts [20] without delaying the entire batch. Second, it facilitates a more flexible batching strategy.
By over-sampling the number of initial prompts (e.g., by 50%), a full training batch can be assembled
from the first-finishing trajectories, allowing the optimization step to proceed immediately without
waiting for stragglers. This design significantly reduces training latency compared to the rigid group
synchronization required by GRPO. When tackling hard prompts, the batch extensions may help
obtain learning signals more quickly.

E Comparisons against GRPO

E.1 Inefficiency of Dynamic Sampling

To address the information loss from degenerate sample groups (where all rewards are identical),
methods like DAPO [42] employ dynamic sampling. This strategy continues generating responses for
a prompt until the collected set contains at least one success and one failure, guaranteeing a non-zero
advantage. While effective at ensuring a learning signal, this approach can be extremely data- and
time-inefficient. Note that when people report performance with dynamic sampling, the “steps”
indicate the learning steps rather than the sampling steps, where the latter is normally a multiple of
the former (e.g., 5X).

SBatch SPO or BSPO

10

We can formalize the expected computational cost. For a prompt = with true success probability
p = Vi (x), let N be the number of samples required to obtain a non-degenerate set. We have:

£ 15 =1+ 1) £ 01+]) = 3y

This cost grows hyperbolically as the policy becomes either proficient (p — 1) or incompetent
(p — 0). For example, if a policy has a 10% success rate (p = 0.1), the expected number of
generations needed to collect both a success and a failure is E[N] &~ 10.11. In contrast, SPO
requires exactly one sample per prompt and uses its adaptive curriculum to actively de-prioritize
these inefficient prompts, allocating resources to where learning is most effective. This makes SPO
fundamentally more scalable and computationally efficient.

E.2 Variance Reduction for Policy Gradient

The per-sample policy gradient is g = A(x, y) Vg log 7 (y|x), where the advantage A is an estimate
of the expected return over a baseline. The variance of this gradient, Var[g], is a key driver of
training efficiency. We analyze how the construction of the advantage A leads to significant variance
differences between GRPO and SPO.

GRPO’s High-Variance Group-Based Advantage: GRPO computes advantages by comparing
outcomes within a small group of G (G = 8, 16, ...) samples generated for the same prompt. The

normalized advantage for sample 2 with binary reward € {0, 1} is Agrpo = %, where both the

baseline yg (e.g., the group mean é Zj r;) and the standard deviation og are estimated from the
same small group of G samples. This coupled, small-sample estimation introduces three fundamental
sources of variance:

* Noisy Baseline (Numerator): The baseline jig, estimated from only G samples, where G is
small, is a high-variance quantity. This inflates the variance of the unnormalized advantage
(r — pg) by a factor of (1 + é) compared to using an optimal baseline.

* Noisy Scaling (Denominator): The standard deviation o¢, estimated from only G samples,
is also highly variable. Scaling the gradient by this noisy random variable further increases
total variance.

* Information Loss (Degeneracy): When all rewards in the group are identical (e.g., all Os or
all 1s), the advantage for every sample becomes zero, providing no gradient signal. This
event, which occurs with probability Zg(p) = p© + (1 —p)¥ where p = V™ (), effectively
reduces the batch size and inflates variance by a factor of 1/(1 — Zg(p)), an issue that is
especially severe for easy (p = 1) or hard (p =~ 0) prompts.

SPQO’s Low-Variance Decoupled Advantage: In contrast, SPO is designed to minimize these
variance sources by decoupling the advantage calculation from the current group of samples. It uses an
action-independent baseline b = ©(x) from a historical tracker, which provides a stable, low-variance
estimate of the true success probability p. The advantage is simply Agpo = batch_norm(r(z,y) —
0(z)). Crucially, SPO then applies global normalization [31}, 3} 25]], scaling all advantages in a
large batch of size B >> G by a single, stable standard deviation opych. This design avoids GRPO’s
pitfalls: the baseline b is near-optimal, the normalization scaler o is stable, and there is no systematic
information loss from group-outcome degeneracy.

Quantitative Comparison: A simplified ratio of the reward-term variance quantifies the difference:

Var[glorro 1+ & o 1 . Ltie (12)
Varlglspo 1+ 557 1= Za(p) 1+ 15
—_— ——

Baseline Noise Information Loss ~ Normalization Noise

Here, N is the effective sample count for SPO’s tracker, and ¥ > 0 captures the excess variance
from per-group, 15 represents the excess variance introduced by estimating the normalization
statistics (mean and standard deviation) from a large global batch of size Ng (Y5 ~ 0). For a
moderately difficult prompt (p = 0.5) with G = 8, the normalization noise dominates. However, for
an easy/hard prompt (p = 0.9/p = 0.1), the information loss term dominates, and the ratio swells to
~ 1.97. While increasing G in GRPO mitigates information loss, it does so at a multiple generation
cost and cannot fix the inherent noise from its small-sample baseline and scaling. SPO achieves lower
variance more efficiently by design.

11

F Training and Evaluation Details

F.1 Experimental Setup

The SPO algorithm is broadly applicable in LLM reasoning tasks [[11] and Agentic training. We
evaluate Tool-Integrated Reasoning (TIR) [13} 22] scenarios, where the LL.Ms can utilize external
Python interpreter to help solve hard problems. We conduct experiments using a moderately sized
LLM, Qwen3-8B [29]]. For training data, we use the English subset from the DAPO dataset [42].
Only outcome reward is applied for RLVR, without the format rewards. We evaluate performance
on the challenging math competition benchmarks, i.e., AIME 24, AIME 25, BeyondAIME [32],
BRUMO 25 [3]], and HMMT 25 [5]].

We distinguish our goal from that of “hill-climbing” on benchmark leaderboards. The latter often
necessitates resource-intensive and highly specialized techniques, including SFT from frontier
models [24]], mid-training [38], multi-stage RL pipelines [26}, 18], 8], curated hard datasets with
intricate processing [2} 33]], test-time scaling techniques [[14] and extremely large generation group
sizes [43]]. Our work, instead, concentrates on the fundamental efficiency and scalability of the RL
algorithm itself.

All experiments in this paper are implemented on top of verl [35] and ReTool [[13] for the tool-
integrated reasoning setup. During training, we set the maximum response length to 16,384 tokens.
The policy learning rate is fixed at 1 x 1075, Following DAPO [42], we adopt the Clip-Higher
mechanism, with clipping parameters €j,y = 0.2 and epiep = 0.28, to balance exploration and
exploitation. The sampling parameters are set to temperature 1.0, top-p = 1.0, and top-k = —1.
The forgetting rate thresholds are chosen as ppyin = 0.875 and pmax = 0.96, yielding window sizes
Wmin =1- L = 8 and Wmax = 25.

Pmin

GRPO rollouts are collected with multiple responses per prompt, and training mini-batch sizes are
chosen such that 8 gradient updates are performed per rollout step. For a fair comparison, the prompt
batch size in SPO is set equal to the total number of responses in GRPO, as SPO generates only a
single response for each prompt. Specifically, GRPO uses a prompt batch size of 256 with 8 responses
per prompt and a training mini-batch size of 256, while SPO operates on 2,048 = 256 x 8 prompts.
Both algorithms are set with maximum of 8 Python interpreter interaction turns.

For evaluation on hard math competition benchmarks, i.e., AIME 24, AIME 25, BeyondAIME [32],
BRUMO 25 [5] and HMMT 25 [5]], we set sampling parameters to temperature 0.6, top-p 0.95, and
top-k 20, as officially recommended. We define a binary reward function r; ; such that a response
receives r; ; = 1 if the final answer is correct, and r; ; = 0 otherwise. The same reward function is
consistently used during training for policy optimization and during evaluation. We set the maximum
response token to 32,768.

Given a test set with M problems, and for each problem ¢ we independently sample % responses with
rewards {r; 1,72, ...,7ik}, we define:

* avg@k: the expected correctness of an individual response:
1 L1

an@k = M Zl E eri,j.
1= Jj=

* pass@k: the probability of solving a problem within k attempts. Directly computing
l(maxlgjg ETij = 1) can lead to high variance. Following [7], we instead generate n > k
responses per problem, count the number of correct ones ¢ < n, and use the unbiased

estimator:
Ly l ("7:"’)]
pass@k = — 1—)
M i=1 (k)

where c¢; denotes the number of correct responses for problem i.

* maj@Fk: the correctness of the majority-voted answer [37]]. This metric first identifies the
most frequent answer among k responses for each problem. The score is 1 if that modal
answer is correct, and 0 otherwise. Let a; ; be the final answer string for the j-th response

12

to problem i, and let (-) be the reward function for a given answer string. The metric is
defined as:
M

maj@k = % Z T (mode{am}g‘?zl) .

=1
G Ablation Studies

We conduct a series of ablation studies to dissect the core components of SPO and validate our design
choices. To facilitate efficient experimentation, these studies are performed under a streamlined setting
compared to our main experiments. Specifically, we utilize a batch size of 256 prompt-response
pairs, and the model is updated with 4 gradient steps for each collected batch. All ablation results are
reported on the AIME 25 benchmark, using the avg@ 16 metric with a maximum generation length
of 16, 384 tokens.

0.60 0.600
0.575
0.550
© 0.525
®
D0.500
>
© 0.475
0.450
035] — SPO —— w/ Baseline
—— A"-PO 04251 —— wj/o Baseline
0.30 20 40 60 80 100 120 140 0400 20 40 60 80 100 120 140
Training Steps Training Steps
(a) SPO vs. A*-PO (b) Baseline Ablation
0.600 0.600
0.575 0.575
0.550 0.550
© 0.525 © 0.525
® ®
©0.500 ©0.500
> >
©0.475 © 0.475
0.450 . ; 0.450
—— w/ Offline Init —— w/ Batch Norm
0425 —— wjo Offline Init 0425 —— wj/o Batch Norm
0-4005 20 40 60 80 100 0-400 20 40 60 80 100 120 140
Training Steps Training Steps
(c) Offline Initialization Ablation (d) Batch Normalization Ablation

Figure 2: Ablation studies evaluating the core components of SPO. (a) SPO’s adaptive baseline
outperforms the static baseline of A*-PO, demonstrating the benefit of a value function that evolves
with the policy. (b) Removing the value tracker (“w/o Baseline”) causes a severe performance drop,
confirming its critical role in reducing gradient variance. (c) Eliminating the offline initialization step
(“w/o Offline Init”) leads to initial training instability and suboptimal convergence, highlighting the
importance of a warm start for the value tracker. (d) Removing batch normalization (“w/o Batch
Norm”) results in slower convergence and reduced stability, showing the normalization’s role in
stabilizing updates.

SPO vs. A*-PO. This experiment, presented in Figure 2a] compares our proposed SPO with A*-
PO [6]. A*-PO utilizes a static baseline derived from a pre-computed optimal value function, V*,
which is tied to the KL-regularized objective with respect to an initial reference policy, ms. While
this approach is highly efficient, its central assumption may be challenged in tool-calling scenarios. In
these tasks, learning involves acquiring new functional capabilities, leading to a significant policy drift
where the learned policy, 7, diverges substantially from .. Consequently, the pre-computed V'*
may become a less representative baseline for the current policy’s true value function, V,, potentially
affecting the accuracy of the advantage estimates. In contrast, SPO’s baseline is adaptive, dynamically
tracking an estimate of V, as the policy evolves. The empirical results, which show SPO’s superior
performance, suggest that this adaptability is crucial. By maintaining a baseline that remains relevant
to the current policy, SPO provides a more stable and effective learning signal in environments that
demand significant policy evolution. Finally, from a practical perspective, 7. computation during

13

A*-PO policy update occupies an extra trunk of GPU memory, making it less appealing than the
proposed SPO algorithm.

Baseline Ablation. Figure [2b| presents a crucial ablation that validates the fundamental principle
of using a baseline for variance reduction. In this experiment, we remove the value tracker com-
ponent ¢_1 (x) from the advantage calculation, causing the algorithm to rely solely on the globally
batch-normalized raw reward r(z, y) as its learning signal. However, the substantial performance
degradation observed is a classic illustration of the remaining challenges. While global normalization
effectively controls the overall scale of rewards, the raw reward signal is still noisy on a per-sample
basis as it fails to account for prompt-specific difficulty. SPO’s history-informed baseline is designed
to subtract this expected difficulty, thereby effectively reducing variance and providing a much
cleaner, more reliable gradient for learning. This experiment confirms that the adaptive value tracker
is the most critical component for SPO’s success, directly addressing the core challenge of variance
in single-stream policy optimization.

Offline Initialization Ablation. In Figure we analyze the impact of the value tracker’s initial-
ization phase. The standard SPO algorithm initializes the value tracker with estimates computed
from a small set of ng offline samples, giving it a “warm start”. The ablation removes this step,
forcing the tracker to learn from scratch online. The results clearly demonstrate the benefit of the
offline initialization. Without it, the tracker begins with a highly inaccurate baseline, leading to
high-variance gradients and significant instability in the initial training phase, as evidenced by the
performance dip. Although the model’s performance is initially lower, it eventually recovers and
catches up to the level of the properly initialized model. This initial performance gap neverthe-
less underscores the importance of a good initial value estimate for ensuring training stability and
accelerating convergence.

Batch Normalization Ablation. Figure [2d|isolates the contribution of SPO’s global advantage nor-
malization (Eqn. ??). In this variant, we compute policy updates using the unnormalized advantages
A(x,y) = r(z,y) — v—1(x), omitting the batch centering and scaling. Compared to the full method,
the training curve rises more slowly and exhibits larger oscillations, with a lower final avg@16.
This behavior is consistent with our analysis: without standardizing by the batch statistics (u5, 05),
the effective step size becomes entangled with the transient reward scale and the prompt-mix in
each batch, inflating gradient variance and worsening PPO clipping dynamics. In contrast, SPO’s
batch-wise normalization stabilizes the update scale across iterations, yielding faster and smoother
convergence. Together with the baseline and offline-initialization ablations, these results underscore
that SPO’s low-variance learning signal derives from both a history-informed baseline and global,
batch-level normalization, as predicted by the variance decomposition in Appendix

H Analysis of Signal Efficiency and Stability

0.8
o 0.18
=
206 g
0w % 0.16
o ©
3 S
° GRPO >0.14
S04 = SPO (r=0.0001) g 0
° - - f—
® T SPOE=002) || g0.12 = SPO No Baseline
:I_J % GRPO Effective
50.2 $0.10
o <<
@
[a} 0.08
0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Training Steps Training Steps
(a) Ineffective Gradient Ratios (b) Advantage Variance Comparison

Figure 3: Signal Efficiency and Stability Analysis of SPO vs. GRPO. (a) GRPO suffers from a
high ratio of degenerate groups (blue), which yield no learning signal. In contrast, SPO’s rate of
near-zero advantages (red/green) increases as the model learns, reflecting prediction accuracy rather
than wasted computation. (b) SPO’s baseline (red) provides a stable, low-variance signal, significantly
reducing the raw reward variance (green). GRPO’s effective advantage (blue), calculated only on
non-degenerate samples, is highly volatile and unstable.

14

To empirically assess the architectural advantages of SPO, we conduct a two-part analysis of the
unnormalized advantage signals produced by SPO and GRPO (Figure[3). First, we quantify complete
signal loss arising from degenerate groups. Second, we measure the variance of the remaining
learning signals. Together, these metrics characterize each method’s efficiency and stability.

Signal Efficiency and Information Loss. Figure [3a reports the fraction of ineffective samples.
For GRPO (blue), the share of samples in degenerate groups rises from roughly 60% to over 80%,
yielding zero advantage and no gradient. For SPO, we instead track the proportion of near-zero
advantages under two diagnostic tolerances, |A| < 7, with values of 7 = 10~ (red) and 7 = 0.02
(green). Advantages under the tight tolerance 7 = 10~* remain rare throughout training (red line),
while the |A| < 0.02 share (green) gradually increases as the value tracker © becomes more accurate
and residuals shrink on mastered prompts. This trend is expected and desirable: it reflects accurate
prediction rather than signal loss. Unlike GRPO’s degenerate groups, these SPO samples are not
discarded, they still produce well-defined gradients and contribute to learning. Notably, even under
the stricter 7 = 0.02 tolerance, SPO’s near-zero ratio remains far below GRPQO’s degenerate rate,
underscoring SPO’s efficient use of compute.

Signal Stability and Advantage Variance. Figure [3b|compares advantage variance across methods.
As areference, the green line (“SPO No Baseline”) corresponds to raw rewards, i.e., the high-variance
signal faced by vanilla policy gradient. SPO’s history-informed baseline (red) delivers a substantial,
stable variance reduction of nearly 50%. For GRPO, computing variance only over non-degenerate
samples (“GRPO Effective”, blue) reveals a highly volatile signal with the largest variance among all
conditions, exceeding even “SPO No Baseline”. We conclude that SPO’s baseline is effective, yielding
stable, low-variance gradients, whereas GRPO’s on-the-fly baseline is noisy and destabilizing when it
produces a signal. The apparent stability of GRPO’s overall variance is driven by the prevalence of
zero-variance degenerate samples and thus reflects inefficiency rather than robustness.

I Agentic Training Demonstrations

——- Group completion: 133s ——- Group completion: 508s |
5085

500

o
1=}
b=

400

IS
o
=3

300

Total Interaction Time
w
o
o

High Variance Bottleneck Effect

200 Low Variance Predictable

Total Interaction Time
~
o
o

114s 117s
100

1 2 3 6

6 7 8 3

4 5 4 5
Sample Index Sample Index

(a) Low-variance Group (b) High-variance Group

Figure 4: The Bottleneck Effect in Group-Based Sampling. (2) In a low-variance environment, sample
completion times are predictable, and the group synchronization cost is minimal. (b) In a realistic
high-variance agentic environment, three slow trajectories (444s, 508s, and 409s) create a severe
bottleneck, forcing the entire group to wait and wasting the compute used for the six faster samples.

We perform simulations to demonstrate the practical implications of SPO’s group-free design in
agentic training scenarios, where interaction times can be highly variable. Group-based methods
like GRPO suffer from a critical scalability bottleneck due to their inherent synchronization barrier,
a problem that is particularly acute in agentic tasks involving multi-turn tool use or long-horizon
reasoning.

Figure[]illustrates this fundamental issue. In an idealized low-variance setting (Figure 4a), where
all agentic trajectories complete in similar times, the group-based approach is efficient. However,
in a more realistic high-variance setting (Figure [#b) characterized by long-tail latencies, a single
slow-running trajectory (a “straggler”) can stall the entire group. In our simulation, while most
samples finish in under 133 seconds, the group must wait 508 seconds for its slowest member. This

15

o
500
o0 5535 oo ° 500 486s
519s ° °
g 500 [e asss @ 00 °
= £ £ Speedup: 4.35x
c = E
.S 400 S =
@ Unselected groups 5 300] © Unselected samples 2
o m Selected (3 fastest) ® © Selected (24 fastest) K}
gzoo -~ Completion: 4865 5 ~=- Completion: 1125 :Ez
© < S
o = 200 o
3 200 = =
o 2 8
G} 130s 133s o oo e
® o0 °)
100 100 P PN 5= o
. o %, LXY
®eo o .
0
1 2 3 2 5 6 [10 20 30 40 50 0
Group Index Sample Index Group-Based Group-Free
(a) Group-base (b) Group-free (c) Strategy Comparison

Figure 5: Throughput Comparison: Group-Based vs. Group-Free. (a) A group-based strategy, even
when parallelized, is bottlenecked by its slowest group, taking 486s to collect a batch of 3 groups
(24 samples). (b) A group-free strategy collects the 24 fastest samples from a larger pool of 48,
completing the batch in just 112s by avoiding stragglers. (c) The group-free approach achieves a
4.35x speedup, demonstrating its superior efficiency for agentic training.

bottleneck effect forces faster samples to remain idle, severely hindering training throughput and
wasting computational resources.

SPO’s group-free architecture directly resolves this inefficiency. Figure [5|compares the time required
to assemble a training batch of 24 samples using both strategies. The group-based approach (left),
even when optimized by running 6 groups in parallel and selecting the 3 fastest, is still constrained
by the slowest trajectory within those selected groups, taking 486s to complete. In contrast, the
group-free approach (middle) leverages asynchrony by starting 48 independent samples and simply
collecting the first 24 to finish. In our simulated scenario, this process takes only 112s, as it naturally
filters out the slow outliers. As shown on the right, this architectural difference results in a significant
4.35x speedup in this realistic agentic simulation. Simulations show that SPO’s architecture can
lead to significant throughput gains, making it a more scalable and robust foundation for training on
complex, long-horizon agentic tasks.

J Pass@k Comparison

0.90) g spo = ~m= SPO
=®= GRPO 0.86] =@= GRPO
||

0.82

0.66

=M= SPO
=®= GRPO
0.64

-

\
pass@k
o
o
R

pass@k
o
@
IS
o
Iy
S

AN

AN

hd 0.56
] 16 2 Ed 2
k
(a) AIME 24 (b) AIME 25 (c) BeyondAIME
080 = spo o ~m= SPO u 076 e spo =
=@= GRPO 0.56| =@= GRPO =0= GRPO
0.78 | / . /
076 L 054 x
& / 1 / & / /
80.74 8 R
3 ™ o &l m / 2
0.72 0.70
- / Ny / /
o 0.68
] 16 32 2
(d) BRUMO 25 (e) HMMT 25 (f) Average

Figure 6: Pass@Fk plots comparing GRPO and SPO across five math competition benchmarks.

16

	Introduction
	Method
	A KL-Adaptive Value Tracker
	Advantage Estimation and Policy Optimization
	Prioritized Prompt Sampling
	Advantages over GRPO

	Experiments
	Empirical Comparison with GRPO

	Conclusions
	Related Work
	Background
	Policy Gradient and the REINFORCE Algorithm
	Variance Reduction Baselines for Large Language Models

	SPO Algorithm
	Batch Extensions
	Comparisons against GRPO
	Inefficiency of Dynamic Sampling
	Variance Reduction for Policy Gradient

	Training and Evaluation Details
	Experimental Setup

	Ablation Studies
	Analysis of Signal Efficiency and Stability
	Agentic Training Demonstrations
	Pass@k Comparison

