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ABSTRACT

Most existing knowledge distillation methods for semantic segmentation focus on
extracting various complex forms of knowledge from raw features. However, such
knowledge is usually manually designed and relies on prior knowledge as in tra-
ditional feature engineering. In this paper, in order to seek a more simple and
effective way to perform feature distillation, we analyze the naive feature distil-
lation method with raw features and reveal that it actually attempts to make the
student learn both the magnitude and angular information from the teacher fea-
tures simultaneously. We further find experimentally that the angular information
is more effective than the magnitude information for feature distillation. Based
on this finding, we propose a simple and effective feature distillation method for
semantic segmentation, which eliminates the need to manually design distillation
knowledge. Experimental results on three popular benchmark datasets show that
our method achieves state-of-the-art distillation performance for semantic seg-
mentation. The code will be available.

1 INTRODUCTION

Recent works on backbones (He et al., 2016; Wang et al., 2021; Zhang et al., 2020) and segmentation
frameworks Zhao et al. (2017); Chen et al. (2018); Yuan et al. (2020) have greatly improved the
performance of semantic segmentation. However, these high-performance models often require a lot
of memory and computational overhead. Lightweight models are preferred in real-time applications
due to limited resources. As a result, there is growing interest in how to reduce the model size while
maintaining decent performance.

The knowledge distillation (KD) introduced by Hinton et al. (2015) was proven to be a promising
way to solve this problem. Its key idea is to transfer the knowledge from a cumbersome model
(teacher) to a compact one (student). Hinton et al. (2015) define the knowledge as soft labels pro-
duced by the teacher and supervise the student with both ground truth labels and soft labels. FitNets
(Romero et al., 2015) extends this idea to intermediate representation of the model by making the
student directly mimic the teacher’s hidden layer features. Inspired by this, many feature-based
KD methods emerged later. Instead of distilling the raw features as in FitNets (Romero et al., 2015),
most existing feature-based methods prefer to extract various forms of knowledge from raw features,
such as attention map (Zagoruyko & Komodakis, 2017), Gramian matrix (Yim et al., 2017), pair-
wise similarity (Liu et al., 2019) and low-level texture knowledge (Ji et al., 2022). However, these
complex forms of knowledge are usually manually designed and rely on various prior knowledge as
in traditional feature engineering.

In this paper, we first analyze the feature distillation method proposed in FitNets (Romero et al.,
2015) and reveal that distilling the raw features is equivalent to making the student learn both the
magnitude and angular information from the teacher features simultaneously, which we believe may
account for the limited performance improvement of FitNets (Romero et al., 2015). We therefore
design two kinds of feature distillation methods, Magnitude Distillation and Angular Distillation,
to decouple the learning of magnitude and angular information. Magnitude Distillation makes the
student learn only the magnitude information from the teacher features, while Angular Distillation
focuses on the angular information. The experimental results for semantic segmentation show that
Angular Distillation achieves significantly better results than Magnitude Distillation and FitNets
method (Romero et al., 2015). Therefore, we argue that decoupling the learning of magnitude and
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angular information is important, and the angular information is more effective than magnitude in-
formation for feature distillation. We evaluate our method for semantic segmentation on Cityscapes,
Pascal VOC, and ADE20K. Experimental results show that our method outperforms existing KD
methods for semantic segmentation by a large margin.

Our main contributions are summarized as follows:

• We take a closer look at the classical KD method FitNets and reveal that it enforces both
the magnitude and angular differences between teacher and student features to be as small
as possible. However, we find experimentally that the angular information is more effective
for feature distillation than the magnitude information.

• We propose a simple and effective feature distillation method for semantic segmenta-
tion, which achieves state-of-the-art distillation performance on three popular benchmark
datasets.

• Our method distills with raw features and hence does not rely on manually designed dis-
tillation knowledge. In addition, ablation studies show that our method performs well at
different distillation positions and is robust to hyper-parameters.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Existing KD methods can be roughly divided into logits-based, feature-based and relation-based
according to the type of knowledge. Logits-based methods transfer class probabilities produced
from the teacher as soft labels to supervise the student. Feature-based methods take the feature maps
of intermediate layers as knowledge. Relation-based methods focus on the relationships between
different layers or data samples.

Among these methods, the feature-based methods are more related to this paper. FitNets (Romero
et al., 2015) is the first KD method to take the features of the intermediate layers as knowledge.
After that, many methods focusing on different aspects of feature distillation have been proposed,
such as designing various forms of new knowledge from raw features (Zagoruyko & Komodakis,
2017; Passalis & Tefas, 2018), changing the teacher’s or student’s training strategies to facilitate
distillation (Jin et al., 2019; Zhu & Wang, 2021), and adaptively utilizing multiple layers of features
for distillation (Chen et al., 2021; Ji et al., 2021). Differently, we revisit the naive feature distillation
method introduced in FitNets and analyze the possible reasons for its limited performance.

2.2 KNOWLEDGE DISTILLATION FOR SEMANTIC SEGMENTATION

Applying KD methods for image classification to semantic segmentation in a straightforward way
may not yield satisfactory results. As a result, some KD methods tailored for semantic segmentation
have been proposed. Xie et al. (2018) use the local similarity between a pixel and its 8 neighbors
on the feature map as knowledge. Liu et al. (2019) distill the long-range dependency by computing
the pairwise similarity on the feature map and enforce high-order consistency between the outputs
of the teacher and student through adversarial learning. Wang et al. (2020) propose to transfer the
intra-class feature variation of the teacher to student. Shu et al. (2021) focus on channel information
by softly aligning the activation of each channel between the teacher and student, which is more
effective on logits than on features. Unlike these methods, our method does not rely on manually
designed distillation knowledge and tedious distillation strategies such as adversarial learning. Ex-
tensive experiments on semantic segmentation show that our method outperforms existing methods
by a large margin, demonstrating its simplicity and effectiveness.

3 METHOD

3.1 ANALYSIS OF NAIVE FEATURE DISTILLATION

In this paper, we refer to the KD method proposed by FitNets (Romero et al., 2015) as Naive Feature
Distillation. It encourages the student to have the same feature activation as the teacher. Let F s ∈
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RC×H×W and F t ∈ RC×H×W denote the feature maps of the student and teacher, respectively,
where C is the number of channels, H and W are the height and width. Naive Feature Distillation
minimizes the following loss:

Lnaive = MSE(F s,F t) =
1

N
||F t − F s||2 =

1

N

N∑
i=1

(F t
i − F s

i )
2 (1)

where N = C ×H ×W . Although such feature distillation is considered as a promising approach
in KD, inspiring a line of subsequent feature-based methods, its performance improvement is not
significant.

We believe the raw features of the teacher should contain enough information to guide the student.
So instead of extracting complex forms of knowledge from raw features as other methods do, we
tend to dive into the Naive Feature Distillation method, seeking a more simple and effective way to
perform feature distillation. From the perspective of vectors, we can reformulate F s and F t as:

F s = ||F s||x̂ = nx̂

F t = ||F t||ŷ = mŷ
(2)

where n and m denote the magnitudes of F s and F t, respectively, and x̂ and ŷ are unit vectors
denoting the directions of F s and F t, respectively. Then Lnaive in Eq. 1 can be reformulated as:

Lnaive =
1

N
||mŷ − nx̂||2

=
1

N

N∑
i=1

(mŷi − nx̂i)
2

=
1

N
(m2

N∑
i=1

ŷ2
i + n2

N∑
i=1

x̂2
i − 2mn

N∑
i=1

ŷix̂i)

=
1

N
(m2||ŷ||2 + n2||x̂||2 − 2mn ŷ · x̂)

=
1

N
(m2 + n2 − 2mn cos θ)

=
1

N
[(m− n)2 + 2mn(1− cos θ)]

(3)

where θ denotes the angle between x̂ and ŷ, i.e. the angle between F s and F t.

The first item in Eq. 3 minimizes the magnitude difference between F s and F t, and the second
item minimizes the angular difference between F s and F t. Lnaive reaches its minimum when both
m = n and θ = 0 are satisfied. It means that the Naive Feature Distillation enforces the student
to learn both the magnitude and angular information from the teacher features simultaneously. We
believe that minimizing both magnitude and angular differences between student and teacher fea-
tures is difficult, perhaps even unnecessary. It may explain the limited performance improvement
of Naive Feature Distillation and inspires us to investigate the relative importance of the magnitude
and angular information of the feature for distillation.

3.2 DECOUPLED DISTILLATION

Based on the above analysis, we intend to decouple the learning of magnitude and angular informa-
tion, as well as to investigate which part of the information is more effective for feature distillation.
Therefore, we design two feature distillation methods Magnitude Distillation and Angular Distilla-
tion.

The aim of Magnitude Distillation is to make the student focus on learning the magnitude infor-
mation from the teacher features. Based on the first item in Eq. 3, we adopt the following loss for
Magnitude Distillation:

Lmd = (||F t|| − ||F s||)2 (4)
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Table 1: Experiments about decoupling the learning of magnitude and angular information on
Cityscapes validation set. “T” and “S” denote the teacher and student, respectively. “Naive” de-
note Naive Feature Distillation. “–” means training without KD.

Model KD Method mIoU (%)
T: PSPNet-R101 – 79.76

S: PSPNet-R18

– 72.65
Naive (Romero et al., 2015) 74.50
Magnitude Distillation 74.51
Angular Distillation 76.86

(a) (b) (c) (d)

Figure 1: Magnitude and angular differences between teacher (PSPNet-R101) and student (PSPNet-
R18) features on Cityscapes validation set. “Naive”, “MD”, and “AD” denote Naive Feature Distilla-
tion, Magnitude Distillation, and Angular Distillation, respectively. (a) and (b) show the magnitude
error and cosine distance between teacher and student features during training for the Naive Fea-
ture Distillation, respectively. (c) shows the magnitude error between teacher and student features,
where smaller values indicate smaller magnitude differences. (d) shows the cosine distance between
teacher and student features, where smaller values indicate smaller angular differences.

As a result, Magnitude Distillation minimizes only the magnitude difference between teacher and
student features.

In contrast, Angular Distillation aims to make the student focus on learning the angular information
from the teacher features. According to Eq. 3, with m = n = 1, we can eliminate the magnitude
difference term in Lnaive, leaving only the angular difference term. m = n = 1 can be satisfied by
applying L2 normalization to F s and F t, so we adopt the following loss for Angular Distillation:

Lad = MSE(
F s

||F s||
,

F t

||F t||
) (5)

Similar to Eq. 3, based on Eq. 2, Lad is essentially equivalent to:

Lad =
2

N
(1− cos θ) (6)

Obviously, Angular Distillation minimizes only the angular difference between teacher and student
features.

We conduct experiments on these three distillation methods, namely Naive Feature Distillation,
Magnitude Distillation and Angular Distillation, on Cityscapes for semantic segmentation. The
distillation results are listed in Table 1, and the magnitude and angular differences between teacher
and student features are shown in Figure 1. We can observe that: 1) Naive Feature Distillation, trying
to minimize both the magnitude and angular differences between teacher and student features (see
Figure 1 (a) and (b)), fails to achieve a smaller magnitude difference than Magnitude Distillation
(see Figure 1 (c)), and also fails to achieve a smaller angular difference than Angular Distillation
(see Figure 1 (d)), and 2) Angular Distillation achieves significantly better performance than the
other two methods. We therefore conclude that decoupling the learning of magnitude and angular
information is important, and the angular information is more effective than magnitude information
for feature distillation.
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Figure 2: The pipeline of applying our method for semantic segmentation. Lad is the proposed
Angular Distillation loss on features. Lkd is the conventional KD loss on logits. Lgt is the cross-
entropy loss for semantic segmentation.

Notably, the above Angular Distillation treats the entire features of a layer from teacher or student
as a vector, minimizing the angular difference between them. We call this Layer-wise Angular
Distillation (LAD), which minimizes the loss in Eq. 5, i.e.,

Llad = Lad (7)

In addition, we can treat the features in each channel as a vector, and minimize the angular difference
between features of the same channel from teacher and student. We call this Channel-wise Angular
Distillation (CAD). Based on Eq. 5, its loss is

Lcad =
1

C

C∑
c=1

MSE(
F s
c,:,:

||F s
c,:,:||

,
F t
c,:,:

||F t
c,:,:||

) (8)

where Fc,:,: ∈ RH×W denotes the feature vector of the c-th channel. Furthermore, we can also treat
the features in each spacial point as a vector, and minimize the angular difference between features
of the same spacial point from teacher and student. We call this Point-wise Angular Distillation
(PAD), and its loss is as follows:

Lpad =
1

H ×W

H∑
h=1

W∑
w=1

MSE(
F s
:,h,w

||F s
:,h,w||

,
F t
:,h,w

||F t
:,h,w||

) (9)

where F:,h,w ∈ RC denotes the feature vector of the spacial point (h,w). The difference between
LAD, CAD and PAD is that the dimensions of the angular information used for distillation are
different. We compare these three Angular Distillation methods in Section 4.4.1.

The pipeline of applying our Angular Distillation for semantic segmentation is shown in Figure 2.
Following the previous methods (Liu et al., 2019; Wang et al., 2020; Shu et al., 2021), we apply the
conventional KD loss (Hinton et al., 2015) on logits as well. Therefore, the total loss of our method
is as follows:

L = λadLad + λkdLkd + Lgt (10)

where Lad is our Angular Distillation loss, which can be Llad, Lcad or Lpad. Lkd is the conventional
KD loss (Hinton et al., 2015) on logits, and Lgt is the cross-entropy loss for semantic segmentation.

4 EXPERIMENTS

4.1 DATASETS

Cityscapes. The Cityscapes (Cordts et al., 2016) is a large-scale dataset for semantic urban scene
understanding, with high quality pixel-level annotations of 5000 images in addition to a larger set
of 19998 coarsely annotated images. It contains 30 classes, and 19 of them are used for evaluation.
We only use the finely annotated 2975 images for training and 500 images for validation.
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Table 2: Comparison with state-of-the-art methods on validation sets of Cityscapes, Pascal VOC
and ADE20K. “T” and “S” denote the teacher and student, respectively. “R101”, “R18” and “MV2”
denote ResNet101, ResNet18 and MobileNetV2, respectively. “–” means training without KD.

Model Method mIoU (%)
Cityscapes VOC 2012 ADE20K

T: PSPNet-R101 – 79.76 78.52 44.39

S: PSPNet-R18

– 72.65 71.35 35.03
SKD (Liu et al., 2019) 74.23 72.01 35.26
IFVD (Wang et al., 2020) 74.55 72.00 35.92
CWD (Shu et al., 2021) 75.91 73.07 36.78
LAD (Ours) 76.86 75.74 39.63

S: PSPNet-MV2

– 72.73 69.14 33.33
SKD (Liu et al., 2019) 72.90 69.62 33.39
IFVD (Wang et al., 2020) 73.74 69.45 33.85
CWD (Shu et al., 2021) 74.73 71.28 35.26
LAD (Ours) 75.76 74.13 38.92

S: DeepLabV3-R18

– 74.96 71.98 37.19
SKD (Liu et al., 2019) 75.32 73.03 36.91
IFVD (Wang et al., 2020) 76.01 72.87 37.66
CWD (Shu et al., 2021) 77.13 73.78 38.64
LAD (Ours) 77.23 76.33 41.12

S: DeepLabV3-MV2

– 73.98 69.92 35.14
SKD (Liu et al., 2019) 75.78 70.13 35.11
IFVD (Wang et al., 2020) 75.24 70.32 35.35
CWD (Shu et al., 2021) 76.59 71.68 36.49
LAD (Ours) 77.47 74.93 39.66

Pascal VOC. The Pascal VOC (Everingham et al., 2010) dataset contains 20 common objects and
one background class with annotations on daily captured photos. We use the augmented dataset with
extra coarse annotations provided by Hariharan et al. (2011) resulting in 10582 and 1449 images for
training and validation.

ADE20K. The ADE20K (Zhou et al., 2017) is a densely annotated dataset with the instances of
stuff, objects, and parts, covering a diverse set of visual concepts in scenes. It contains 150 classes
and is divided into 20210 and 2000 images for training and validation. It is challenging due to its
large number of classes and existence of multiple small objects in complex scenes.

4.2 IMPLEMENTATION DETAILS

4.2.1 NETWORK ARCHITECTURES

Following the previous methods (Liu et al., 2019; Wang et al., 2020; Shu et al., 2021), we adopt
PSPNet Zhao et al. (2017) with ResNet101 He et al. (2016) backbone as the teacher for all exper-
iments, and use different segmentation models (PSPNet Zhao et al. (2017) and DeepLabV3 Chen
et al. (2017)) and backbones (ResNet18 He et al. (2016) and MobileNetV2 Sandler et al. (2018)) for
the student to verify the effectiveness of our method.

4.2.2 TRAINING DETAILS

We use the pretrained teacher model and keep its parameters fixed during distillation. For student
training, we use Stochastic Gradient Descent (SGD) as the optimizer with a batch size of 16, a
weight decay of 0.0005 and a momentum of 0.9. We use the “poly” learning rate policy where the
learning rate equals to base lr∗(1− iter

max iter )
power. We set the base learning rate to 0.01 and power

to 0.9. We train 80k iterations for Cityscapes and Pascal VOC and 160k iterations for ADE20K. We
apply random horizontal flipping, random scaling (from 0.5 to 2.0) and random cropping on the
input images as data augmentation during training. The crop size for Cityscapes, Pascal VOC and
ADE20K are 512 × 1024, 512 × 512 and 512 × 512, respectively. We use single scale testing for
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(a) Image (b) w/o KD (c) CWD (d) LAD (Ours) (e) GT

Figure 3: Qualitative comparison results for the student PSPNet-R18. The first two rows are the
results on Cityscapes validation set, and the last two rows are the results on ADE20K validation set.

all datasets. Unless stated, the features from the last layer of the backbone are used for distillation
in our method. λad is set to 10 by default, and λkd is set to 10 following the previous methods (Liu
et al., 2019; Wang et al., 2020; Shu et al., 2021).

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with recent KD methods for semantic segmentation on Cityscapes, Pascal
VOC and ADE20K. We re-implemented SKD (Liu et al., 2019), IFVD (Wang et al., 2020) and CWD
(Shu et al., 2021) based on their released code. The hyper-parameters related to distillation loss are
set according to their recommended values. For fair comparison, all methods use exactly the same
training and testing strategies as described in Section 4.2.2. It is important to note that SKD, IFVD
and CWD use the adversarial distillation loss on logits to improve performance, while our method
does not.

Table 2 shows the results on various student models with different backbones (ResNet18 and Mo-
bileNetV2) and decoders (PPM (Zhao et al., 2017) and ASPP (Chen et al., 2017)). Our method
significantly improves the performance of baseline students without KD. For example, the perfor-
mance gains for PSPNet-R18 under our method are 4.21%, 4.39% and 4.60% on Cityscapes, Pascal
VOC and ADE20K, respectively. Although our method utilizes the features from the last layer of the
backbone for distillation by default, the performance gains are not much affected by the backbone
architecture. Specifically, our method improves the performance of PSPNet-MV2 by 3.03%, 4.99%
and 5.59% on Cityscapes, Pascal VOC and ADE20K, respectively. In addition, our method fur-
ther narrows the performance gap between the teacher and DeepLabV3-R18 which acts as a strong
baseline student.

More importantly, our method consistently outperforms other methods by a large margin under vari-
ous experimental setups, especially on Pascal VOC and ADE20K. For example, our method outper-
forms CWD, the previous state-of-the-art KD method for semantic segmentation, by 2.85%, 3.66%,
2.48% and 3.17% when using PSPNet-R18, PSPNet-MV2, DeepLabV3-R18 and DeepLabV3-MV2
as student on more challenging ADE20K dataset. We further show the qualitative comparison results
in Figure 3.

4.4 ABLATION STUDY

In this section, we give extensive experiments to investigate the effectiveness of our method and
discuss the choice of some hyper-parameters. Ablation experiments are mainly conducted on
Cityscapes and ADE20K, with PSPNet-R101 as the teacher and PSPNet-R18 as the student.
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Table 3: Ablation study about different Angular Distillation methods. “T” and “S” denote the teacher
and student, respectively. “–” means training without KD. “LAD”, “CAD” and “PAD” denote Layer-
wise, Channel-wise and Point-wise Angular Distillation, respectively.

Model KD Method mIoU (%)
Cityscapes ADE20K

T: PSPNet-R101 – 79.76 44.39

S: PSPNet-R18

– 72.65 35.03
Naive (Romero et al., 2015) 74.50 35.36
LAD (Ours) 76.86 39.63
CAD (Ours) 76.77 38.99
PAD (Ours) 75.52 39.36

Table 4: Ablation study about the KD positions for our method on Cityscapes validation set. “T”
and “S” denote the teacher and student, respectively. “–” means training without KD. “backbone”
means the last layer of backbone, “decoder” means the last layer of decoder, and “logits” means the
final prediction layer.

Model KD Method mIoU (%)
T: PSPNet-R101 – 79.76

S: PSPNet-R18

– 72.65
LAD-backbone 76.86
LAD-decoder 75.27
LAD-logits 74.96
CAD-backbone 76.77
CAD-decoder 75.44
CAD-logits 75.19

4.4.1 DIMENSIONS OF ANGULAR DISTILLATION

As mentioned before, our Angular Distillation can be further divided into Layer-wise Angular Distil-
lation (LAD), Channel-wise Angular Distillation (CAD) and Point-wise Angular Distillation (PAD)
according to the dimensions of the angular information. We compare these three methods for se-
mantic segmentation on Cityscapes and ADE20K. As shown in Table 3, LAD achieves the best
results, while CAD and PAD perform slightly worse than LAD. It is worth noting that LAD, CAD
and PAD all perform better than Naive Feature Distillation, which demonstrates the effectiveness of
our Angular Distillation.

4.4.2 POSITIONS OF KD

To evaluate our method at different KD positions, we conduct experiments using features from:
1) the last layer of backbone, 2) the last layer of decoder, and 3) the final prediction layer. As
shown in Table 4, our method performs best at the last layer of the backbone. Note that the optimal
loss weights for different KD positions may be different, but we use the same loss weights for
different KD positions for simplicity in this experiment. The features produced by the decoder or
prediction layer are highly compressed and task-specific as they are located at the top level of the
model. Instead, the features from the backbone tend to be more informative and rich in generic
representations, which may explain the better results of our method at the backbone.

4.4.3 WEIGHTS OF KD LOSS

The Angular Distillation loss in our method is weighted by λad in Eq. (10). We conduct extensive
experiments on three datasets to investigate the sensitivity of our method to λad. The results in
Figure 4 demonstrate the excellent robustness of our method to hyper-parameters.
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Figure 4: Ablation study about the sensitivity of our method (LAD) to loss weight λad. The teacher
model is PSPNet-R101, and the student model is PSPNet-R18. The features from the last layer of
the backbone are used for distillation.

Table 5: Ablation study about the generalization of our method over different networks on ADE20K
validation set. “T” and “S” denote the teacher and student, respectively. “–” means training without
KD.

Model KD Method mIoU (%)
T: UPerNet-SwinB – 47.99

S: UPerNet-SwinT

– 43.72
Naive (Romero et al., 2015) 44.45
CWD (Shu et al., 2021) 45.08
LAD (Ours) 45.47
CAD (Ours) 46.12

4.4.4 GENERALIZATION OVER DIFFERENT NETWORKS

Following the previous methods (Liu et al., 2019; Wang et al., 2020; Shu et al., 2021), the above ex-
periments are mainly conducted on segmentation models with a plain encoder-decoder architecture
like PSPNet without skip connections. In this section, we conduct experiments based on UPerNet
(Xiao et al., 2018), which adopts FPN (Lin et al., 2017) to fuse multi-level features in an inherent
and pyramidal hierarchy. In addition, we use Transformer backbone for teacher and student, which
has a completely different architecture from CNN. Specifically, the teacher’s backbone is Swin-B
(Liu et al., 2021), while the student’s backbone is Swin-T. As shown in Table 5, our method greatly
improves the performance of the baseline student without KD and outperforms the Naive Feature
Distillation and CWD. The results confirm the effectiveness of our method again, and further demon-
strate the promising generalization of our method over different networks.

5 CONCLUSION

In this paper, we analyze the naive feature distillation method and find that the angular information
is more effective for feature distillation than the magnitude information. Based on our finding, we
propose a simple and effective feature distillation method for semantic segmentation. Extensive
experiments demonstrate the superior performance of our method. We focus on how to effectively
distill with raw features between manually assigned pairs of teacher-student intermediate layers,
which may not be optimal. Therefore, how to effectively leverage multi-layer features for distillation
is part of our future work.
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A QUALITATIVE COMPARISON RESULTS

We give more qualitative comparison results as shown in Figure 5.

(a) Image (b) w/o KD (c) CWD (d) LAD (Ours) (e) GT

Figure 5: Qualitative comparison results for the student model PSPNet-R18. The first two rows are
the results from Cityscapes validation set, and the rest are the results from ADE20K validation set.

B DETAILED PERFORMANCE OF EACH CLASS

We calculate the IoU scores on each class for the student. As illustrated in Figure 6 and Figure 7,
we can observe that our method consistently achieves better class performance than the baseline
without KD and CWD, especially for those classes with few annotated pixels or low IoU scores.
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Figure 6: Detailed IoU scores of each class for the student model PSPNet-R18 on Cityscapes vali-
dation set. The class names highlighted in red are those that have few annotated pixels.

(a)

(b)

Figure 7: Detailed IoU scores of each class for the student model PSPNet-R18 on ADE20K valida-
tion set. (a) shows the results of the classes with a large number of annotated pixels. (b) shows the
results of the classes with few annotated pixels.
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