
Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Daniel Y. Fu * 1 Elliot L. Epstein * 2 Eric Nguyen 3 Armin W. Thomas 4

Michael Zhang 1 Tri Dao 1 Atri Rudra 5 Christopher Ré 1

Abstract

State space models (SSMs) have high performance
on long sequence modeling but require sophis-
ticated initialization techniques and specialized
implementations for high quality and runtime per-
formance. We study whether a simple alternative
can match SSMs in performance and efficiency:
directly learning long convolutions over the
sequence. We find that a key requirement to achiev-
ing high performance is keeping the convolution
kernels smooth. We find that simple interventions—
such as squashing the kernel weights—result in
smooth kernels and recover SSM performance
on a range of tasks including the long range arena,
image classification, language modeling, and brain
data modeling. Next, we develop FLASHBUTTER-
FLY, an IO-aware algorithm to improve the runtime
performance of long convolutions. FLASHBUT-
TERFLY appeals to classic Butterfly decomposi-
tions of the convolution to reduce GPU memory IO
and increase FLOP utilization. FLASHBUTTER-
FLY speeds up convolutions by 2.2×, and allows
us to train on Path256, a challenging task with
sequence length 64K, where we set state-of-the-art
by 29.1 points while training 7.2× faster than prior
work. Lastly, we introduce an extension to FLASH-
BUTTERFLY that learns the coefficients of the
Butterfly decomposition, increasing expressivity
without increasing runtime. Using this extension,
we outperform a Transformer on WikiText103 by
0.2 PPL with 30% fewer parameters.

*Equal contribution 1Department of Computer Science,
Stanford University, Stanford, CA, USA 2Institute of Compu-
tational and Mathematical Engineering, Stanford University,
Stanford, CA, USA 3Department of Bioengineering, Stanford
University, Stanford, CA, USA 4Department of Psychology,
Stanford University, Stanford, CA, USA 5Department of Computer
Science and Engineering, University at Buffalo, Buffalo, NY,
USA. Correspondence to: Daniel Y. Fu<danfu@cs.stanford.edu>,
Elliot L. Epstein<epsteine@stanford.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1 Introduction
Recently, a new class of sequence models based on state
space models (SSMs) (Gu et al., 2022a; Gupta et al., 2022;
Hasani et al., 2022; Li et al., 2022) has emerged as a
powerful general-purpose sequence modeling framework.
SSMs scale nearly linearly in sequence length and have
shown state-of-the-art performance on a range of sequence
modeling tasks, from long range modeling (Smith et al.,
2022) to language modeling (Dao et al., 2022c; Ma et al.,
2022), computer vision (Islam & Bertasius, 2022; Nguyen
et al., 2022), and medical analysis (Tang et al., 2022).

However, SSMs rely on sophisticated mathematical struc-
tures to train effectively in deep networks (Gu et al., 2022a).
These structures generate a convolution kernel as long as
the input sequence by repeatedly multiplying a hidden
state matrix. This process may be unstable (Goel et al.,
2022) and requires careful hand-crafted initializations (Gu
et al., 2022c), leaving practitioners with a dizzying array of
choices and hyperparameters. This begs the question, why
not parameterize the long convolution kernel directly?

There are two challenges that long convolutions face
for sequence modeling. The first is quality: previous
attempts at directly parameterizing the convolution kernel
have underperformed SSMs (Li et al., 2022; Romero
et al., 2021b). The second is runtime performance: long
convolutions can be computed in O(N log N) FLOPS
in sequence length N using the Fast Fourier transform
(FFT), but systems constraints often make them slower than
quadratic algorithms, such as attention. In this paper, we
show that simple regularization techniques and an IO-aware
convolution algorithm can address these challenges. The
simplicity of the long convolution formulation further allows
for connections to block-sparse matrix multiplication that
increase expressivity beyond convolutions or SSMs.

Closing the Quality Gap. First, to understand the quality
gap, we study the performance of long convolutions com-
pared to SSMs on Long Range Arena (LRA) (Tay et al.,
2020), a key benchmark designed to test long sequence mod-
els. Long convolutions underperform SSMs by up to 16.6
points on average (Table 4). Visualizing the convolution ker-
nels identifies a potential culprit: the long convolution kernels
are non-smooth, whereas SSM kernels are smooth (Figure 2).

1

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

In SRAM

Convolution Weights

Squash Smoothing

Simple Regularizations FlashButter�y:
IO-Aware Convolutions

Exploits Matmul Units

Butter�y Decomposition

Three-Pass Algorithm

Extensions to
Structured Matrices

State Space
Models

Convolutions

Structured
Sparse
Matrices

Figure 1. Left: Simple regularization techniques allow long convolutions to match state space models in sequence modeling. Middle:
FLASHBUTTERFLY is an IO-aware algorithm for long convolutions that improves runtime performance and scales to long sequences.
Right: We show deep connections to advances in block-sparse matrix multiplication and structured matrices.

We explore two simple regularization techniques from the
signal processing literature that alleviate this problem. The
first technique uses a SQUASH operator to reduce the mag-
nitude kernel weights in the time domain, enforcing sparsity
that translates to smoothness in the frequency domain. The
second technique applies a SMOOTH operator to the kernel
weights in the time domain, which we find also promotes
smoothness in the frequency domain. With regularization,
long convolutions recover the performance of SSMs—and
appear more robust to initialization than SSMs, matching
S4 on LRA even with completely random initialization.

Motivated by the success of these simple regularizations
on LRA, we further evaluate the performance of long
convolutions on other complex sequence modeling tasks
from diverse modalities. On image classification, we find that
long convolutions can be an effective drop-in replacement for
SSM layers. Replacing the SSM layer in S4 models with long
convolutions yields a lift of 0.3 accuracy points on sequential
CIFAR and comes within 0.8 points of S4ND-ISO on 2D
CIFAR. On text modeling, long convolutions are competitive
with the recent SSM-based H3 model (Dao et al., 2022c)—
coming within 0.3 PPL of H3 on OpenWebText (Gokaslan
et al., 2019) and matching H3 on the PILE (Gao et al., 2020).
Finally, long convolutions outperform both Transformers and
SSMs in brain data modeling—by 0.14 and 0.16 MAE points,
respectively—which suggests that the simpler architecture
can even outperform SSMs for some applications.

Closing the Runtime Performance Gap. However, long
convolutions are inefficient on modern hardware, since the
FFT convolution incurs expensive GPU memory IO and can-
not utilize matrix multiply units—even when using optimized
implementations like cuFFT (NVIDIA, 2022a). SSM convo-
lution formulations rely on specialized GPU Cauchy kernels
and Vandermonde kernels, as well as special recurrent
message passing structure, to overcome these challenges.

In response, we develop FLASHBUTTERFLY, a simple
IO-aware algorithm for long convolutions, which does

not require ad hoc hand engineering. FLASHBUTTERFLY
appeals to classic Butterfly decompositions of the FFT to
rewrite the FFT convolution as a series of block-sparse
Butterfly matrices. This decomposition reduces the number
of passes over the input sequence—reducing the GPU
memory requirements—and utilizes matrix multiply units
on the GPU, which increases FLOP utilization.

FLASHBUTTERFLY speeds up convolutions by 2.2× over
cuFFT, and outperforms the fastest SSM implementations,
since it does not incur the cost of generating the SSM convo-
lution kernel. To demonstrate FLASHBUTTERFLY’s scaling
ability, we train a long convolution model on Path256, a task
with sequence length 64K. We set state-of-the-art by 29.1
points and train 7.2× faster than the previous best model.

Deeper Connections and Learned Butterfly Extension.
The Butterfly decomposition in FLASHBUTTERFLY forms
deep connections to recent work in block-sparse matrix
multiplication (Chen et al., 2021). Butterfly matrices are a
special case of Monarch matrices, which capture a large class
of structured matrices (Dao et al., 2022a). The block size
r interpolates between the fixed FFT for small block sizes
to fully dense matrix multiplication for large matrices. This
connection suggests a natural learned Butterfly extension
that goes beyond convolutions in expressivity.

Our learned Butterfly extension simply learns the parameters
in the Butterfly matrices from the data, instead of using the
fixed matrices that corresopnd to the FFT and inverse FFT.
Learning the Butterfly matrices while keeping the block
size fixed yields additional parameters without additional
FLOPS—yielding 0.8 additional points of lift on sequential
CIFAR. Increasing the block size of the Butterfly matrices ap-
proaches the expressivity of fully dense matrices—including
those used in linear layers and MLPs. As a proof of concept,
we use this property to replace the MLPs in a Transformer
language model—and outperform a GPT-2 model on
WikiText103 by 0.2 PPL with 30% fewer parameters.

2

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Summary. In summary, we show that long convolutions are
an effective model for long sequence modeling. They match
or exceed SSMs across an array of diverse sequence domains
while requiring less hand-crafted initializations and showing
improved stability. Additionally, by leveraging connections
to Butterfly matrices, long convolutions can be trained up
to 1.8× faster than SSMs.1

2 Background
Deep State Space Models A continuous-time state space
model (SSM) maps an input signal u(t)∈RN , over time t,
to an output signal y(t)∈RN as

ẋ(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t),

by the use of hidden state x(t)∈Rd and some set of matrices
A∈Rd×d, D∈R1×1, B∈Rd×1, C∈R1×d. Discretizing
the SSM yields a recursion xt =Axt−1+But, yt =Cxt+
Dut. By unrolling the recursion, y can be written as a con-
volution between u and a kernel K that depends on A, B, C:

y=K∗u+Du. (1)
A key ingredient to training deep SSM models is proper
initialization of the learnable matrices A, B, C, and D. Ini-
tialization strategies often draw upon the HiPPO theory (Gu
et al., 2020) on orthogonal polynomials, and involve the
selection of measures and discretization strategies. The
parameters may also be unstable to learn, which can require
custom learning rate schedules (Gu et al., 2022c).

FFT Convolution Computing the convolution in Equa-
tion 1 can be costly for long sequences. A standard approach
is to compute the convolution using the FFT convolution
theorem. Then, the convolution can be computed as:

y=u∗K=F−1N DKFNu, (2)
where FN denotes the DFT matrix of size N , and
DK = diag(FNK). This so-called FFT convolution scales
in O(N logN) in sequence length N , but is often unopti-
mized on modern hardware (most optimized convolution
operators focus on short convolutions, e.g., 3×3).

Runtime Performance Characteristics We provide a
brief discussion of relevant factors affecting runtime perfor-
mance. Depending on the balance of computation and mem-
ory accesses, operations can be classified as either compute-
bound or memory-bound. In compute-bound operations, the
time accessing GPU memory is relatively small compared
to the time spent doing arithmetic operations. Typical ex-
amples are matrix multiply with large inner dimension, and
short convolution kernels with a large number of channels.
In memory-bound operations, the time taken by the opera-
tion is determined by the number of memory accesses, while
time spent in computation is much smaller. Examples include

1Our code is available at https://github.com/
HazyResearch/safari.

Table 1. Accuracy on the LISTOPS task in LRA.
Model Accuracy

S4-LegS 59.6

Long Convs 53.4
Long Convs, +SMOOTH 59.8
Long Convs, +SQUASH 60.3

Long Convs, +SQUASH, +SMOOTH 59.7

most other operations: elementwise (e.g., activation, dropout)
and reduction (e.g., sum, softmax, batch norm, layer norm).

Our Approach Rather than parameterizing K with
carefully initialized SSM matrices, we seek to directly
parameterize the convolution K in Equation 1. Our goal is
to replace the SSM layer with a learned convolution kernel
as a drop-in replacement, while keeping the stacking and
multi-head structure of SSM models (which can be thought
of as multiple convolutional filters). We also aim to make the
FFT convolution runtime-performant on modern hardware.

3 Method
In Section 3.1, we conduct an initial investigation into
long convolutions for sequence modeling, and develop
two simple regularization strategies based on our findings.
Then, in Section 3.2, we present FLASHBUTTERFLY, an
IO-aware algorithm for speeding up convolutions modeled
after block-sparse matrix multiplication. Finally, we present
an extension of FLASHBUTTERFLY that leverages the
block-sparse connection for additional expressivity.

3.1 Long Convolutions for Sequence Modeling

First, we conduct a brief investigation into the performance of
vanilla long convolutions on sequence modeling, and we find
a gap in quality. We then propose two simple regularization
techniques for closing this gap. Motivation for Regulariza-
tion: Non-Smooth Kernels. We begin by directly replacing
the SSM layers in an S4 model with long convolutions, with
random initialization. We train a model on the LISTOPS
task from the long range arena (LRA) benchmark (Tay et al.,
2020), with element-wise dropout on the convolution kernel
weights. Table 1 shows that long convolutions underperform
SSMs with 6.2 points on LISTOPS.

To understand the gap in performance, we visualize one head
of the convolution kernel K, compared to an SSM kernel
in Figure 2. Compared to well-initialized SSM kernels, we
find that directly learning convolution weights results in
convolution kernels that are non-smooth and appear noisy.
We hypothesize that these properties are responsible for the
performance gap.

Regularizing the Kernel. We propose two simple
techniques for regularizing the convolution kernel to

3

https://github.com/HazyResearch/safari
https://github.com/HazyResearch/safari

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Ti
m

e
Re

sp
on

se
Fr

eq
ue

nc
y

Re
sp

on
se

Long Convolution

Squash Operator Gaussian Smoothing

S4
Ti

m
e

Re
sp

on
se

Fr
eq

ue
nc

y
Re

sp
on

se

Figure 2. Visualizations of kernels trained on the LISTOPS task
in LRA. Left to right, top to bottom: S4, long convolutions without
regularization, long convolutions with the SQUASH operator, and
long convolutions with the SMOOTH operator. Time response on
top, frequency response on the bottom.

Table 2. Convolution- and SSM-specific hyperparameters.
Model Hyperparameters Initializations

SSM d, lrA, lrB , lrC LegS, FouT, LegS/FouT
dropout, discretization Inv, Lin

Long Convs λ, kernel LR, Random, Geometric
k, dropout

alleviate these issues: SQUASH and SMOOTH. The
SQUASH operator is applied element-wise to the convo-
lution kernel, and reduces the magnitude of all weights:
K= sign(K)�max(|K|−λ,0). As an aside, we note that
SQUASH is equivalent to taking one step of an L1 proximal op-
erator: K= Proxλ‖.‖(K) = argminx{λ‖x‖1+‖x−K‖22}
and thus may have principled connections to proximal
gradient techniques. The SMOOTH operator applies
simple average pooling, with width p, to the convolution
kernel: Kk = (2p+ 1)−1

∑2p+1
j=1 Kk+j−p. Training long

convolutions with these regularizations matches SSMs in
performance on the LISTOPS task (Table 1). Additionally,
Figure 2 bottom shows that these regularizations improve
smoothness in the frequency domain as well. In Appendix B,
we evaluate directly smoothing in frequency domain.

Initialization. We seek to understand how sensitive long con-
volutions are to initialization. We note that since K directly
parameterizes the convolution kernel, we can also leverage
advances in initialization in SSMs such as HiPPO (Gu et al.,
2020) and S4-LegS (Gu et al., 2022c)—simply by converting
the initialized SSM model to a convolution kernel, and
initializing K to the convolution weights.

Algorithm 1 Regularized Long Convolution
Require: Input u ∈RB×H×N , K ∈RH×N , D ∈RH , where N

is the sequence length,H is the head dimension, andB is the
batch size.

1: K←dropout(K).
2: Kk←(2p+1)−1∑2p+1

j=1 Kk+j−p.
3: K←sign(K)�max(|K|−λ,0).
4: y←FLASHBUTTERFLY(K,u)+D�u.
5: Return y∈RB×H×N

While complex initialization strategies can be powerful, they
require careful tuning to configure. To understand the impact
of initialization on long convolutions, we evaluate two
simple intialization techniques: random initialization, and
a geometric decay initialization. The random initialization
initializes the weights to be randomly distributed from
a Normal distribution: Ki ∼ N . The geometric decay
initialization additionally scales kernel weights to decay
across the sequence, as well as across the heads. For the
kernel K(h), 1 ≤ h ≤ H , we initialize the weights as:
K

(h)
k = xexp(−kN−1(H/2)

hH−1

), for 1≤ k≤N , where
x∼N is drawn from a Normal distribution.

Summary The full method is written in Algorithm 1, with
a forward reference to our fast convolution solution FLASH-
BUTTERFLY. In Algorithm 1, all operators (max, sign, and
absolute value) are applied entry-wise, FLASHBUTTERFLY
is taken over the sequence dimension and the skip connection
is taken over the head dimension. Convolution-specific
hyperparameters are shown in Table 2. Compared to the
hyperparameters necessary to train S4, our regularization
approaches have fewer hyperparameters and choices than S4.

3.2 FLASHBUTTERFLY

In addition to improving the quality of long convolutions, it
is also critical to improve runtime performance. We present
FLASHBUTTERFLY, an IO-aware algorithm for speeding
up general convolutions on modern hardware. We use kernel
fusion to reduce GPU memory IO requirements, and use
a Butterfly decomposition to rewrite the FFT as a series
of block-sparse matrix multiplications. To scale to long
sequences, we use an alternate Butterfly decomposition to
construct a three-pass FFT convolution algorithm to further
reduce IO requirements.

Kernel Fusion. Naive implementations of the FFT
convolution incur expensive GPU memory IO. The FFT,
inverse FFT, and pointwise multiplication in Equation 2 each
require at least one read and write of the input sequence from
GPU memory. For long sequences, the IO costs may be even
worse: the entire input sequence cannot fit into SRAM, so
optimized implementations such as cuFFT (NVIDIA, 2022a)
must take multiple passes over the input sequence using the
Cooley-Tukey decomposition of the FFT (Cooley & Tukey,

4

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

1965). Following FLASHATTENTION (Dao et al., 2022b),
FLASHBUTTERFLY’s first fuses the entire FFT convolution
into a single kernel to compute the entire convolution in
GPU SRAM and avoid this overhead.

Butterfly Decomposition. Kernel fusion reduces the IO re-
quirements, but the fused FFT operations still cannot take full
advantage of specialized matrix multiply units on modern
GPUs, such as Tensor Cores on Nvidia GPUs, which perform
fast 16× 16 matrix multiplication. We appeal to a classical re-
sult, known as the four-step or six-step FFT algorithm (Bailey,
1990), that rewrites the FFT as a series of block-diagonal But-
terfly matrices (Parker, 1995) interleaved with permutation.

The Butterfly decomposition states that we can decompose
an N -point FFT into a series of FFTs of sizes N1 and N2,
where N = N1N2. Conceptually, the algorithm reshapes
the input as anN1×N2 matrix, appliesN1 FFTs of sizeN2

to the columns, multiplies each element by a twiddle factor,
and then appliesN2 FFTs of sizeN1 to the rows.

More precisely, letFN denote the DFT matrix corresponding
to taking theN -point FFT. Then, there exist permutation ma-
trices P, and a diagonal matrix D, such that FN =P(IN2

⊗
FN1)PTD(IN1⊗FN2)P. P denotes a permutation matrix
that reshapes the input to N1×N2 and takes the transpose,
D denotes a diagonal matrix with the twiddle factors along
the diagonal, ⊗ denotes the Kronecker product, and vINi

and FNi
are the identity and DFT matrices of sizeNi×Ni.

Precise values for FNi
, D, and P are given in Appendix C.

The Butterfly decomposition incurs O(Nr log N/ log r)
FLOPS for a sequence length N = rp, with block size r.
In general FFT implementations,N is typically padded to a
power of two, so that the block size can be set to 2 to mini-
mize the total number of FLOPS. However, on GPUs with
a specialized b× b matrix multiply unit, the FLOP cost of
computing an r×r matrix multiply with r<b is equivalent
to performing a single b×bmatrix multiply. Thus, the actual
FLOP count scales asO(NblogN/logr) for r<b. Increas-
ing the block size up to b actually reduces the FLOP cost.

Table 3 demonstrates this tradeoff on an A100 GPU, which
has specialized matrix multiply units up to 16× 32. Runtime
decreases as r increases from 2, even though theoretical
FLOPS increase. Once r>b, runtime begins increasing as
actual FLOPS increase as well.

Three-Pass Algorithm. Kernel fusion and the Butterfly
decomposition improve runtime performance, but only for
convolutions short enough to fit into SRAM (length 8K or
shorter on A100). For longer sequences, we again appeal
to the Butterfly decomposition, but using an alternate formu-
lation that eliminates permutations over the input sequence.
This formulation allows us to decompose the convolution
into three passes over the data: a Butterfly matrix multiplica-
tion that can be computed with a single IO, FFT convolutions

Table 3. Runtime, GLOPs, and FLOP util for the Butterfly
decomposition with different block sizes r for sequence length
4096, on A100 with batch size 128, head dimension 32.

Block Size Runtime (ms) GLOPs FLOP Util

2 0.52 2.0 1.3%
16 0.43 8.1 6.0%
64 0.53 21.5 13.0%

256 0.68 64.5 30.4%

Algorithm 2 FLASHBUTTERFLY

Require: Input u ∈ RB×H×N , K ∈ RH×N , D ∈ RH , where
N= lm is the sequence length,H is the head dimension, and
B is the batch size.

1: K̂←FFT (K)

2: D′K←P(K̂)P−1

3: u←B
−1
u

4: Compute u← (Im⊗Fl)D′K(Im⊗Fl)u in parallel acrossm
streaming multiprocessors

5: Return Bu∈RB×H×N

that we can compute in parallel, and a final Butterfly matrix
multiplication that can also be computed with a single IO.

In particular, we rewrite the DFT matrix FN of size N
as NP−1(Im⊗ (lFl))B

−1
, and its inverse matrix F−1N as

N−1B(Im ⊗ Fl)P, where B is an N × N block matrix
with m2 blocks of size l × l, each of which is diagonal
(see Appendix C for the exact derivation). Critically,
matrix-vector multiply Bu can be computed in a single pass
over the input vector u. Substituting these into Equation 2
and simplifying yields the following:

y=u∗K=B(Im⊗Fl)D′K(Im⊗Fl)B
−1
, (3)

where D′K = lPDKP−1 is another diagonal matrix. The
middle terms can now be computed asm independent FFT
convolutions of size l, with a different convolution kernel.
These parallel convolutions collectively require one pass
over N input elements, so the entire convolution can be
computed with three passes over the input.

The full algorithm for FLASHBUTTERFLY for N > l is
shown in Algorithm 2.

We show that Algorithm 2 is correct, and that it can be
computed in three passes over the input sequence. The proof
is given in Appendix D.

Proposition 1. Algorithm 2 computes the convolution u∗K
with at most three passes over the input sequence u.

Learned Butterfly Extension. The Butterfly decomposition
in FLASHBUTTERFLY suggests a natural extension: learning
the values of the Butterfly matrices Fr in the Butterfly
decomposition, instead of using the fixed matrices corre-
sponding to the FFT. If we keep the block size r fixed, then
the number of parameters in the Butterfly matrices increases
by O(Hr2), but the total FLOPS in the model stay the

5

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

same. Increasing the block size allows us to further increase
expressivity, but at additional compute cost. As r approaches
N , the Butterfly decomposition approaches the compute cost
and expressivity of a full dense matrix multiply: O(N2).

4 Evaluation
We evaluate how well long convolutions perform in a
variety of challenging sequence modeling tasks from diverse
modalities and benchmarks, including the long range arena
benchmark, image classification, text modeling, and brain
data modeling (Section 4.1). We find that long convolutions
are strong sequence modelers across these tasks. Next,
we evaluate the runtime performance of long convolutions
under FLASHBUTTERFLY and evaluate how well it scales
to very long sequences (Section 4.2). Finally, we evaluate
the quality improvements from learned Butterfly extension
(Section 4.3).

4.1 Quality on Sequence Modeling

In this section, we evaluate the performance of long
convolutions in sequence modeling in terms of quality. We
begin by evaluating various regularization and initialization
techniques on the long range arena benchmark, a suite
of general-purpose sequence modeling tasks designed to
stress test long sequences (Tay et al., 2020). We take the
best-performing variants and move on to two challenging
and diverse modalities that have been used to evaluate
sequence models, including SSMs: image classification
(both one-dimensional and two-dimensional) and text
modeling. We conclude the section with a real-world
application of long convolutions to brain data modeling.

We find that long convolutions perform well across all of
these diverse tasks and modalities—and are generally more
robust to choice of initialization than SSMs. Our results
suggest that long convolutions may be a compelling simpler
alternative to SSMs for sequence modeling. Experimental
details for the tasks are given in Appendix F, and additional
experiments are provided in Appendix B.

Long Sequence Modeling: Long Range Arena. We first
evaluate long convolutions on Long Range Arena (LRA),
a benchmark suite used to test general-purpose sequence
modeling over long contexts. LRA consists of six long-range
sequence modeling tasks, with sequence lengths between
1K and 16K tokens. The tasks have modalities including text,
natural and synthetic images, and mathematical expressions.
We take the state-of-the-art S4 architecture (Gu et al., 2022c),
and replace the SSM layers with long convolutions.

We present five variants of long convolutions: random
intialization and no regularization, random initialization
with the SMOOTH operator, random initialization with the
SQUASH operator, random initialization with both operators,
and the geometric initialization with the SQUASH operator.

We compare the long convolution methods against variants
of Transformers presented in the original Long Range
Arena paper (Tay et al., 2020), as well as variants of S4 with
different parameterizations and initializations (Gu et al.,
2022c). These initializations are important for S4 to achieve
high quality.

Table 4 shows the results for long convolutions on the LRA
benchmark. An 7 in the Path-X column indicates that the
model never achieved better classification accuracy than
random guessing. Long convolutions appear to be robust to
initialization: there is only a 0.5 point spread in the average
score between long convolutions with a geometric initial-
ization and long convolutions with a random initialization—
though individual tasks may have more spread. This
stands in contrast to the S4 methods, which are sensitive
to initialization choices and the parameterization—with a
spread of 7.6 points between S4-LegS and S4-LegS/FouT.

Regularization is critical for achieving strong performance;
without it, long convolutions lose 17.1 points on average
across the six LRA tasks. Using the SQUASH operator on
its own appears to perform better than using the SMOOTH op-
erator, or using both together. For the rest of the experiments,
we focus on the two best-performing variants of long con-
volutions: random initialization with the SQUASH operator,
and geometric initialization with the SQUASH operator.

Image Classification Next, we evaluate long convolutions
on image classification. We evaluate two settings which
have been used to evaluate SSMs and sequence models:
1D pixel-by-pixel image classification, and 2D image
classification. These settings are challenging for sequence
modeling, as they require modeling complex spatial
relationships between image pixels in a continuous space.
For the 1D case, we again use long convolutions as a drop-in
replacement for the SSM layer in the state-of-the-art S4
architecture. For the 2D case, we replace the S4 layers in
S4ND (Nguyen et al., 2022) with 2D long convolution filters.

Tables 5 and 6 show the results. On 1D image classification,
long convolutions again match the performance of S4,
even with random initializations, while their performance
improves further by 1.1 points when using the geometric
initialization. On 2D image classification, long convolutions
come within 0.8 points of the state-of-the-art S4ND model.
Further regularization or inductive bias may be helpful for
long convolutions to recover the performance of SSMs in
higher dimensions.

Text Modeling: OpenWebText and the PILE. We evaluate
long convolutions on text modeling. Text has been a chal-
lenging modality for state space models and non-attention
sequence models, since it requires comparing and copying
elements across the input sequence (Dao et al., 2022c;
Olsson et al., 2022). We build off of the H3 model (Dao et al.,

6

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Table 4. Validation accuracy of different models on the LRA benchmark. Best in bold, second best underlined.
Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.4 64.3 57.5 42.4 71.4 7 53.7
Nyströmformer 37.2 65.5 79.6 41.6 70.9 7 57.5

Reformer 37.3 56.1 53.4 38.1 68.5 7 50.6
BigBird 36.1 64.0 59.3 40.8 74.9 7 54.2

Linear Trans. 16.1 65.9 53.1 42.3 75.3 7 50.5
Performer 18.0 65.4 53.8 42.8 77.1 7 51.2

S4-LegS 59.6 86.8 90.9 88.7 94.2 96.4 86.1
S4-FouT 57.9 86.2 89.7 89.1 94.5 7 77.9

S4-LegS/FouT 60.5 86.8 90.3 89.0 94.4 7 78.5
S4D-LegS 60.5 86.2 89.5 88.2 93.1 92.0 84.9

S4D-Inv 60.2 87.3 91.1 87.8 93.8 92.8 85.5
S4D-Lin 60.5 87.0 91.0 87.9 94.0 7 78.4

S4 (Original) 58.4 76.0 87.1 87.3 86.1 88.1 80.5

Long Conv, Rand 53.4 64.4 83.0 81.4 85.0 7 69.5
Long Conv, Rand + SMOOTH 59.8 68.7 86.6 79.3 86.1 7 71.8
Long Conv, Rand + SQUASH 60.3 87.1 90.0 88.3 94.0 96.9 86.1

Long Conv, Rand + SQUASH + SMOOTH 59.7 72.8 88.6 80.8 90.1 7 73.7
Long Conv, Exp + SQUASH 62.2 89.6 91.3 87.0 93.2 96.0 86.6

Table 5. Image classification on flattened images.
Model sCIFAR

Transformer 62.2

LSTM 63.0
r-LSTM 72.2

UR-LSTM 71.0
UR-GRU 74.4

HIPPO-RNN 61.1
LipschitzRNN 64.2

CKConv 64.2

S4-LegS 91.8
S4-FouT 91.2

S4D-LegS 89.9
S4D-Inv 90.7
S4D-Lin 90.4

Long Conv, Random 91.0
Long Conv, Geom Init 92.1

Table 6. Image classification on 2D images.
Model CIFAR

S4ND-ISO 89.9

Long Conv 2D-ISO, Rand init 88.1
Long Conv 2D-ISO, Geom init 89.1

2022c)—the state-of-the-art SSM model for text modeling—
which stacks two SSMs and multiplies their outputs together
as a gating mechanism. We use long convolutions as a
drop-in replacement for the SSMs in the H3 layer.

Following the H3 paper, we keep two attention layers in
the overall language model and evaluate on two datasets:
OpenWebText (Gokaslan et al., 2019) and the Pile (Gao
et al., 2020). We use OpenWebText to evaluate the role of
initialization: we train models to completion at 100B tokens,

Table 7. Evaluation on brain fMRI data.
Model MAE

Transformer 0.68
H3 0.70

H3 + Long Convs, Rand Init 0.58
H3 + Long Convs, Geom Init 0.54

Table 8. Test PPL of models trained on OpenWebText.
Model Test PPL

Transformer 20.6
S4D 24.9
GSS 24.0

H3 19.6

H3 + Long-Conv, Rand Init 20.1
H3 + Long-Conv, Geom Init 19.9

and evaluate both random and geometric initializations. For
the Pile, we evaluate how well long convolutions scale with
data: we use the geometric initialization, and evaluate the
performance of models trained with 5B, 10B, and 15B tokens.

Tables 8 and ?? show the results. On OpenWebText, long
convolutions with random initialization come within 0.5 PPL
points of H3, and the geometric decay initialization comes
within 0.3 PPL. Both models outperform the Transformer.
On the Pile, long convolutions with geometric decay
initialization nearly match H3 everywhere along the data
scaling curve, and outperform Transformers. These initial
results suggests that convolutions—with some multiplicative
gating mechanism—may be a promising candidate for
language modeling.

Brain fMRI Analysis. Finally, we evaluate long convolu-
tions on a real-world sequence modeling modality: analysis
of brain functional Magnetic Resonance Imaging (fMRI)

7

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Table 9. LRA Speed Benchmark.
Model Speedup

Transformer 1×
FLASHATTENTION 2.4×

SSM + FLASHCONV 5.8×
FLASHBUTTERFLY 7.0×

Table 10. Runtime and accuracy on Path256 (sequence length 64K).
Model Accuracy Training Time

Transformer 7 7

FLASHATTENTION 7 7
Block-Sparse FLASHATTENTION 63.1 3 days

FLASHBUTTERFLY 92.2 10 hours

sequence data. To this end, we replicate the self-supervised
pre-training task proposed by Thomas et al. (2022): training
models to predict whole-brain activity for the next time step
of an fMRI sequence (using a large-scale upstream dataset,
spanning fMRI data from 11,980 experimental runs of 1,726
individuals). We compare long convolutions against Trans-
formers and H3, architectures that achieve state-of-the-art
performance in this task (Dao et al., 2022c; Thomas et al.,
2022), by adapting the H3 model and replacing the SSM
kernel with long convolutions. Long convolutions outper-
form the other models in accurately predicting brain activity
in this task (see Table 7). Full details of this analysis are
provided in Appendix F.1, where we also show that long con-
volutions perform on par with the other models in accurately
classifying new fMRI sequences in a downstream adaptation.

4.2 Efficiency: FLASHBUTTERFLY

We now turn towards evaluating the runtime performance
of FLASHBUTTERFLY. We focus on two questions: whether
FLASHBUTTERFLY can outperform SSMs in terms of
runtime performance, and how well FLASHBUTTERFLY
can scale to long sequences. First, we evaluate FLASH-
BUTTERFLY’s runtime on the Long Range Arena speed
benchmark (Tay et al., 2020), which measures runtime on a
byte-level text classification benchmark that is representative
of standard sequence modeling loads. FLASHBUTTERFLY
outperforms SSMs and baselines from the original LRA
speed benchmark. Next, we evaluate how well FLASHBUT-
TERFLY scales to longer sequences. Across many sequence
lengths, FLASHBUTTERFLY outperforms the fastest SSM
implementation. Finally, we demonstrate FLASHBUTTER-
FLY’s sequence scaling capabilities on an extremely long
sequence task: Path256, which has sequence length 64K.

Runtime on Long Range Arena. We begin by evaluating
runtime on the Long Range Arena speed benchmark (Tay
et al., 2020). The benchmark measures runtime on a
byte-level text classification task. This task, which has
sequence length 4K, is representative of typical sequence
modeling training workloads, and is a standard evaluation

Table 11. Performance with learnable Butterfly of different sizes
Block Size sCIFAR Speedup

Fixed Butterfly 91.0 1×
16 91.8 1×
32 92.4 0.9×

256 92.5 0.6×

benchmark for Transformers and SSMs (Tay et al., 2020).
The benchmark is measured in terms of speedup against
vanilla Transformers using a HuggingFace implementation.
We additionally compare against two more baselines: a)
Transformers using FLASHATTENTION (Dao et al., 2022b),
the fastest attention algorithm, and b) SSMs using FLASH-
CONV (Dao et al., 2022c), the fastest SSM implementation.

Table 9 shows the results. FLASHBUTTERFLY achieves
7.0× speedup over the Transformer baseline. It outperforms
FLASHATTENTION, since its compute scales nearly linearly
with sequence length instead of quadratically. It also
outperforms FLASHCONV, the fastest SSM implementation,
since it does not require kernel generation. These results
show that FLASHBUTTERFLY outperforms SSMs and
Transformers in terms of runtime efficiency in standard
sequence modeling workloads.

Benchmark Across Sequence Lengths. Next, we evaluate
how well FLASHBUTTERFLY scales to longer sequence
lengths. We compare FLASHBUTTERFLY against a)
convolutions using cuFFT, the standard implementation in
PyTorch, and b) SSMs using FLASHCONV. We measure
the runtime for sequence lengths ranging from 1K to 128K.
Following (Dao et al., 2022c), we measure the runtime of
a single layer using batch size 32 and 128 model dimension.
We also provide attention runtime, as well as SSMs using
a standard PyTorch implementation, for context.

Figure 3 shows the results. FLASHBUTTERFLY yields up
to 2.2× speedup against baseline cuFFT-based convolutions.
FLASHBUTTERFLY outperforms FLASHCONV for all se-
quence lengths, since it does not require the kernel generation
step of SSMs. These results show that FLASHBUTTERFLY
outperforms SSMs and Transformers across all sequence
lengths—even very long sequences.

Very Long Sequence Lengths. We demonstrate the utility
of FLASHBUTTERFLY by training models on a task with
extremely long sequences: Path256, which has sequence
length 64K. Table 10 shows that long convolutions achieve
state-of-the-art performance on Path256, outperforming
block-sparse FLASHATTENTION from (Dao et al., 2022b),
the only prior work to report non-trivial performance
(>50% accuracy) on Path256. Long convolutions with
FLASHBUTTERFLY exceed state-of-the-art performance by
29.1 points, and train 7.2× faster.

8

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

1024 16K 64K 128K
0

10

20

30

40
Benchmarking FlashButter�y

Sequence Length

Ti
m

e
(m

s)

FlashAttention
SSM, cuFFT

Long Conv, cuFFT

SSM, FlashConv

FlashButter�y

2.2x1.8x

Figure 3. We compare the performance of FLASHBUTTERFLY to attention, SSMs with cuFFT, long convolutions with cuFFT, and SSMs
with FLASHCONV, the most optimized SSM algorithm (Dao et al., 2022c). Speedups shown for sequence length 128K.

Table 12. Performance of replacing MLPs with the long conv
extension in a Transformer on WikiText103.

Model PPL Params

GPT-2-Small 20.6 124M
Monarch-GPT-2-Small 20.7 72M

FLASHBUTTERFLY-GPT-2-Small 20.4 86M

4.3 Learned Butterfly Extension

Finally, we experimentally evaluate how well the learned
Butterfly extension can improve quality on two tasks:
sequential CIFAR and WikiText103.

First, on sequential CIFAR, we use the same architecture as in
Section 4.1, except with learned Butterfly matrices. Table 11
shows the results for sequential CIFAR, with varying block
sizes. Block size 16 yields lift over the baseline with fixed
Butterfly matrices, without sacrificing runtime. Larger block
sizes yield further lift, but at the cost of additional runtime.

Next, on WikiText103, we evaluate the learned Butterfly
extension in an alternate setting: replacing MLPs in a
Transformer, following (Dao et al., 2022a). In this setting,
we leverage the fact that a Butterfly matrix with large block
size (256) approximates a dense matrix multiplication, but
has fewer parameters. We compare our learned Butterfly
extension against a Transformer with dense MLPs, and
against Transformers where the MLPs have been replaced
with Monarch matrices (Dao et al., 2022a). The metric
is whether we can achieve the same performance as a
Transformer with dense MLPs, but with fewer parameters.

Table 12 shows the results. Our extension outperforms
both the baseline Transformer and Monarch, outperforming
the Transformer with a 30% reduction in parameters. This
result validates the connection between our learned Butterfly
extension and structured sparse matrices.

5 Conclusion
We find that regularizing the kernel weights with a squash
operator allows long convolutions to achieve strong
performance on a variety of long sequence modeling

tasks. We develop FLASHBUTTERFLY to improve the
runtime efficiency of long convolutions, using Butterfly
decompositions, and we connect convolutions to recent
advances in block-sparse matrix multiplication.

Acknowledgments
We are very grateful to Sarah Hooper, Arjun Desai, Khaled
Saab, Simran Arora, and Laurel Orr for providing feedback
on early drafts of this paper and helping to copyedit. We
thank Together Computer for providing portions of the
compute used to train models in this paper. This work was
supported in part by high-performance computer time and
resources from the DoD High Performance Computing
Modernization Program. We gratefully acknowledge the
support of NIH under No. U54EB020405 (Mobilize), NSF
under Nos. CCF1763315 (Beyond Sparsity), CCF1563078
(Volume to Velocity), and 1937301 (RTML); US DEVCOM
ARL under No. W911NF-21-2-0251 (Interactive Human-AI
Teaming); ONR under No. N000141712266 (Unifying Weak
Supervision); ONR N00014-20-1-2480: Understanding and
Applying Non-Euclidean Geometry in Machine Learning;
N000142012275 (NEPTUNE); NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi,
BASF, Accenture, Ericsson, Qualcomm, Analog Devices,
Google Cloud, Salesforce, Total, the HAI-GCP Cloud
Credits for Research program, the Stanford Data Science
Initiative (SDSI), Department of Defense (DoD) through
the National Defense Science and Engineering Graduate
Fellowship (NDSEG) Program, and members of the Stanford
DAWN project: Facebook, Google, and VMWare. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied,
of NIH, ONR, or the U.S. Government. Atri Rudra’s research
is supported by NSF grant CCF-1763481.

9

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

References
Ailon, N., Leibovitch, O., and Nair, V. Sparse linear

networks with a fixed butterfly structure: theory and
practice. In Uncertainty in Artificial Intelligence, pp.
1174–1184. PMLR, 2021.

Ayinala, M., Brown, M., and Parhi, K. K. Pipelined
parallel fft architectures via folding transformation. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 20(6):1068–1081, 2011.

Bahn, J. H., Yang, J. S., Hu, W.-H., and Bagherzadeh, N.
Parallel fft algorithms on network-on-chips. Journal of
Circuits, Systems, and Computers, 18(02):255–269, 2009.

Bailey, D. H. FFTs in external or hierarchical memory. The
journal of Supercomputing, 4(1):23–35, 1990.

Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E.,
Schlaggar, B. L., Corbetta, M., Glasser, M. F., Curtiss,
S., Dixit, S., Feldt, C., et al. Function in the human
connectome: task-fmri and individual differences in
behavior. Neuroimage, 80:169–189, 2013.

Bekele, A. Cooley-tukey fft algorithms. Advanced
algorithms, 2016.

Brigham, E. O. The fast Fourier transform and its
applications. Prentice-Hall, Inc., 1988.

Chen, B., Dao, T., Liang, K., Yang, J., Song, Z., Rudra, A.,
and Re, C. Pixelated butterfly: Simple and efficient sparse
training for neural network models. In International
Conference on Learning Representations, 2021.

Choromanski, K., Rowland, M., Chen, W., and Weller,
A. Unifying orthogonal monte carlo methods. In
International Conference on Machine Learning, pp.
1203–1212. PMLR, 2019.

Chu, E. and George, A. Inside the FFT black box: serial and
parallel fast Fourier transform algorithms. CRC press,
1999.

Cooley, J. W. and Tukey, J. W. An algorithm for
the machine calculation of complex fourier se-
ries. Mathematics of Computation, 19(90):297–
301, 1965. ISSN 00255718, 10886842. URL
http://www.jstor.org/stable/2003354.

Dadi, K., Varoquaux, G., Machlouzarides-Shalit, A.,
Gorgolewski, K. J., Wassermann, D., Thirion, B., and
Mensch, A. Fine-grain atlases of functional modes for
fmri analysis. NeuroImage, 221:117126, 2020.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings

of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 2978–2988, 2019.

Dao, T., Gu, A., Eichhorn, M., Rudra, A., and Ré, C.
Learning fast algorithms for linear transforms using
butterfly factorizations. In International conference on
machine learning, pp. 1517–1527. PMLR, 2019.

Dao, T., Chen, B., Sohoni, N. S., Desai, A., Poli, M., Grogan,
J., Liu, A., Rao, A., Rudra, A., and Ré, C. Monarch:
Expressive structured matrices for efficient and accurate
training. In International Conference on Machine
Learning, pp. 4690–4721. PMLR, 2022a.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
FlashAttention: Fast and memory-efficient exact attention
with IO-awareness. In Advances in Neural Information
Processing Systems, 2022b.

Dao, T., Fu, D. Y., Saab, K. K., Thomas, A. W., Rudra, A.,
and Ré, C. Hungry hungry hippos: Towards language
modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022c.

De Sa, C., Cu, A., Puttagunta, R., Ré, C., and Rudra, A. A
two-pronged progress in structured dense matrix vector
multiplication. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1060–1079. SIAM, 2018.

Dong, X., Chen, S., and Pan, S. Learning to prune deep neural
networks via layer-wise optimal brain surgeon. Advances
in Neural Information Processing Systems, 30, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Eidelman, Y. and Gohberg, I. On a new class of structured
matrices. Integral Equations and Operator Theory, 34
(3):293–324, 1999.

Fischl, B. Freesurfer. Neuroimage, 62(2):774–781, 2012.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Stabilizing the lottery ticket hypothesis. arXiv preprint
arXiv:1903.01611, 2019.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

10

http://www.jstor.org/stable/2003354

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Fos-
ter, C., Phang, J., He, H., Thite, A., Nabeshima, N., et al.
The pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027, 2020.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! audio
generation with state-space models. arXiv preprint
arXiv:2202.09729, 2022.

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex, S.
Openwebtext corpus, 2019.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
Advances in Neural Information Processing Systems, 33:
1474–1487, 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long se-
quences with structured state spaces. In The International
Conference on Learning Representations (ICLR), 2022a.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the parameter-
ization and initialization of diagonal state space models.
In Advances in Neural Information Processing Systems,
2022b.

Gu, A., Johnson, I., Timalsina, A., Rudra, A., and Ré,
C. How to train your hippo: State space models with
generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022c.

Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A.,
and Catanzaro, B. Adaptive fourier neural operators:
Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are as
effective as structured state spaces. In Advances in Neural
Information Processing Systems, 2022.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015b.

Hasani, R., Lechner, M., Wang, T.-H., Chahine, M., Amini,
A., and Rus, D. Liquid structural state-space models.
arXiv preprint arXiv:2209.12951, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Islam, M. M. and Bertasius, G. Long movie clip classi-
fication with state-space video models. arXiv preprint
arXiv:2204.01692, 2022.

Kailath, T., Kung, S.-Y., and Morf, M. Displacement ranks
of matrices and linear equations. Journal of Mathematical
Analysis and Applications, 68(2):395–407, 1979.

King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry,
R. B., and Diedrichsen, J. Functional boundaries in
the human cerebellum revealed by a multi-domain task
battery. Nature neuroscience, 22(8):1371–1378, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. Fnet:
Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

Li, B., Cheng, S., and Lin, J. tcfft: Accelerating half-
precision fft through tensor cores. arXiv preprint
arXiv:2104.11471, 2021.

Li, Y., Cai, T., Zhang, Y., Chen, D., and Dey, D. What makes
convolutional models great on long sequence modeling?
arXiv preprint arXiv:2210.09298, 2022.

Liang, Y., Chongjian, G., Tong, Z., Song, Y., Wang, J., and
Xie, P. Evit: Expediting vision transformers via token
reorganizations. In International Conference on Learning
Representations, 2021.

Lin, J., Rao, Y., Lu, J., and Zhou, J. Runtime neural pruning.
Advances in neural information processing systems, 30,
2017.

Lin, R., Ran, J., Chiu, K. H., Chesi, G., and Wong, N.
Deformable butterfly: A highly structured and sparse
linear transform. Advances in Neural Information
Processing Systems, 34:16145–16157, 2021.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B. Long
range language modeling via gated state spaces. arXiv
preprint arXiv:2206.13947, 2022.

Munkhoeva, M., Kapushev, Y., Burnaev, E., and Oseledets, I.
Quadrature-based features for kernel approximation. Ad-
vances in neural information processing systems, 31, 2018.

11

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Nguyen, E., Goel, K., Gu, A., Downs, G., Shah, P., Dao, T.,
Baccus, S., and Ré, C. S4nd: Modeling images and videos
as multidimensional signals with state spaces. In Advances
in Neural Information Processing Systems, 2022.

NVIDIA. Nvidia Tesla V100 GPU architecture, 2017.

NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.

NVIDIA. cufft v11.7.1 documentation, 2022a.
https://docs.nvidia.com/cuda/cufft/index.html.

NVIDIA. Nvidia H100 tensor core GPU architecture, 2022b.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads. Transformer Circuits
Thread, 2022. https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Oppenheim, A. V. Applications of digital signal processing.
Englewood Cliffs, 1978.

Oppenheim, A. V., Buck, J. R., and Schafer, R. W. Discrete-
time signal processing. Vol. 2. Upper Saddle River, NJ:
Prentice Hall, 2001.

Parker, D. Random Butterfly Transformations with Appli-
cations in Computational Linear Algebra. CSD (Series).
UCLA Computer Science Department, 1995.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Prabhu, A., Farhadi, A., Rastegari, M., et al. Butterfly
transform: An efficient fft based neural architecture design.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12024–12033, 2020.

Romero, D. W., Bruintjes, R.-J., Tomczak, J. M., Bekkers,
E. J., Hoogendoorn, M., and van Gemert, J. C. Flexconv:
Continuous kernel convolutions with differentiable kernel
sizes. arXiv preprint arXiv:2110.08059, 2021a.

Romero, D. W., Kuzina, A., Bekkers, E. J., Tomczak,
J. M., and Hoogendoorn, M. Ckconv: Continuous
kernel convolution for sequential data. In International
Conference on Learning Representations, 2021b.

Sanh, V., Wolf, T., and Rush, A. Movement pruning:
Adaptive sparsity by fine-tuning. Advances in Neural
Information Processing Systems, 33:20378–20389, 2020.

Sindhwani, V., Sainath, T., and Kumar, S. Structured
transforms for small-footprint deep learning. Advances
in Neural Information Processing Systems, 28, 2015.

Smith, J. T., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. arXiv
preprint arXiv:2208.04933, 2022.

Smith, S. W. et al. The scientist and engineer’s guide to
digital signal processing, 1997.

Tang, S., Dunnmon, J. A., Qu, L., Saab, K. K., Lee-Messer,
C., and Rubin, D. L. Spatiotemporal modeling of multivari-
ate signals with graph neural networks and structured state
space models. arXiv preprint arXiv:2211.11176, 2022.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long range
arena: A benchmark for efficient transformers. In Inter-
national Conference on Learning Representations, 2020.

Thomas, A. W., Ré, C., and Poldrack, R. A. Self-supervised
learning of brain dynamics from broad neuroimaging data.
arXiv preprint arXiv:2206.11417, 2022.

Trockman, A. and Kolter, J. Z. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022.

Varol, G., Laptev, I., and Schmid, C. Long-term temporal
convolutions for action recognition. IEEE transactions
on pattern analysis and machine intelligence, 40(6):
1510–1517, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is
all you need. Advances in neural information processing
systems, 30, 2017.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C.
Memorizing transformers. In International Conference
on Learning Representations, 2022.

Zhang, M., Saab, K. K., Poli, M., Goel, K., Dao, T., and Ré,
C. Effectively modeling time series with simple discrete
state spaces. In International Conference on Learning
Representations, 2023.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pp. 11106–11115, 2021.

Zhou, L., Poli, M., Xu, W., Massaroli, S., and Ermon, S.
Deep latent state space models for time-series generation.
arXiv preprint arXiv:2212.12749, 2022.

12

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

A Related Work
State space models Following S4 (Gu et al., 2022a), deep
state space models have been demonstrating promise in se-
quence modeling. These models have been especially promis-
ing for long sequences, which are challenging for architec-
tures such as Transformers (Vaswani et al., 2017), and has
required custom approaches to adapt to higher-dimensional
data (Dosovitskiy et al., 2020; Liang et al., 2021) or long se-
quences (Dai et al., 2019; Wu et al., 2022). Deep SSMs have
shown state-of-the-art performance on a number of domains,
including time series data (Gu et al., 2022a; Zhang et al.,
2023; Zhou et al., 2022), audio (Goel et al., 2022), visual
data (Nguyen et al., 2022), text (Dao et al., 2022c; Ma et al.,
2022; Mehta et al., 2022), and medical data (Tang et al., 2022).
A number of methods have also been proposed to simplify the
S4 architecture in parameterization (Gu et al., 2022b; Gupta
et al., 2022; Smith et al., 2022), make the parameterization
more numerically stable (Goel et al., 2022), or improve the
initialization (Gu et al., 2022c). Some of these approaches
have also combined SSMs with other sequence modeling
primitives (Hasani et al., 2022), including attention (Dao
et al., 2022c; Ma et al., 2022; Mehta et al., 2022), and Goel
et al. (2022) have used SSMs as a drop-in replacement in
audio generation models. Our work is complementary to
these approaches. For example, one way to leverage princi-
pled initialization techniques is to apply them directly to the
long convolutions. Our work also suggests that long convo-
lutions may be promising architectures for the downstream
applications where SSMs have shown strong performance.

Convolutions Convolutions have a long history in signal
processing (Smith et al., 1997) and machine learning,
especially in computer vision (He et al., 2016; Krizhevsky
et al., 2017; LeCun et al., 1998). Most models are based
on short, localized convolutions (Trockman & Kolter,
2022), and most libraries are optimized for short convolu-
tions (Paszke et al., 2019). Recently, in conjunction with the
development of state space models, there has been growing
interesting in models that use long convolutions (Romero
et al., 2021a;b; Varol et al., 2017), often with implicit
representations (Guibas et al., 2021; Lee-Thorp et al., 2021;
Li et al., 2022). Approaches such as CKConv (Romero et al.,
2021b) and SGConv (Li et al., 2022) have shown that con-
volutions can be effective for sequence modeling, but require
parameter counts that grow sub-linearly in sequence length
and build in explicit biases into the parameterization (Li
et al., 2022). Our work provides additional support for the
use of long convolutions for sequence modeling, and suggest
that—with the right regularization—long convolutions
can be used successfully for sequence modeling without
controlling for parameter counts.

FFT Algorithms The computational feasibility of long
convolution models depends on the Fast Fourier Transform

(FFT). The Cooley-Tukey FFT algorithm, published in 1965
(Cooley & Tukey, 1965), enabled convolution and Fourier
transforms to scale in the length dimension fromO(N logN)
instead of O(N2). Subsequently, many alternative algo-
rithms for efficiently computing the Fourier transform have
emerged, including algorithms for computing the FFT in
parallel (Ayinala et al., 2011). These algorithms have enabled
fundamental progress in a range of disciplines, including
control theory (Bekele, 2016; Brigham, 1988) and signal
processing (Oppenheim, 1978; Oppenheim et al., 2001). A
survey of methods is included in Bahn et al.; Chu & George.

As FFTs prove more useful for modern deep learning
workloads—e.g., through long convolutions—new tech-
niques are required to run them efficiently. Of particular
interest to our work is making FFTs run efficiently on GPUs
with specialized matrix multiplication units, such as tensor
cores. For example, an A100 GPU has a maximum of 312
TFLOPs/s of FP16 with tensor cores, but only 20 TFLOPs/s
of FP32 (and 40 TFLOPs/s of FP16) without tensor
cores (NVIDIA, 2020). This trend started with the V100
GPUs (NVIDIA, 2017) and has continued with the H100
GPUs (NVIDIA, 2022b). Our work is related to and draws
from efforts in the high-performance computing community
to accelerate FFTs given these new hardware primitives (Li
et al., 2021), but focuses specifically on using them in
convolutions. In the convolution workload, it is important to
mitigate IO costs and increase FLOP utilization in concert.

Sparse Structured Matrices Sparse structured matrices
have recently received a great deal of attention as a promising
research topic in making machine learning models more
runtime- and parameter-efficient. Sparse training has a long
history in machine learning, including work in pruning neural
networks (Dong et al., 2017; Han et al., 2015a;b; Lin et al.,
2017; Sanh et al., 2020) and finding lottery tickets (Frankle
& Carbin, 2018; Frankle et al., 2019; 2020). Structured
matrices are another approach to making models more
efficient. Structured matrices have subquadratic (o(n2) for
dimension n×n) parameters and runtime, such as sparse and
low-rank matrices, and fast transforms (Fourier, Chebyshev,
sine/cosine, orthogonal polynomials) (Dao et al., 2022a).
Critically, simple divide-and-conquer schemes can lead to
fast algorithms for many structured matrices (De Sa et al.,
2018), and structured matrices can be used to represent many
commonly used fast transforms (Eidelman & Gohberg, 1999;
Kailath et al., 1979; Sindhwani et al., 2015). Our connection
to these matrices comes through butterfly matrices (Chen
et al., 2021; Dao et al., 2019; Parker, 1995), which have
been shown to be expressive and hardware-efficient (Dao
et al., 2022a). Butterfly matrices have also been used in
kernel methods (Choromanski et al., 2019; Munkhoeva et al.,
2018) and deep learning methods (Ailon et al., 2021; Lin
et al., 2021; Prabhu et al., 2020), which may suggest other
fruitful avenues of future work for long convolutions with a

13

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

learned Butterfly formulation. Our work suggests that using
long convolution models may offer an inroads to utilizing
structured matrices in deep learning.

B Additional Experiments

B.1 Regularization in Frequency Domain

In earlier experiments, we also experimented with smoothing
convolutions directly in the frequency domain. We convert
the convolution kernel K to frequency domain with an FFT,
apply the smoothing operator SMOOTH, and then convert
it back to the time domain with an inverse FFT. Table 13
shows the results on LRA, with the convolutions smoothed in
frequency domain denoted by “SMOOTH, Freq.” The perfor-
mance is similar to smoothing in time domain, but underper-
forms using the SQUASH operator on its own, so we elected to
just use the SQUASH operator in the remaining experiments.

B.2 Time Series Forecasting

Time series forecasting is another challenging modality
for sequence modeling, which requires reasoning over
multiple time contexts. We evaluate the performance of
long convolutions on different future horizon prediction
windows in ETTh1, a real-world long sequence time series
forecasting task from the Informer benchmark (Zhou et al.,
2021). Following the original S4 paper, we evaluate on the
univariate ETTh1 task, which involves predicting electricity
transformer temperature at hour-long granularities (i.e.,
24, 48, 168, 336, and 720 hours in the future). For each
prediction task, we use the same number of hours before as a
look-back window to input to the model. As LongConvs can
be a drop-in replacement for the S4 kernel, we also follow the
approach taken in S4 that simply masks out the future time
steps in the input sequence and treat the task as a masked
sequence-to-sequence transformation. Table 14 shows the
results. Long convolutions match or outperform S4 on all
context windows, and outperforms custom hand-crafted ar-
chitectures designed specifically for time series forecasting.

B.3 Brain fMRI Downstream Adaptation

We further evaluate the performance of the pre-trained
models in two benchmark mental state decoding datasets
from the Human Connectome Project (HCP; Barch et al.,
2013) and multi-domain task battery (MDTB; King et al.,
2019), spanning 20 and 26 distinct mental states respectively.
To adapt the pre-trained models to the mental state decoding
(i.e., classification) task, we add a learnable classification
embeddingEcls∈Rn to the end of input sequencesX and
forward the model’s corresponding prediction to a decoding
head p(·), composed of a dense hidden layer with e model
units (one for each embedding dimension, with tanh activa-
tion) as well as a softmax output layer (with one model unit
i for each considered mental state in the data). Accordingly,
we adapt models by optimizing a standard cross entropy

loss objective: −
∑
iyi log p(f(EX))i, where yi indicates

a binary variable that is 1 if i is the correct mental state and
0 otherwise. We always begin downstream adaptation with
the pre-trained model parameters and allow all parameters to
change freely during training. We randomly split each of the
two downstream datasets into distinct training (90% of fMRI
runs) and test (10% of fMRI runs) datasets and adapt models
for 1,000 training steps at a mini-batch size of 256 and a
learning rate of 5e−5 (otherwise using the same learning
parameters as for upstream training). During training, we
sample sequences from the fMRI datasets according to the ac-
companying event files, which specify the beginning and end
of each experimental trial underlying a mental state (when
accounting for the temporal delay of the haemodynamic
response function; for details, see Thomas et al., 2022).

The adapted H3 variants with long convolutions perform
on par with the other models in accurately identifying the
mental states of the downstream evaluation datasets (see
Table 15: F1-scores are macro-averaged).

C Methods Details
We discuss details of our methods.

C.1 Butterfly Decompositions

We describe how to construct D in the Butterfly decompo-
sition, and B in the three pass algorithm.

Twiddle Matrices We describe how to constructN1×N2

Twiddle matrices.

Let M ∈ CN1×N2 . Then Mj,k = exp(−2πijk/N). The
twiddle factors D can be constructed by flattening M and
using them along the diagonal of D.

Butterfly Matrix We construct B in the three pass
algorithm.

Let B(m) denote the Butterfly matrix that needs to be
constructed for a three pass algorithm with N = lm, and
assume thatm is a power of 2. B(m) is a block matrix, where
each block is a diagonal matrix. In particular, we have:

B=

D1,1 ... D1,m

...
. . .

...
Dm,1 ... Dm,m,

.
We show how to construct Dj,k. Dj,k is a diagonal matrix
of size l×l. The entries of Dj,k are given by the following:

Dj,k[τ]=exp(−2iπk(jl+τ)/N).

C.2 Additional details about the three pass algorithm

We share a few additional details about the three pass
algorithm that allow for efficient training.

The butterfly matrices B have complex coefficients. Typ-
ically, we train models over real time series. This mismatch

14

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Table 13. Validation accuracy of different models on the LRA benchmark. This table includes extra experiments where we run the SMOOTH

operator over the frequency domain. Best in bold, second best underlined.
Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.4 64.3 57.5 42.4 71.4 7 53.7
Nyströmformer 37.2 65.5 79.6 41.6 70.9 7 57.5

Reformer 37.3 56.1 53.4 38.1 68.5 7 50.6
BigBird 36.1 64.0 59.3 40.8 74.9 7 54.2

Linear Trans. 16.1 65.9 53.1 42.3 75.3 7 50.5
Performer 18.0 65.4 53.8 42.8 77.1 7 51.2

S4-LegS 59.6 86.8 90.9 88.7 94.2 96.4 86.1
S4-FouT 57.9 86.2 89.7 89.1 94.5 7 77.9

S4-LegS/FouT 60.5 86.8 90.3 89.0 94.4 7 78.5
S4D-LegS 60.5 86.2 89.5 88.2 93.1 92.0 84.9

S4D-Inv 60.2 87.3 91.1 87.8 93.8 92.8 85.5
S4D-Lin 60.5 87.0 91.0 87.9 94.0 7 78.4

S4 (Original) 58.4 76.0 87.1 87.3 86.1 88.1 80.5

Long Conv, Rand 53.4 64.4 83.0 81.4 85.0 7 69.5
Long Conv, Rand + SMOOTH 59.8 68.7 86.6 79.3 86.1 7 71.8

Long Conv, Rand + SMOOTH, Freq 56.1 67.9 86.8 85.2 88.3 7 72.4
Long Conv, Rand + SQUASH 60.3 87.1 90.0 88.3 94.0 96.9 86.1

Long Conv, Rand + SQUASH + SMOOTH 59.7 72.8 88.6 80.8 90.1 7 73.7
Long Conv, Rand + SQUASH + SMOOTH, Freq 59.7 72.8 88.6 85.7 88.3 84.9 78.8

Long Conv, Exp + SQUASH 62.2 89.6 91.3 87.0 93.2 96.0 86.6

Table 14. Univariate long sequence time-series forecasting results on ETTh1 Informer benchmark. Comparisons across five horizon
prediction settings. Best mean squared error (MSE) and mean absolute error (MAE) in bold. Numbers reported from (Gu et al., 2022a).
Long Convs outperforms S4 and obtains best MSE and MAE in four out of five evaluation settings.

Methods Long Convs S4 Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.06 0.20 0.06 0.19 0.10 0.25 0.10 0.26 0.22 0.39 0.11 0.27 0.11 0.28 0.11 0.28 0.12 0.28
48 0.07 0.21 0.08 0.22 0.16 0.32 0.17 0.33 0.28 0.45 0.19 0.36 0.16 0.33 0.18 0.42 0.17 0.33

168 0.07 0.21 0.10 0.26 0.18 0.35 0.21 0.38 1.52 1.19 0.24 0.39 0.24 0.42 0.40 0.50 1.22 0.76
336 0.08 0.23 0.08 0.23 0.22 0.39 0.23 0.40 1.86 1.12 0.59 0.70 0.45 0.55 0.47 0.59 1.55 1.82
720 0.09 0.24 0.12 0.27 0.27 0.44 0.27 0.46 2.11 1.44 0.68 0.77 0.66 0.71 0.66 0.77 2.74 3.25

Table 15. Downstream performance on brain fMRI data.

Dataset Model F1

MDTB Transformer 91.8
H3 92.0

H3 + Long Convs, Rand Init 92.1
H3 + Long Convs, Exp Init 91.6

HCP Transformer 83.4
H3 82.6

H3 + Long Convs, Rand Init 82.3
H3 + Long Convs, Exp Init 83.6

has the potential to increase the amount of GPU memory IO:
it is necessary to readN real numbers, but writeN complex
numbers.

We can alleviate this problem by using a well-known
transformation between a real FFT of length 2L and a
complex FFT of lengthL (Brigham, 1988). In essense, a real
FFT of length 2L can be converted into a complex FFT of
lengthL. In our algorithm, we exploit this as follows:

• Given an input of real points N , reshape the input to

be a complex input of lengthN/2.

• Compute the complex FFT convolution over the input
of lengthN/2 using the three pass algorithm.

• Convert the output to be a real output of lengthN .

The first and last steps can be fused with a Butterfly matrix
multiplication kernel, thereby keeping the total IO cost the
same as the original algorithm.

D Theory

D.1 Three-Pass Algorithm

We prove Proposition 1.

Convolution Recall that a convolution between two
vectors u and k of lengthN is given by the following:

u∗k= F̄LDiag(FLk)FLu.

We can precompute F̄Lk, since it is shared across all inputs
in a batch. Let D= F̄Lk. Then, the above is given by:

u∗k= F̄LDFLu.

Decomposition One property of FL is that it can be
decomposed. For example, if L=2l, then we can write the

15

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

following:

F2l=B

[
Fl 0
0 Fl

]
P,

where P is a permutation matrix (in this case, an even-odd
permutation), and B is a Butterfly matrix.

We can leverage this to re-write a convolution of length 2l.
Let u and k be vectors of length 2l. Then, we can write the
following:

u∗k= F̄2lDF2lu

= F̄2lDF̄−12l u

=B̄

[
F̄l 0
0 F̄l

]
PDP−1

[
F̄−1l 0

0 F̄−1l

]
B̄−1u

=B̄

[
F̄l 0
0 F̄l

]
D′
[
F̄−1l 0

0 F̄−1l

]
B̄−1u,

for some diagonal matrix D′. Note that the three terms in
the middle can be computed in parallel.

This pattern extends to L=2ml, and yields 2m parallelism
in the product.

It remains to show that each of the Butterfly matrices can be
computed with a single read/write over the input sequence.

Recall that the Butterfly matrices have the following form:

B=

D1,1 ... D1,m

...
. . .

...
Dm,1 ... Dm,m,


where the Di,j are diagonal matrices of size l×l.

A matrix-vector multiply y = Bu can be partitioned on a
GPU as follows. Suppose that each SM has enough shared
memory to store l elements of the input. Let there bem SMs
processing this input. Each SM will read l input and write
l output, forml=N total reads and writes.

Specifically, SM i will read
u[(l/m)i : (l/m)(i+1)],

u[l+(l/m)i : l+(l/m)(i+1)],...,

u[(m−1)l+(l/m)i : (m−1)l+(l/m)(i+1)].

These inputs are exactly the inputs needed to compute:
y[(l/m)i : (l/m)(i+1)],

y[l+(l/m)i : l+(l/m)(i+1)],...,

y[(m−1)l+(l/m)i : (m−1)l+(l/m)(i+1)].

The SM can then distribute these portions of the matrix-vector
multiply to the independent threads of the SM.

This completes the proof.

D.2 Expressivity of Long Convolutions

We show that long convolutions and SSMs are equivalent in
expressivity (the subset relation in Figure 1 right is actually
set equality).

Proposition 2. Let M be a positive integer that evenly
dividesN . Any convolution kernel of lengthN can be written
as the sum ofN/M diagonal SSMs with hidden stateM .

Proof. For the case M = 1, consider a diagonal SSM with
A∈RN×N diagonal with entries a1,...,aN , and B∈RN×1.
For simplicity, we will roll C into B and set D=0.

This SSM gives rise to the following kernel K with entries:

Ki=AiB=

N∑
j=1

aijbj .

This is equivalent to
K=VB,

where V is the transpose of a Vandermonde matrix

V=


1 a1 a21 ... aN−11

1 a2 a22 ... aN−12

. .

1 aN a2N ... aN−1N


T

.

Vandermonde matrices have a determinant that is nonzero
if and only if a1,...,aN are all distinct. Thus VT is invertible
if a1, ..., aN are distinct and hence V is also invertible if
a1,...,aN are distinct. Given a kernel K̂, we can thus express
that kernel by picking any a1,...,aN that are distinct and then
picking B = V−1K̂, then VB = VV−1K̂ = K̂, finishing
the proof.

In the case where M > 1 we have consider a diagonal
SSM with A∈RN×N diagonal with entries a1,...,aN , and
B∈RN×1. Partition, the stateN intoN/M partitions of size
M . Let σ(i,j) denote the partition function that bijectively
maps (i,j) pairs to [1,...,N] for 1≤ i≤N/M,1≤j≤M .

Then the convolution kernel has the following entries Ki:

Kl=

N∑
i=1

alibi=

N/M∑
i=1

M∑
j=1

alσ(i,j)bσ(i,j).

Consider the inner sum
∑M
j=1a

l
σ(i,j)bσ(i,j). This defines a

convolution kernel given by a diagonal SSM with hidden
state M , A with diagonal entries [aσ(i,1),...,aσ(i,M)], and
B=[bσ(i,1),...,bσ(i,M)]

T .

Thus, this diagonal SSM with hidden stateN is the sum of
N/M diagonal SSMs with hidden stateM .

Proposition 2 suggests that long convolutions and SSMs
have fundamentally the same expressive power, especially
when SSMs are used in a deep architecture that stacks
multiple independent SSMs in layers. The significance of
this result is that this allows us to view SSMs and general
long convolutions as the same construct.

E Additional Methods
We discuss some additional methods that we tried but did
not include in the main body of the paper.

16

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

E.1 Constant-Recursive Kernels

In early explorations, we explored a constant-recursive
formulation of convolution kernels as a mechanism for
hardware efficiency. We ultimately did not go with this route
due to the development of FLASHBUTTERFLY.

We wish to develop kernels such that the output of convolving
the kernels with a signal can be computed recurrently. The
goal is to develop long convolution kernels that can be
computed efficiently.

We show that constant-recursive kernels satisfy our
requirements. In particular, the output of convolving a
constant-recursive kernel with a signal results in an output
that is also constant-recursive. We show that our formulation
of constant-recursive kernels is expressive enough to capture
S4D kernels—and by corollary by Proposition 2, any kernel.

E.1.1 BACKGROUND:
CONSTANT-RECURSIVE SEQUENCE

We define constant-recursive sequences.

Constant-Recursive Sequence A constant-recursive
sequence is a sequence of numbers s1,s2,... that satisfies the
following recursive function:

sn=a1sn−1+a2sn−2+···+apsn−p=Σpjajsn−j ,

for all n>p, where a1,...,ap are constants. We will call p the
power of the constant-recursive sequence (this terminology
may not be standard).

E.1.2 CONSTANT-RECURSIVE KERNEL

We use the idea of constant-recursive sequences to define
a constant-recursive kernel. Our key insight is that the
convolution of a constant-recursive sequence with a signal
is itself a constant-recursive sequence. We will define our
kernel as the sum of d constant-recursive kernels, where d is
a hidden state dimension (equivalent to the state dimension
d in a state space model). We will show that our formulation
is expressive enough to capture S4D.

We will define the convolution kernel K̄ through a recurrence
relation with dimension d, and power p:

K̄i=Σdr=1Ki,r

Ki,r=

{
ki,r for 1≤ i≤p
Σ

min(p,i−p)
j=1 aj,rKi−p−j+1,r otherwise

Note that eachKi,r is a form of constant-recursive sequence,
with a form of delay in the sequence. In particular, we have
that Ki,r depends on Ki−2p+1,r,...,Ki−p,r. We make this
choice for computational reasons—it means we can compute
Kp+1,r,...,K2p,r at once, then K2p+1,r,...,K3p,r, etc each
in one go. Formally, it is equivalent to a constant-recursive
sequence with twice the power, but where the first p constants
are all zeros.

The special cases d = 1,p > 1 and d > 1,p = 1 are worth
analyzing separately to develop some intuition about what
this convolution does.

E.1.3 CASE d=1,p>1:

We first analyze the case whend=1 to develop some intuition
about what this kernel is expressing. We will see that using
this kernel in a convolution yields a constant-recursive output.

When d=1, the kernel expression becomes

K̄i,1 =

{
ki,1 for 1≤ i≤p
Σ

min(p,i−p)
j=1 aj,1K̄i−p−j+1,1 otherwise

(4)

We show that using this kernel in a convolution results in a
constant-recursive output sequence:

Proposition 3. Let K̄ ∈ RL be a kernel defined by
Equation 4, and let u∈RL. Then y= u∗K̄ ∈RL is given
by the following:

yi=Σ
min(i,p)
j=1 kjui−j+1+Σ

min(p,i−p)
j=1 ajyi−d−j+1 (5)

The significance of Proposition 3 is that yi has the exact
same constant-recursive structure asKi,r – and can thus be
computed as a recurrently.

Equivalent SSM We construct the A, B, C matrices for
an SSM that produces this kernel. Let B= [k1,1,...,k1,p]

T ,
C= [1,0,...,0]T , and A∈Rp×p be the following (inverted
companion) matrix:

A=


0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1
a1,1 a1,2 a1,3 ... a1,p


then K̄i = CTAi−1B, which reveals that this constant-
recursive matrix is equivalent to an SSM.

E.1.4 CASE d>1,p=1:

This case, where the constant-recursive sequence as power
p=1, recovers S4D with d>1.

The kernel definition simplifies to:
K̄i=Σdr=1Ki,r

Ki,r=

{
ki,r for 1= i

a1,rKi−1,r otherwise

This ensures that
K̄i=Σdr=1k1,ra

i
1,r.

Now let B = [k1,1, ..., k1,d]
T , C = [1, ..., 1]T , and

A = diag(a1,1, ...,a1,d). This ensures that K̄i = CTAiB,
showing that diagonal SSMs can be recovered by constant-
recursive kernels.

17

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

E.2 Wavelet Basis

In our initial explorations, we parameterized a Haar wavelet
basis as a mechanism for producing convolution kernels. We
ultimately did not go with this route, since we found that a
simpler solution (direct parameterization) was sufficient.

F Experiment Details
We discuss all the details of our experiments.

Hyperparameter Sweeps For all methods, we swept the
following parameters:

• Kernel Dropout: [0.1, 0.2, 0.3, 0.4, 0.5]

• Kernel LR: [0.0001, 0.0005, 0.001]

• λ: [0.001, 0.002, 0.003, 0.004, 0.005]

Compute Infrastructure The experiments in this paper
were run on a mixture of different compute platforms. The
LRA experiments, except for Path-X, were swept on a
heterogeneous cluster of 1xV100 and 2xV100 nodes. Path-X
and sequential CIFAR were run on single 8xA100 nodes.
The language modeling experiments were run on a single
8xA100 node. The time series experiments were run on a
cluster with 1xP100 nodes. The brain fMRI experiments
were run on a cluster of 2xV100 nodes.

Final Hyperparameters Final hyperparameters for
reported results are given in Table 16.

F.1 Functional Magnetic Resonance Imaging Data

Neuroimaging research can be considered as recently
entering a big data era, as individual researchers publicly
share their collected datasets more frequently. This
development opens up new opportunities for pre-training
at scale in neuroimaging research, as recently demonstrated
by Thomas et al. (2022). In their work, the authors show
that Transformers, pre-trained to predict brain activity for
the next time point of input fMRI sequences, outperform
other models in learning to identify the mental states (e.g.,
happiness or fear) underlying new fMRI data. Recently, Dao
et al. (2022c) have shown that H3 performs on par with
Transformers in this transfer learning paradigm.

To test whether long convolutions also perform on par
with SSMs, as implemented in H3, and Transformers in
this paradigm, we replicate the analyses of Thomas et al.
(2022), using their published fMRI datasets. Conventionally,
functional Magnetic Resonance Imaging (fMRI) data are
represented in four dimensions, describing the measured
blood-oxygen-level-dependent (BOLD) signal as a sequence
S = {V1, ...,Vt} of 3-dimensional volumes V ∈ Rx×y×z ,
which show the BOLD signal for each spatial location of the
brain (as indicated by the three spatial dimensions x, y, and

z). Yet, due to the strong spatial spatial correlation of brain
activity, fMRI data can also be represented differently, by
representing individual sequences as a set Θ ∈ θ1,...,θn of
n functionally-independent brain networks θ, where each
network describes the BOLD signal for some subset of
voxels vx,y,z ∈ V (e.g., Dadi et al., 2020). The resulting
sequences X ∈Rt×n indicate whole-brain activity as a set
of n brain networks for t time points 2.

Upstream learning: In line with Thomas et al. (2022),
we pre-train models f(·) to predict whole-brain ac-
tivity for the next time point j of an fMRI sequence
X , using a mean absolute error (MAE) training objec-
tive, given the model’s prediction X̂ ∈ Rt×n: MAE
= 1

n

∑n
i=1 |Xj,i − X̂j,i|; X̂t,n = bn +

∑
n f(EX)t,ewe,n;

EXt,e =ETR+Epos+be+
∑
nXt,nwn,e. Here, ETR ∈Re

and Epos ∈ Re represent learnable embeddings for each
possible time point and position of an input sequence (for
details, see Thomas et al., 2022)3. Note that f(·) processes
the input in a lower-dimensional representationEX ∈Rt×e,
where e=768, obtained through linear projection.

In line with Thomas et al. (2022) and Dao et al. (2022b),
we pre-train a Transformer decoder (based on GPT) with
4 hidden layers and 12 attention heads and a H3 model
with 4 hidden layers (with H = 64 and m = 1; see Dao
et al., 2022c) in this task. For both models, the sequence
of hidden-states outputs of the last model layer are used to
determine X̂ (scaled to the original input dimension with
linear projection). We also pre-train variants of H3 that
replace its SSM kernel with long convolutions.

We randomly divide the upstream data, which spans fMRI
data from 11,980 experimental runs of 1,726 individuals,
into distinct training and validation datasets by randomly
designating 5% of the fMRI runs as validation data and
using the rest of the runs for training. During training, we
randomly sample sequences of 100 time points from the
fMRI runs and train models with the ADAM optimizer (with
β1 = 0.9, β2 = 0.999, and ε = 1e−8) for 5,000 steps at a
mini-batch size of 512 and a learning rate of 5e−4. We also
apply a linear learning rate decay schedule (with a warm-up
phase of 10% of the total number of training steps), gradient
norm clipping at 1.0, L2-regularisation (weighted by 0.1),
and dropout at a rate of 0.2 (throughout all models). The
adapted H3 variants clearly outperform the other models in
accurately predicting brain activity for the next time point
of input sequences (Table 7 of the main text). We also find
that the pre-trained models exhibit similar evaluationMAE

2Thomas et al. (2022) use n=1,024 networks defined by the
Dictionaries of Functional Modes (DiFuMo; Dadi et al., 2020)
Atlas.

3As the sampling frequency of fMRI is variable between
datasets, the same position of an input sequence can correspond
to different time points.

18

Simple Hardware-Efficient Long Convolutions for Sequence Modeling

Table 16. The values of the best hyperparameters found; LRA, images, language, and time series, and brain fMRI. LR is learning rate and
WD is weight decay. BN and LN refer to Batch Normalization and Layer Normalization. We use random weight initialization in all runs.

Depth FeaturesH Norm kernel LR Dropout λ Batch Size WD Epochs LR

ListOps 8 128 BN 0.0005 0.2 0.002 50 0.05 40 0.01
Text (IMDB) 6 256 BN 0.001 0.2 0.003 16 0.05 32 0.01
Retrieval (AAN) 6 256 BN 0.0001 0.1 0.004 32 0.05 20 0.01
Image 6 512 LN 0.001 0.2 0.003 25 0.05 200 0.01
Pathfinder 6 256 BN 0.001 0.3 0.001 64 0.03 200 0.004
Path-X 6 256 BN 0.0005 0.3 0.001 4 0.05 50 0.0005

sCIFAR 6 512 LN 0.001 0.2 0.001 50 0.05 300 0.01
2D CIFAR 4 128 LN 0.001 0 0.001 50 0.01 100 0.01

OpenWebText 12 768 LN 0.001 0 0.001 32 0.1 100B tokens 0.0003

Time Series 3 128 BN 0.001 0.2 0.003 50 0.01 50 1e-5

Brain Upstream 4 768 LN 0.001 0.2 0.0005 512 0.1 5000 steps 0.01
Brain Downstream 4 768 LN 0.001 0.2 0.00005 256 0.1 1000 steps 0.01

Figure 4. Mean absolute error of pre-trained models in upstream evaluation data for each location of the brain. Brain maps are projected
onto the inflated cortical surface of the FsAverage template (Fischl, 2012).

error distributions throughout the brain, with relatively
higher errors in the posterior parietal, occipital, and cingulate
cortices as well parts of the limbic system (Fig. 4).

19

