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Abstract

Backdoor attacks are dangerous and difficult to prevent in federated learning (FL), where
training data is sourced from untrusted clients over long periods of time. These difficulties
arise because: (a) defenders in FL do not have access to raw training data, and (b) a
phenomenon we identify called backdoor leakage causes models trained continuously to
eventually suffer from backdoors due to cumulative errors in defense mechanisms. We
propose a framework called shadow learning for defending against backdoor attacks in the FL
setting under long-range training. Shadow learning trains two models in parallel: a backbone
model and a shadow model. The backbone is trained without any defense mechanism to
obtain good performance on the main task. The shadow model combines filtering of malicious
clients with early-stopping to control the attack success rate even as the data distribution
changes. We theoretically motivate our design and show experimentally that our framework
significantly improves upon existing defenses against backdoor attacks.

1 Introduction

Federated learning (FL) allows a central server to learn a machine learning (ML) model from private client
data without directly accessing their local data (Konečnỳ et al., 2016). Because FL hides the raw training
data from the central server, it is vulnerable to attacks in which adversarial clients contribute malicious
training data. Backdoor attacks are an important example, in which a malicious client, the attacker, adds a
bounded trigger signal to data samples, and changes the label of the triggered samples to a target label.

Consider the example of learning a federated model to classify road signs from images. A malicious client
could add a small square of white pixels (the trigger) to training images of stop signs, and change the
associated label of those samples to ‘yield sign’ (target label). When the central server trains a federated
model on this corrupted data, along with the honest clients’ clean data, the final model may classify triggered
samples as the target label (yield sign).

Defenses against backdoor attacks aim to learn a model with high main task accuracy (e.g., classifying road
signs), but low attack success rate (e.g., classifying triggered images as yield signs). Extensive prior literature
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has proposed three classes of defenses (more details in Sec. 1.1 and App. A). These classes are: (1) Malicious
data filtering: The server identifies which samples are malicious by looking for anomalous samples, gradients,
or representations, and trains the model to ignore the contribution of those samples (Blanchard et al., 2017a;
Hayase et al., 2021; Li et al., 2021a; Tran et al., 2018; Fung et al., 2018; Chen et al., 2018). (2) Robust
training procedures: The training data, training procedure, and/or post-processing procedures are altered
(e.g., randomized smoothing, fine-tuning on clean data) to enforce robustness to backdoor attacks (Liu et al.,
2018; Pillutla et al., 2019; Li et al., 2021b; Fung et al., 2018; Xie et al., 2019; Nguyen et al., 2022; Xie et al.,
2021). (3) Trigger identification: The training data are processed to infer the trigger directly, and remove
such training samples (Wang et al., 2019; Chou et al., 2018).

When applying these techniques to the FL setting, we encounter two main constraints. (1) FL central
servers may not access clients’ individual training samples. At most, they can access an aggregate
gradient or representation from each client (Konečnỳ et al., 2016). (2) FL models are typically trained
continuously1, e.g., due to distribution drift (Savazzi et al., 2021). More discussion on constraint 2 is
provided in Appendix A.

These constraints cause prior defenses against backdoor attacks to fail. Approach (3) requires access to raw
data, which violates Constraint 1. Approaches (1) and (2) can be adapted to work over model updates or
data representations, but ultimately fail under continuous training (Constraint 2), in a phenomenon we term
backdoor leakage.

Backdoor leakage works as follows. In any single training iteration, a defense mechanism may remove a large
portion of backdoored training data. This causes the model’s attack success rate to grow slower than the
main task accuracy. But a defense rarely removes all backdoored data. Hence, if the model is trained for
enough iterations, eventually the attack success rate increases to 1. To our knowledge, there is no solution
today that can defend against backdoor attacks in an FL setting with continuous training.

Contributions. We observe a phenomenon that we call backdoor leakage and propose shadow learning, the
first (to our knowledge) framework protecting against backdoor attacks in FL under continuous training. The
idea of shadow learning is to separate main task classification from target label classification.2 To achieve this,
we maintain two models. The backbone model N is trained continually on all client data and used for main
task classification. A second shadow model N ′ is trained from scratch in each iteration using only the data of
benign clients, which are estimated using any existing filtering algorithm for separating malicious clients from
benign ones (e.g., outlier detection). Any FL-compatible filtering algorithm based on anomaly detection can
be plugged into our framework (e.g., SPECTRE (Hayase et al., 2021) or (Multi-)Krum (Blanchard et al.,
2017a)). The shadow model is early-stopped to provide robustness against backdoor attacks.

Shadow learning is motivated by empirical and theoretical observations. First, we show that under a simplified
setting, shadow learning provably prevents learning of backdoors for one choice of filtering algorithm called
SPECTRE (Hayase et al., 2021) that is based on robust covariance estimation. Incidentally, this analysis
provides the first theoretical justification for robust covariance-based defenses against backdoor attacks,
including in the non-FL setting (Thm. 1). Empirically, we demonstrate the efficacy of shadow learning on 4
datasets over 8 leading backdoor defenses, and across a wide range of settings. For example, on the EMNIST
dataset, shadow learning reduces the attack success rate (ASR) of backdoor attacks by 95-99% with minimal
degradation in main task accuracy (MTA) (≤ 0.005).

1.1 Related Work

We discuss the related work in detail in Appendix A. We consider training-time backdoor attacks, where the
attacker’s goal is to train a model to output a target classification label on samples that contain a trigger
signal (specified by the attacker) while classifying other samples correctly at test-time (Gu et al., 2017).

1We differentiate from continual learning, where models are expected to perform well on previously-seen distributions
(De Lange et al., 2021). We instead want the model to perform well on the current, changing data distribution. In particular,
we focus mainly on the difficulties in defending against backdoors during continuous training, rather than tackling classical
problems associated with continual learning (e.g., catastrophic forgetting).

2Shadow learning can handle uncertainty in the target label, at the expense of additional computation and storage. We
discuss these tradeoffs and how to handle uncertainty in the target label ℓ in Section 3.1 and Appendix C.
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We do not consider data poisoning attacks, in which the attacker aims to decrease the model’s prediction
accuracy (Yang et al., 2017; Biggio et al., 2014).

Of the three categories of defenses mentioned earlier, two dominate the literature on backdoor defenses in the
federated setting: malicious data filtering and robust learning.

(1) In malicious data filtering, the defender must estimate malicious samples, gradients, or representations,
and remove them from model training. This approach has been used in both the centralized setting (Hayase
et al., 2021; Li et al., 2021a; Tran et al., 2018; Huang et al., 2019; Tang et al., 2021; Do et al., 2022; Chen
et al., 2022b; Ma et al., 2022) as well as in the federated setting (Blanchard et al., 2017a; Fung et al., 2018;
Chen et al., 2018). For example, in the centralized setting, SPECTRE uses robust covariance estimation to
estimate the covariance of the benign data from a (partially-corrupted) dataset, and then do outlier detection
(Hayase et al., 2021). Although SPECTRE and other outlier detection-based filtering techniques generally
operate over raw samples, we can use (some of) them in the FL setting by applying them to gradients (e.g.,
G-SPECTRE) or sample representation (e.g., R-SPECTRE) statistics.

In the federated setting, filtering methods have also been very popular. One important example is the
(Multi-)Krum algorithm (Blanchard et al., 2017a), which aggregates only model updates that are close to a
barycenter of the updates from all clients. This removes malicious contributions, which are assumed to be
outliers.

(2) In robust learning, the defender instead designs training methods that aim to mitigate the impact of
malicious contributions, without needing to identify which clients’ updates were malicious. For example,
Robust Federated Aggregation (RFA) provides a robust secure aggregation oracle based on the geometric
median (Pillutla et al., 2019). Another example from Sun et al. (2019) suggests that clipping the norm of
gradient updates and adding noise to client updates can defend against model poisoning attacks. Later work
refined and improved this approach to defend against federated backdoor attacks (Xie et al., 2021).

(3) A recent hybrid approach combines filtering and robust learning. Approaches include FoolsGold (Fung
et al., 2018), and FLAME (Nguyen et al., 2022), which combines noise adding (robust training) with model
clustering (filtering) to achieve state-of-the-art defense against FL backdoors.

Our core observation is that that under continuous training over many round, all of these examples (and
more) suffer from backdoor leakage (§3).
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Figure 1: Motivated by backdoor leakage (left panel), and differences in learning rates for main tasks and
attack tasks (right panel), we propose our algorithm in §3.1.
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2 Problem Statement

We consider an FL setting where a central server learns an L-class classifier from n federated clients. Each
client i ∈ [n] has a training dataset Di = {(x1, y1), . . . , (xp, yp)}, where for all j ∈ [p], xj ∈ Rd0 and
yj ∈ [L]. Initially, we will consider this dataset to be fixed (static setting). We generalize this formulation
to a time-varying dataset (dynamic setting), by considering phases. In each phase e = 1, 2, . . ., the local
datasets Di[e] can change. For simplicity of notation, we will present the remainder of the formulation
in the static setting. The server’s goal is to learn a function fw parameterized by weights w that finds
arg minw

∑
(x,y)∈D L(w; x, y), where D is the union of all the local datasets, i.e., D = ∪i∈[n]Di, L denotes

the loss function over weights w given data x and y. The model is updated in rounds of client-server
communication. In each round r = 1, 2, . . ., the central server samples a subset Cr ⊊ [n] of clients. Each
client c ∈ Cr updates the model on their local data and sends back a gradient (or model) update to the
server. We assume these gradients are sent individually (i.e., they are not summed across clients using secure
aggregation). Our proposed framework can be generalized to the setting where clients are only accessed via
secure aggregation under computational primitives of, for example Pillutla et al. (2019).

Adversarial Model. Our adversary corrupts clients independently in each round. We assume that during
any training round r, the adversary cannot corrupt more than fraction α (for 0 < α < 0.5) of the participating
clients Cr in that round. The adversarial nodes are trying to introduce a backdoor to the learned model.
That is, for any sample x, the adversary wants to be able to add a trigger δ to x such that for any learned
model, fw(x + δ) = ℓ, where ℓ ∈ L is the target backdoor label. We assume ℓ is known to the defender,
though this condition can be relaxed (§5.1).

In a given round r, the sampled malicious clients M∩ Cr can contribute whatever data they want. However,
we assume that they otherwise follow the protocol. For example, they compute gradients correctly over their
local data, and they communicate when they are asked to; We do not focus on model poisoning attacks in
this work, where the adversary can change the model update completely (Sun et al., 2019). This could be
enforced by implementing the FL local computations on trusted hardware, for instance. This model is used
in prior works, for example in Pillutla et al. (2019).

Metrics. To evaluate a defense, we have two held-out test datasets at the central server. The first, Tb,
consists entirely of benign samples. This is used to evaluate main task accuracy (MTA), defined as the
fraction of correctly-classified samples in Tb: MTA(fw) ≜ |{(x,y)∈Tb | fw(x)=y}|

|Tb| . As defenders, we want
MTA to be high. The second dataset, Tm, consists entirely of backdoored samples. We use Tm to evaluate
attack success rate (ASR), defined as the fraction of samples in Tm that are classified to the target label ℓ:
ASR(fw) ≜ |{(x,y)∈Tm | fw(x)=ℓ}|

|Tm| . As defenders, we want ASR to be low.

3 Design

We propose a framework called shadow learning that builds upon three main insights.

Insight 1: Every existing approach suffers from backdoor leakage. Most backdoor defenses
significantly reduce the effect of backdoor attacks in a single round. However, a small fraction of malicious
gradients or model updates always go undetected. Over many training rounds (which are required under
distribution drift, for instance), this backdoor leakage eventually leads to a fully-backdoored model. Figure
1(a) shows the ASR over the training rounds of a backdoored classifier on the EMNIST dataset of handwritten
digits. We compare against baselines including SPECTRE (Hayase et al., 2021) (both gradient-based G-
SPECTRE and representation-based R-SPECTRE), RFA (Pillutla et al., 2019), Multi-Krum (Blanchard et al.,
2017b), norm clipping and/or noise addition (Sun et al., 2019), CRFL (Xie et al., 2021), FLAME (Nguyen
et al., 2022), and FoolsGold (Fung et al., 2018). Experimental details are explained in Appendix E. For a
relatively small α = 3% and for 12, 000 rounds, we observe the attack success rate (ASR) of all competing
defenses eventually approach one. These experiments are under the static setting where data distribution is
fixed over time; we show results in dynamic settings in §5.2. The main takeaway is that in the continual
FL setting, we cannot use the predictions of a single backdoor-resistant model that is trained
for too long.
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Insight 2: Early-stopping helps when α is small. Backdoor leakage suggests a natural defense: can we
adopt early-stopping to ensure that the model does not have enough time to learn a backdoor? The answer
depends on the relative difficulty of the main task compared to the backdoor task, as well as the adversarial
fraction α. For example, Figure 1(b) shows that on EMNIST (same setting as Figure 1(a)), when α = 3%,
the backdoor is learned more slowly than the main task: the main task reaches an accuracy of 0.99, while the
attack success rate is no more than 0.01. This suggests that early-stopping can be effective. On the other
hand, Li et al. (Li et al., 2021a) found that backdoors are learned faster than the main task, and propose
a defense based on this observation. Indeed, Figure 1(b) shows that when α = 25%, the previous trend is
reversed: the backdoor is learned faster than the main task. Over many experiments on multiple datasets, we
observe that early-stopping is only an effective defense when α is small enough relative to the
main task difficulty.

Insight 3: We can reduce α with robust filtering Since early-stopping helps when α is small, we
can use FL-compatible filtering techniques to reduce the effective α at any round. Filtering algorithms are
designed to separate malicious data from benign data, and they often use techniques from robust statistics
and outlier detection. Many proposed defenses can be viewed as filtering algorithms, including (Multi-)Krum,
activation clustering, and SPECTRE (more complete list in Appendix A). Any of these can be adapted to
the FL setting to reduce the effective α.

3.1 Shadow Learning: A Defense Framework

For simplicity, we first explain the framework assuming that the defender knows the target class ℓ; we then
explain how to relax this assumption (pseudocode in Algorithm 5).

Training. Shadow learning combines the prior insights by training two models: the backbone model and
the shadow model (Framework 1), both of which are maintained at the server but updated in each federated
training round. The backbone model is trained to be backdoored but stable (i.e., insensitive to distribution
shifts and filtering by our algorithm). In training, it is updated in each round using all (including malicious)
client data. At test time, we only use it if the prediction is not the target label. Otherwise, we resort to the
shadow model, which is trained on filtered data that removes suspected malicious clients at each round. This
filtering reduces the effective α for the shadow model. Finally, the shadow model is early-stopped to avoid
backdoor leakage. Since the server needs to maintain two models, the shadow learning framework uses twice
the storage compared to other defenses that do not require any storage overhead (e.g., RFA (Pillutla et al.,
2019)).
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Figure 2: Example of training dynamics of the backbone model N and shadow model N ′

In more detail, the backbone model N is trained continually on all available client data, and thus is backdoored
(see Figure 2). However, it still serves two purposes: (i) it is used to predict the non-target classes (since it
has seen all the past training data and hence is resilient to changing datasets), and (ii) it is used to learn
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parameters of a filter that can filter out poisoned model updates. Concretely, in each training round r, the
backbone model N is updated on client data from all the clients in the set Cr (line 3 Alg. 1).

In parallel, we train the shadow model N ′ on filtered model updates and also early stopped such that it
can robustly make predictions for the target label. As it is early stopped, we need to retrain the model
periodically from a random initialization in every retraining period to handle changing data distributions.
A retraining period starts every time the target label distribution changes; in practice, we choose rounds
where the training accuracy of the backbone model N on samples with the target label ℓ changes by more
than a threshold ϵ1 (lines 5-7). At the start of each retraining period, the server randomly initializes a new
shadow model N ′ of the same architecture as N . We say N has converged on ℓ if the difference between
the training accuracy on samples with label ℓ between two consecutive rounds is smaller than a convergence
threshold ϵ2. The next time backbone N converges on the target label ℓ distribution (call it round r0, line 8),
we commence training N ′ on filtered client sets {C′

r}r≥r0 until it is early-stopped.

Algorithm 1: Shadow learning framework
input : malicious rate upper bound ᾱ, target label ℓ, retraining threshold ϵ1, convergence threshold ϵ2, dimension k,

filtering hyperparameters β.
1 Initialize the networks N , N ′; converge← False; filter_learned← False;
2 for each training round r do
3 Train the backbone network N with client set Cr;
4 The server collects training accuracy on samples with label ℓ of each client in Cr, and calculates the mean value A

(r)
N ;

5 if converge and
∣∣∣A(r)

N −A
(r−1)
N

∣∣∣ > ϵ1 then
6 converge← False; filter_learned← False;
7 Initialize the shadow network N ′;

8 if not converge and
∣∣∣A(r)

N −A
(r−1)
N

∣∣∣ < ϵ2 then converge← True ;

9 if converge then
10 Each client j in Cr uploads the averaged representation h

(r)
j of samples with label ℓ;

11 if not filter_learned then

12 θ, T ← GetThreshold
({

h
(r)
j

}
j∈Cr

, ᾱ, k, β

)
[Algorithm 2]

13 filter_learned← True; early_stop← False;
14 if not early_stop then

15 C′
r ← Filter

({
h

(r)
j

}
j∈Cr

, θ, T, β

)
[Algorithm 3]

16 Train N ′ with client set C′
r;

17 The server collects training accuracy on samples with label ℓ of each client in C′
r , and calculates the mean of the

largest (1− ᾱ)-fraction values as A
(r)
N′ ;

18 if
∣∣∣A(r)

N′ −A
(r−1)
N′

∣∣∣ < ϵ2 then early_stop← True.

Concretely, consider retraining a shadow model from round r0 (e.g., in Figure 2, r0 = 600). In each round
r ≥ r0, we recompute the filtered client set C′

r whose data is used to train the shadow model N ′. This is done
by first having each client c ∈ Cr locally average the representations3 of samples in Dc with target label ℓ;
this average is sent to the server for filtering. To get the filter, in the first collection round (i.e., r = 600), the
server calls GetThreshold, which returns filter parameters θ and a threshold T ; these are used in Filter
(Alg. 3) to remove malicious clients.

Although our framework supports any filtering algorithm, we empirically find SPECTRE (Hayase et al., 2021)
to be an effective filtering algorithm (e.g., it has the slowest backdoor leakage in Fig. 1(a)) and use it for the
remainder of this work. If the filtering algorithm is SPECTRE, GetThreshold returns the parameters
θ = (Σ̂, µ̂, T, U) for the robust covariance Σ̂, robust mean µ̂, filtering threshold T , and an orthonormal
matrix U representing the top k PCA vectors for the representations {hj ∈ Rd}j∈Cr . The filtering threshold

3E.g., these can be taken from the penultimate layer of N .
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T is set in this case as the 1.5ᾱ|C|-th largest QUE score, which intuitively captures how “abnormal" a sample
is (Alg. 4), where ᾱ is an estimated upper bound on the malicious rate. The SPECTRE filtering process is
detailed in Algorithms 2 and 3 (Appendix B).

The shadow network N ′ is early-stopped once the training accuracy on benign target samples converges. To
determine the early-stopping point, clients send the training accuracy on samples with label ℓ to the server. If
the difference between the average values of the largest (1− ᾱ)-fraction training accuracy in two consecutive
rounds is smaller than ϵ2, N ′ is early-stopped.

We illustrate the training process of the backbone model N and shadow model N ′ in one retraining period
with malicious rate α = 0.15 under CIFAR-10 in Figure 2. Once the backbone model N converges on the
target label ℓ (illustrated by the blue dotted line), the server starts training the shadow model N ′ based on
the filtered client set. N ′ is early-stopped once its training accuracy on benign target samples converges
(illustrated by the orange dotted line).

Testing. At test time, all unlabeled samples are first passed through backbone N . If predicted as the target
label ℓ, the sample is passed through the early-stopped shadow network N ′, whose prediction is taken as the
final output.

Unknown target label ℓ. Suppose that instead of knowing ℓ exactly, the defender knows it to be in some
set Sℓ ⊆ [L]. In this case, our framework generalizes by learning a different shadow network N ′

y and filter for
each label y ∈ Sℓ. It then chooses a set of labels S′

ℓ ⊆ Sℓ whose filters have the greatest separation between
estimated benign and malicious clients. For instance, under SPECTRE, this is done by comparing QUE
scores for estimated outliers compared to inliers for each label (Alg. 5, App. C). At test time, samples are
first passed through the backbone N . If the label prediction y is in the filtered target set S′

ℓ, the sample is
passed through the early-stopped shadow network N ′

y, whose prediction is taken as the final output.

4 Analysis

Using SPECTRE as our filtering algorithm, we can theoretically analyze a simplified setting of shadow
learning. This analysis includes the first theoretical justification of defenses based on robust covariance
estimation and outlier detection (e.g., Hayase et al. (2021)), including in non-FL settings. Specifically,
assuming clean and poisoned representations are drawn i.i.d. from different Gaussian distributions, we show
that GetThreshold (Alg. 2) and Filter (Alg. 3) reduce the number of corrupt clients polynomially in α
(Theorem 1). Using predictions from the early-stopped shadow network, this guarantees a correct prediction
(Corollary 4.1).
Assumption 1. We assume that the representation of the clean and poisoned data points that have the target
label are i.i.d. samples from d-dimensional Gaussian distributions N (µc, Σc) and N (µp, Σp), respectively. The
combined representations are i.i.d. samples from a mixture distribution (1−α)N (µc, Σc) + αN (µp, Σp) known
as Huber contamination (Huber, 1992). We assume that ∥Σ−1/2

c ΣpΣ−1/2
c ∥ ≤ ξ < 1, where ∥ · ∥is the spectral

norm.

The separation, ∆ = µp − µc, between the clean and the corrupt points plays a significant role, especially the
magnitude ρ = ∥Σ−1/2

c ∆∥. We show that GetThreshold and Filter significantly reduce the poisoned
fraction α, as long as the separation ρ is sufficiently larger than (a function of) the poison variance ξ. In the
following, nr ≜ |Cr| denotes the number of clients in a round r.
Theorem 1 (Utility guarantee for Threshold and Filter). For any m ∈ Z+ and a large enough nr =
Ω((d2/α3)polylog(d/α)) and small enough α = O(1), under Assumption 1, there exist positive constants
cm, c′

m > 0 that only depend on the target exponent m > 0 such that if the separation is large enough,
ρ ≥ cm

√
log(1/α) + ξ, then the fraction of the poisoned data clients after GetThreshold in Algorithm 2

and Filter in Algorithm 3 is bounded by |Spoison\Sfilter|
nr−|Sfilter| ≤ c′

mαm, with probability 9/10 where Sfilter is the
set of client updates that did not pass the Filter and Spoison is the set of poisoned client updates.

The proof (Appendix D.1) connects recent results on high-dimensional robust covariance estimation (Di-
akonikolas et al., 2017) to the classical results of Davis & Kahan (1970) to argue that the top eigenvector of
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the empirical covariance matrix is aligned with the direction of the poisoned representations; this enables
effective filtering. Theorem 1 suggests that we can select m = 3 to reduce the fraction of corrupted clients
from α to c′

mα3, as long as the separation between clean and poisoned data is large enough. The main
tradeoff is in the condition ρ/

√
log(1/α) + ξ ≥ cm, where the LHS can be interpreted as the Signal-to-Noise

Ratio (SNR) of the problem of detecting poisoned updates. If the SNR is large, the detection succeeds.

The next result shows that one can get a clean model by early-stopping a model trained on such a filtered
dataset. This follows as a corollary of (Li et al., 2020a, Theorem 2.2); it critically relies on an assumption on
a (ε0, M)-clusterable dataset {(xi ∈ Rd0 , yi ∈ R)}nr

i=1 and overparametrized two-layer neural network models
defined in Assumption 2 in the Appendix D.2. If the fraction of malicious clients α is sufficiently small, early
stopping prevents a two-layer neural network from learning the backdoor. This suggests that our approach
can defend against backdoor attacks; GetThreshold and Filter effectively reduce the fraction of corrupted
data, which strengthens our early stopping defense. We further discuss the necessity of robust covariance
estimation in Appendix D.3.
Corollary 4.1 (Utility guarantee for early stopping; corollary of (Li et al., 2020a, Theorem 2.2)). Under the
(α, nr, ε0, ε1, M, L, M̂, C, λ, W )-model in Assumption 2, starting with W0 ∈ RM̂×d0 with i.i.d. N (0, 1) entries,
there exists c > 0 such that if α ≤ 1/4(L− 1), where L is the number of classes, then τ = c∥C∥2/λ steps of
gradient descent on the loss L(W ; x, y) = (1/2)(fW (x)− y)2 for a two-layer neural network parametrized by
W ∈ RM̂×d0 with learning rate η = cM/(nr∥C∥2) outputs WT that correctly predicts the clean label of a test
data xtest regardless of whether it is poisoned or not with probability 1− 3/M −Me−100d0 .

5 Experimental results

We evaluate shadow learning (with R-SPECTRE filtering) on 4 datasets: EMNIST (Cohen et al., 2017),
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015) datasets. We
compare with 8 state-of-the-art defense algorithms under the federated setting: SPECTRE (gradient- and
representation-based))(Hayase et al., 2021), Robust Federated Aggregation (RFA) (Pillutla et al., 2019),
Norm Clipping, Noise Adding (Sun et al., 2019), CRFL (Xie et al., 2021), FLAME (Nguyen et al., 2022),
Multi-Krum (Blanchard et al., 2017b) and FoolsGold (Fung et al., 2018). We give a detailed explanation of
each in Appendix E, with hyperparameter settings.

We consider a worst-case adversary that corrupts a full α fraction of clients in each round. In Appendix F.6,
we study a relaxed threat model where the adversary can adapt their corrupt client fraction α(t) over time to
take advantage of shadow model learning.

5.1 Defense under Homogeneous and Static Clients

In the homogeneous EMNIST dataset, we shuffle the dataset and 100 images are distributed to each client.
We assume the target label ℓ = 1 is known to the defender; we show what happens for unknown ℓ in Sec.
5.3. We train the model for 1200 rounds to model continuous training. Recall from Figure 1(a) that existing
defenses suffer from backdoor leakage when α is small (α = 0.03). In contrast, Algorithm 1 achieves an ASR
of 0.0013 for EMNIST and 0.0092 for CIFAR-10. Algorithm 1 also offers strong protection at higher α. For
α as high as 0.45, Table 1 shows that Algorithm 1 has an ASR below 0.06 on EMNIST, whereas existing
defenses all suffer from backdoor leakage. With different α, the Main Task Accuracy (MTA) of Algorithm 1
is always above 0.995, and the MTA convergence rate of Algorithm 1 is always similar to the no defense
scenario.

In some scenarios, it might be infeasible to get access to average representations for the target label. In
this case, we propose a user-level defense whose ASR is also shown in the bottom row. We observe that
ASR degrades gracefully, when switching to the user-level defense, a variant of our algorithm in which each
user uploads the averaged representation over all samples rather than samples with the target label. Data
homogeneity enables Algorithm 1 to distinguish malicious clients only based on averaged representations over
all samples, without knowing the target label. We experiment with heterogeneous clients in Section 5.4.

Compared to EMNIST, CIFAR-10 is more difficult to learn. The smaller learning rate results in less effective
early stopping and thus leads to slightly larger ASR in Table 2. With different α, the MTA of Algorithm 1

8



Published in Transactions on Machine Learning Research (08/2023)

Table 1: ASR for EMNIST under continuous training shows the advantage of Algorithm 1, while others suffer
backdoor leakage.

Defense \ α 0.15 0.25 0.35 0.45

Noise Adding 1.00 1.00 1.00 1.00
Clipping and
Noise Adding 1.00 1.00 1.00 1.00

RFA 1.00 1.00 1.00 1.00
Multi-Krum 1.00 1.00 1.00 1.00
FoolsGold 0.9972 1.00 1.00 1.00
FLAME 1.00 1.00 1.00 1.00
CRFL 0.9873 0.9892 0.9903 0.9884

G-SPECTRE 0.9948 1.00 1.00 1.00
R-SPECTRE 0.9899 0.9934 1.00 1.00

Shadow Learning
(label-level /

user-level)

0.0067 /
0.0216

0.0101 /
0.0367

0.0312 /
0.0769

0.0502 /
0.1338

is always above 0.940, and the MTA convergence rate of Algorithm 1 is always similar to the no defense
scenario. We show the ASR for CIFAR-100 and Tiny-ImageNet in Appendix F.2.

Table 2: ASR for CIFAR-10 under continuous training shows the advantage of Algorithm 1, while others
suffer backdoor leakage.

Defense \ α 0.15 0.25 0.35 0.45

Noise Adding 0.9212 0.9177 0.9388 0.9207
Clipping and
Noise Adding 0.9142 0.9247 0.9282 0.9338

RFA 0.9353 0.9528 0.9563 0.9598
Multi-Krum 0.9254 0.9196 0.9219 0.9301
FoolsGold 0.8969 0.9038 0.9157 0.9143
FLAME 0.9328 0.9267 0.9291 0.9331
CRFL 0.8844 0.8731 0.8903 0.8891

G-SPECTRE 0.8754 0.9001 0.9142 0.9193
R-SPECTRE 0.7575 0.8826 0.8932 0.9091

Shadow Learning 0.0140 0.0355 0.0972 0.1865

5.2 Ablation study under distribution drift

We next provide an ablation study to illustrate why the components of shadow learning are all necessary. We
run this evaluation under a distribution drift scenario, where the distribution changes every 400 rounds. We
use homogeneous EMNIST in the first phase e1, then reduce the number of samples with labels 2-5 to 10% of
the original in phase e2, i.e., we reduce the number of images with the label in {2, 3, 4, 5} from 10 to 1 for
each client. Again, the backdoor target label is 1.

We compare shadow learning with two simpler variants: Periodic R-SPECTRE and Shadow Network
Prediction. In periodic R-SPECTRE, the backbone N is retrained from scratch with SPECTRE every
R = 400 rounds; filtering is done in every round. In Shadow Network Prediction, we use the same training as
our framework, but prediction only uses the shadow network (as opposed to using the backbone network
as in Algorithm 1). The MTA-ASR tradeoffs of all three algorithms in the second phase e2 are shown in
Fig. 3, where each marker represents a different point in time. Fig. 3 gives a more direct comparison of the
convergence rates of ASR and MTA, which are critical to evaluating the efficiency of early-stopping. That is,
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Figure 3: Ablation study for shadow learning under distribution drift. Simplified variants of our framework
(e.g., periodic R-SPECTRE, shadow network prediction) significantly degrade the MTA-ASR Tradeoff with
α = 0.15, as achieving top-left is ideal.

early-stopping is effective if the curve reaches the top-left corner, i.e., high MTA and low ASR. Results for
different periods and types of data distribution drift are shown in Appendix F.5.

Fig.3 shows that for α = 0.15, full shadow learning achieves an MTA-ASR point of (0.9972, 0.0103) (green
star), but the simplified variants perform significantly worse. Shadow network prediction does better than
periodic R-SPECTRE, as it conducts client filtering only after the convergence of backbone network N on
label ℓ, while the latter filters in every round. This indicates that filtering after N converges gives better
performance. However, shadow network prediction suffers from the lack of training samples with labels 2-5,
leading to poor performance.

5.3 Defense without knowing target label ℓ

We next evaluate shadow learning when the defender only knows that the target label falls into a target set
Sℓ on EMNIST. In our generalized framework (Algorithm 5), we set the training round threshold as R = 20,
and set the filtering ratio as κ = 0.2. To analyze the averaged ASR and target label detection success rate,
we set α = 0.3 and vary the size of Sℓ from 2 to 10 (i.e., at 10, the defender knows nothing about ℓ). For
each experimental setting, we run our framework 20 times.
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Figure 4: Defense Without Knowing the Exact Target Label with α = 0.3

As observed in Figure 4, when |Sℓ| ≤ 9, the averaged ASR of our method is near 0, and the target label can
be detected successfully all the time, i.e., target label ℓ is in the filter target set S′

ℓ. When |Sℓ| = 10, i.e.,

10



Published in Transactions on Machine Learning Research (08/2023)

when the defender has no information about the target label, the averaged ASR and the detection success
rates degrade gracefully (notice the different scales for the two vertical axes on Figure 4). This shows that
even without knowledge of the target label, shadow learning is still effective.

To further demonstrate the performance of our algorithm on unknown target label defense, we set malicious
rate as α = 0.15 and conduct experiments on CIFAR-10, CIFAR-100 and Tiny-ImageNet datasets (with
|Sℓ| = 10, 100 and 200 respectively). The attack success rate (ASR) and main task accuracy (MTA) are
shown below.

Table 3: Unknown target label defense under different datasets with α = 0.15

CIFAR-10 CIFAR-100 Tiny-ImageNet
ASR 0.084 0.099 0.092
MTA 0.948 0.862 0.801

Table 3 suggests that shadow learning still works on datasets with hundreds of labels while the defender has
no information about the target label.

When the target label is unknown, shadow learning needs to train one shadow model for every label in the
target set Sℓ, which could incur significant computational costs. However, these costs can be mitigated by the
fact that each shadow model only needs to be trained for R rounds (R = 20 in our experiments); after this,
we find that we can determine the true target label with high accuracy and stop training the other shadow
models. This assumes the target label is fixed, which may not be the case in practice.

To demonstrate the performance of our defense against multiple target label attacks (i.e., the attacker injects
multiple backdoors targeting different labels in the model), we conduct experiments on Tiny-ImageNet, and
vary the number of backdoors injected. We set the malicious rate to α = 0.15 and assume the target label
is totally unknown. The maximal attack success rate among all target labels (Max-ASR) and main task
accuracy (MTA) is shown in Table 4.

Table 4: Defense against multiple target label attacks with α = 0.15

#Backdoor Max-ASR MTA
1 0.092 0.801
50 0.107 0.794
100 0.125 0.813
150 0.122 0.783
200 0.150 Not Applied

From Table 4, we can observe that as the number of backdoors increases, Max-ASR increases slightly from
0.092 to 0.150 while MTA stays roughly the same, indicating that our algorithm can defend against attacks
with multiple backdoors.

5.4 Defense under Client Heterogeneity

We finally evaluate the ASR of Algorithm 1 and its two variants, sample-level and user-level defenses, on
the EMNIST dataset using the original dataset partition. In the sample level version, each user uploads the
representations of samples with the target label without averaging, and the samples regarded as backdoor
images are filtered out. This weakens privacy but is more robust against heterogeneous clients as shown in
Table 5. On the other hand, user-level defense fails as heterogeneity of clients makes it challenging to detect
corrupt users from user-level aggregate statistics. The label-level RFA and R-SPECTRE are evaluated after
the network being trained for 1200 rounds. More experimental results with different heterogeneity levels and
different datasets are provided in Appendix F.4.
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Table 5: ASR under EMNIST partitioned as the original data

Defense \ α 0.15 0.25 0.35 0.45

Label-level RFA 1.00 1.00 1.00 1.00
R-SPECTRE 0.9967 1.00 1.00 1.00

Shadow Learning
(Sample-level) 0.0107 0.0166 0.0301 0.0534

Shadow Learning 0.0307 0.0378 0.0836 0.1106
Shadow Learning

(User-level) 0.5719 0.5912 0.6755 0.7359

5.5 Defense against attacks with explicit evasion of anomaly detection (Bagdasaryan et al., 2020)

We next evaluate shadow learning in the context of attacks that explicitly aim to evade anomaly detection
techniques, namely Bagdasaryan et al. (2020). In this approach, to explicitly evade anomaly detection,
adversarial clients modify their objective (loss) function by adding an anomaly detection term Lano:

Lmodel = γLclass + (1− γ)Lano,

where Lclass represents the accuracy on both the main and backdoor tasks. Lano captures the type of anomaly
detection they want to evade. In our setting, Lano accounts for the difference between the representations of
backdoor samples and benign samples with target label ℓ. The ASR of our algorithm under this attack is
shown in Table 6 with different values of γ. This experiment is run on the homogeneous EMNIST dataset.

Table 6: ASR of shadow learning under the Attack in Bagdasaryan et al. (2020)

α γ = 0.4 γ = 0.6 γ = 0.8 γ = 1
0.15 0.0100 0.0100 0.0067 0.0067
0.25 0.0133 0.0167 0.0133 0.0101
0.35 0.0201 0.0304 0.0368 0.0312
0.45 0.0367 0.0702 0.0635 0.0502

We observe that with different γ, the ASR of shadow learning is always smaller than or equal to 0.07 for the
homogeneous EMNIST dataset, indicating that the attacks cannot succeed under our defense method even
with explicit evasion of anomaly detection.

5.6 Different backdoor trigger patterns

For completeness, we experiment with additional backdoor trigger patterns. We consider three different
backdoor trigger patterns: diagonal trigger, random trigger, and periodic signal. The first two trigger patterns
can be regarded as the pixel attack, while the last pattern belongs to the periodic attack (Barni et al., 2019).
The diagonal trigger consists of black pixels in the top left to bottom right diagonal, and as for the random
trigger, 25 pixels are randomly selected from the image and fixed as the trigger pattern. For the periodic
signal, we choose the sine signal with amplitude 8 and frequency of 10. As shown in Table 7, under the
homogeneous EMNIST dataset, the ASR of our method is smaller than 0.06 in all cases, indicating our
method can generalize to different types of backdoor attacks.

5.7 Other settings

More experimental results including other datasets, defending against adaptive malicious rate attack strategies
(F.6), robustness to differentially-private noise F.7, and sensitivity analysis of filtering algorithm hyperparam-
eters F.8 are shown in Appendix F.
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Table 7: ASR of Our Method under Different Trigger Patterns

α Diagonal Trigger Random Trigger Periodic Signal
0.15 0.0133 0.00 ± 0 0.00
0.25 0.0234 0.0067 ± 0.001 0.0201
0.35 0.0281 0.0268 ± 0.003 0.0367
0.45 0.0569 0.0533 ± 0.003 0.0585

6 Conclusion

Motivated by the successes of filtering-based defenses against backdoor attack in the non-FL setting, we
propose a novel and general framework for defending against backdoor attacks in FL under continuous
training. Any FL-compatible filter can be plugged into our framework. The main idea is to use such filters to
reduce the fraction of corrupt model updates significantly, and then train an early stopped model (called a
shadow model) on those filtered updates to get a clean model. This combination of filtering and early-stopping
significantly improves upon existing defenses and we provide a theoretical justification of our approach. One
of the main technical innovations is the parallel training of the backbone and the shadow models, which is
critical for obtaining a reliable filter (via the backbone model) and a trustworthy predictor (via the shadow
model). Experimenting on four vision datasets and comparing against eight baselines, we show significant
improvement on defense against backdoor attacks in FL.
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Appendix

A Related Work

For more comprehensive survey of backdoor attacks and defenses, we refer to Li et al. (2022b).

Backdoor attacks. There has been a vast body of attacks on machine learning (ML) pipelines. In this
work, we consider only training-time attacks, in which the attacker modifies either the training data or process
to meet their goals, some of which are particularly deteriorating in FL settings (Sun et al., 2019; Wang et al.,
2020b). Inference-time attacks are discussed in several survey papers (Madry et al., 2017; Ilyas et al., 2019).
Further, we do not consider data poisoning attacks, in which the goal of the adversary is simply to decrease
the model’s prediction accuracy (Yang et al., 2017; Biggio et al., 2014) which has also been studied in the
federated setting (Sun et al., 2019). Instead, we focus on backdoor attacks, where the attacker’s goal is to
train a model to output a target classification label on samples that contain a trigger signal (specified by the
attacker) while classifying other samples correctly at test-time (Gu et al., 2017). The most commonly-studied
backdoor attack is a pixel attack, in which the attacker inserts a small pattern of pixels into a subset of
training samples of a given source class, and changes their labels to the target label (Gu et al., 2017). Pixel
attacks can be effective even when only a small fraction of training data is corrupted (Gu et al., 2017). Many
subsequent works have explored other types of backdoor attacks, including (but not limited to) periodic
signals (Zhong et al., 2020), feature-space perturbations (Chen et al., 2017; Liu et al., 2017), reflections (Liu
et al., 2020), strong trigggers that only require few-shot backdoor examples (Hayase & Oh, 2022), and FL
model replacement that explicitly try to evade anomaly detection (Bagdasaryan et al., 2020). One productive
line of work in in making the trigger human-imperceptible (Li et al., 2020b; Barni et al., 2019; Yao et al.,
2019; Liu et al., 2017; Zhong et al., 2022; Feng et al., 2022; Wang et al., 2022a;d; Phan et al., 2022; Zhao
et al., 2022a). Another line of work attempts to make the trigger stealthy in the latent space (Shokri et al.,
2020; Cheng et al., 2021; Zhao et al., 2022b; Zeng et al., 2022; Qi et al., 2022; 2023). However, due to the
privacy preserving nature of the federated setting, the attacker is limited in the information on other clients’
data in the federated scenario. Although our evaluation will focus on pixel attacks, our experiments suggest
that our insights translate to other types of attacks as well (Appendix 5.6 and 5.5). Advances in stronger
backdoor attacks led to their use in other related domains, including copyright protection for training data
(Li et al., 2020c; 2022c;a) and auditing differential privacy (Jagielski et al., 2020).

Backdoor defenses. As mentioned earlier, many backdoor defenses can be viewed as taking one (or more)
of three approaches: (1) Malicious data detection, (2) Robust training, and (3) Trigger identification.

Malicious data detection-based methods exploit the idea that adversarial samples will differ from the benign
data distribution (e.g., they may be outliers). Many such defenses require access to clean samples (Liang et al.,
2017; Lee et al., 2018; Steinhardt et al., 2017), which we assume to be unavailable. Others work only when
the initial adversarial fraction is large, as in anti-backdoor learning (Li et al., 2021a) (see § 3), or small, as in
robust vertical FL (Liu et al., 2021); we instead require a method that works across all adversarial fractions.
Recently, SPECTRE proposed using robust covariance estimation to estimate the covariance of the benign
data from a (partially-corrupted) dataset (Hayase et al., 2021). The data samples are whitened to amplify
the spectral signature of corrupted data. Malicious samples are then filtered out by thresholding based on
a QUantum Entropy (QUE) score, which projects the whitened data down to a scalar. We use SPECTRE
as a building block of our algorithm, and also as a baseline for comparison. To adapt SPECTRE to the
FL setting, we apply it to gradients (we call this G-SPECTRE) or sample representations (R-SPECTRE),
each averaged over a single client’s local data with target label ℓ. However, we see in § 3 that SPECTRE
alone does not work in the continuous learning setting. We propose shadow learning, where a second shadow
model is trained on data filtered using one of the malicious data detection-based methods, for example Tran
et al. (2018); Chen et al. (2018); Hayase et al. (2021). Some other malicious data filtering approaches, such
as Huang et al. (2019); Do et al. (2022); Chen et al. (2022b), require inspecting clients’ individual training
samples, which is typically not feasible in FL systems. Instead, filtering approaches, such as Ma et al. (2022);
Tang et al. (2021); Tran et al. (2018); Chen et al. (2018), that are based on the statistics of the examples can
potentially be used within our shadow model framework.

19



Published in Transactions on Machine Learning Research (08/2023)

Robust training methods do not explicitly identify and/or filter outliers; instead, they modify the training
(and/or testing) procedure to implicitly remove their contribution. For example, Robust Federated Aggregation
(RFA) provides a robust secure aggregation oracle based on the geometric median (Pillutla et al., 2019). It
is shown to be robust against data poisoning attacks both theoretically and empirically. However, it was
not evaluated on backdoor attacks. In this work, we adopt RFA as a baseline, and show that it too suffers
from backdoor leakage (§ 3). Federated Learning Provable defense framework (FLIP) provides a trigger
reverse engineering based defense against backdoor attack under federated learning setting (Zhang et al.,
2022). However, it was not evaluated on continuous training setting (attack happens at least 1,000 rounds
for example). Other variants of robust training methods require a known bound on the magnitude of the
adversarial perturbation; for example, randomized smoothing (Wang et al., 2020a; Weber et al., 2020) ensures
that the classifier outputs the same label for all points within a ball centered at a particular sample. We
assume the radius of adversarial perturbations to be unknown at training time. Other approaches again
require access to clean data, which we assume to be unavailable. Examples include fine-pruning (Liu et al.,
2018), which trains a pruned, fine-tuned model from clean data.

Trigger identification approaches typically examine the training data to infer the structure of a trigger (Chen
et al., 2019; 2022a; Tao et al., 2022; Guo et al., 2021; Hu et al., 2021; Wang et al., 2022c; Xiang et al., 2020;
Wang et al., 2022b; Chai & Chen, 2022; Harikumar et al., 2022; Yue et al., 2022; Guan et al., 2022). For
example, NeuralCleanse (Wang et al., 2019) searches for data perturbations that change the classification
of a sample to a target class. SentiNet (Chou et al., 2018) uses techniques from model interpretability to
identify contiguous, salient regions of input images. These approaches are ill-suited to the FL setting, as they
require fine-grained access to training samples and are often tailored to a specific type of backdoor trigger
(e.g., pixel attacks).

Finally, note that there is a large body of work defending against data poisoning attacks (Sun et al., 2019;
Pillutla et al., 2019; Blanchard et al., 2017a; Awan et al., 2021; Laskov, 2014; Tolpegin et al., 2020). In
general, such defenses may not work against backdoor attacks. For example, we show in § 3 and § 5 that
defenses against data poisoning attacks such as RFA (Pillutla et al., 2019), norm clipping (Sun et al., 2019),
and noise addition (Sun et al., 2019) are ineffective against backdoor attacks, particularly in the continuous
training setting.

There are other defenses include that are less explored including test-time backdoor defense (Guo et al., 2023)
and model unlearning (Zeng et al., 2021).

Continuous training. Distribution shift and temporal data heterogeneity exist widely in real-word
applications, e.g., traffic congestion monitoring (Xu & Mao, 2020) and healthcare monitoring (Brophy et al.,
2021). In order to adapt to changing data distributions, models should be trained continuously, both in the
federated and central settings (Hofer & Krempl, 2013). There are several works (Xu & Mao, 2020; Yu et al.,
2022) focused on the issues raised by continuous training in FL, e.g., communication cost and algorithm
design. In some applications, enterprises may want to update their model to perform well on the current
distribution, as well as on previously-seen distributions (i.e., they want to prevent catastrophic forgetting).
However, in this paper, we consider a simpler setting in which the central party only wants to perform well
on the currently-seen distribution. Even in this simpler setting, we show that existing approaches are unable
to resist backdoor attacks. Hence, we view solving the current problem as a precursor to fully solving the
backdoored continual learning problem in the federated setting.

B Algorithm Details

In the client filtering process, the collected representations are projected down to a k-dimensional space by
U , then whitened to get h̃j = Σ̂

−1/2
(UT hj − µ̂) ∈ Rk for all j ∈ Cr. The projection onto U is to reduce

computational complexity, which is less critical for the performance of the filter. The whitening with clean
covariance Σ̂ and clean mean µ̂ ensures that the poisoned representations stand out from the clean ones and
is critical for the performance of the filter. Based on the whitened representations, the server calculates QUE
scores (which roughly translates as the scaled-norm of the whitened representation) for all clients and keeps
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the clients with scores less than the threshold T as C′
r (Filter in line 15). The details of GetThreshold

and the client filtering process, Filter, are shown in Algorithms 2 and 3.

Algorithm 2: GetThreshold (SPECTRE-based instantiation)

input : representation S = {hi}n
i=1, malicious rate upper bound ᾱ, dimension k, QUE parameter β.

µ(S)← 1
n

∑n
i=1 hi;

S1 = {hi − µ(S)}n
i=1;

V , Λ, U = SVDk(S1);
S2 ← {U⊤hi}hi∈S ;
Σ̂, µ̂← RobustEst (S2, ᾱ); (Diakonikolas et al., 2019)
S3 ←

{
Σ̂

−1/2 (
h̄i − µ̂

)}
h̄i∈S2

;
{ti}n

i=1 ← QUEscore(S3, β) [Algorithm 4]
T ← the 1.5ᾱn-th largest value in{ti}n

i=1;
return Σ̂, µ̂, T, U

Algorithm 3: Filter (SPECTRE-based instantiation)

input : S =
{

h̄i ∈ Rk
}n

i=1, estimated covariance Σ̂, estimated mean µ̂, threshold T , QUE parameter β.

S′ ←
{

Σ̂
−1/2 (

h̄i − µ̂
)}

h̄i∈S
;

{ti} ← QUEscore(S′, β) [Algorithm 4]
return clients with QUE-scores smaller than T

The details of the QUEscore (Hayase et al., 2021) is shown in Algorithm 4

Algorithm 4: QUEscore (Hayase et al., 2021)

input : S =
{

h̃i ∈ Rk
}n

i=1, QUE parameter β.

ti ←
h̃

⊤
i Qβh̃i

Tr(Qβ) , ∀i ∈ [n],

where Qβ = exp
(

β(Σ̃−I)
∥Σ̃∥2−1

)
and Σ̃ = 1

n Σn
i=1h̃ih̃

⊤
i .

return {ti}n
i=1

C Shadow Learning Framework Without Knowledge of the Target Label

For simplicity, we presented Algorithm 1 using knowledge of the target label ℓ. However, this knowledge is
not necessary. In practice, an adversary may know that the target label falls into a target set Sℓ ⊆ [L]. Note
that the defender has no information about the target class when Sℓ = [L], i.e., when it contains all labels.
Under this assumption, shadow learning generalizes to Algorithm 5.

At training time, the central server maintains a backbone model and multiple shadow models, each shadow
model corresponding to a potential target label in Sℓ. The backbone model N is trained continuously based
on Algorithm 1. For each shadow model N ′

y, where y ∈ Sℓ, it is first trained for R rounds according to
Algorithm 1, where each client uploads the averaged representation of samples with label y. To distinguish
the actual target label, for every shadow network training round r, each shadow network N ′

y calculates the
QUE-ratio γ

(r)
y = Q1

Q2
, where Q1(resp. Q2) is the QUE-score averaged over clients with scores larger (resp.
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smaller) than T , which is the QUE threshold calculated in Algorithm 1. Compared with non-target labels,
the QUE-scores of malicious clients calculated based on the target label ℓ are much larger than that of benign
clients, and therefore, γ

(r)
ℓ is larger than γ

(r)
y (y ∈ Sℓ \ {ℓ}) in most cases. After the shadow networks have

been trained for R rounds, the averaged QUE-ratio γy will be calculated for every N ′
y, according to which

the filtered target set S′
ℓ can be obtained:

S′
ℓ ←

{
y|γy is among the top ⌈κ|Sℓ|⌉ largest values of {γz}z∈Sℓ

}
,

where the hyper-parameter κ is the filtering ratio. Then only the shadow networks with labels in the filter
target set S′

ℓ will be trained according to Algorithm 1.

At test time, all unlabeled samples are first passed through backbone N . If the label prediction y falls into the
filtered target set S′

ℓ, the sample is passed through the early-stopped shadow network N ′
y, whose prediction is

taken as the final output. We show that Algorithm 5 works well for most Sℓ and degrades gracefully as the
set increases in Figure 4.

Algorithm 5: Shadow learning framework (training) without knowing the exact target label

input : target set Sℓ, training round threshold R, filtering ratio κ.
1 Initialize the networks N ,

{
N ′

y

}
y∈Sℓ

;
2 Γy ← 0, ∀y ∈ Sℓ;
3 Train the backbone network N according to Algorithm 1;
4 for each shadow network training round r do
5 if r ≤ R then
6 for each shadow network N ′

y where y ∈ Sℓ do
7 Obtain QUE-score for each client and threshold T , and train N ′

y according to Algorithm 1,
where each client uploads the averaged representation of samples with label y;

8 Q1 ← QUE-score averaged over clients with scores larger than T ;
9 Q2 ← QUE-score averaged over clients with scores smaller than T ;

10 γ
(r)
y = Q1

Q2
;

11 Γy ← Γy + γ
(r)
y ;

12 if r = R then
13 γy ←

Γy

R , ∀y ∈ Sℓ;
14 S′

ℓ ←
{

y|γy is among the top ⌈κ|Sℓ|⌉ largest values of {γz}z∈Sℓ

}
;

15 if r > R then
16 Train N ′

y, where y ∈ S′
ℓ, according to Algorithm 1;

D Complete Proofs of the Main Theoretical Results

We provide proofs of main results and accompanying technical lemmas. We use c, c′, C, C ′, . . . to denote
generic numerical constants that might differ from line to line.

D.1 Proof of Theorem 1

The proof proceeds in two steps. First, we show that under Assumption 1, the direction of the top eigenvector
of the empirical covariance is aligned with the direction of the center of the poisoned representations
(Lemma D.1). We next show that filtering with the quantum score significantly reduces the number of
poisoned clients (Lemma D.2).

We let Σ̂ be the output of the robust covariance estimator in Algorithm 2. After whitening by Σ̂−1/2, we let
Σ̃c = Σ̂−1/2ΣcΣ̂−1/2, Σ̃p = Σ̂−1/2ΣpΣ̂−1/2, ∆̃ = Σ̂−1/2∆, µ̃p = Σ̂−1/2µp, and µ̃c = Σ̂−1/2µc.
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The next lemma shows that as we have a larger separation ∥∆̃∥, we get a better estimate of the direction of the
poisons, ∆̃/∥∆̃∥, using the principal component, v, of the whitened representations S′ = {Σ−1/2(hi − µ)}nr

i=1.
The estimation error is measured in sin2 of the angle between the two.

Lemma D.1 (Estimating ∆̃ with top eigenvector). Under the assumptions of Theorem 1,

sin2(v, ∆̃/∥∆̃∥) = 1− (vT ∆̃/∥∆̃∥)2 ≤ c
(log(1/α) + ξ)2

∥∆̃∥4
. (1)

We next show that when projected onto any direction v, the number of corrupted client updates passing the
filter is determined by how closely aligned v is with the direction of the poisoned data, ∆̃, and the magnitude
of the separation, ∥∆̃∥.

Lemma D.2 (Quantum score filtering). Under the hypotheses of Theorem 1,

|Spoison \ Sfilter|
|(Spoison ∪ Sclean) \ Sfilter|

≤ c′α nr Q
(vT ∆̃− c

√
log(1/α)

ξ1/2

)
, (2)

where Q(t) =
∫ ∞

t
(1/
√

2π)e− x2
2 dx is the tail of the standard Gaussian.

Since ∥∆̃∥2 ≥ C(log(1/α) + ξ), Lemma D.1 implies vT ∆̃ ≥ (1/2)∥∆̃∥. Since (vT ∆̃ − c
√

log(1/α))/ξ1/2 ≥
C ′

√
log(1/α)/ξ, Lemma D.2 implies that |Spoison \ Sfilter| ≤ αC′′/ξ. Since ξ < 1, we can make any desired

exponent by increasing the separation by a constant factor.

D.1.1 Proof of Lemma D.1

Let Σ̃ denote the empirical covariance of the whitened representations. With a large enough sample size, we
have the following bound on the robustly estimated covariance.

Theorem 2 (Robust covariance estimation (Diakonikolas et al., 2017)[Theorem 3.3]). If the sample size is
nr = Ω((d2/α2)polylog(d/α)) with a large enough constant then with probability 9/10,

∥Σ̂−1/2ΣcΣ̂−1/2 − Id∥F ≤ cα log(1/α) , (3)

for some universal constant c > 0 where ∥A∥F denotes the Frobenius norm of a matrix A.

Denoting Σ̃ = Σ̂−1/2ΣempΣ̂−1/2 with the empirical covariance of the clean representations denoted by
Σemp = (1/n)

∑n
i=1(hi − µemp)(hi − µemp)T = (1− α)Σ̂C + αΣ̂p + α(1− α)∆̂∆̂T , where Σ̂c, Σ̂p, and ∆̂ are

the empirical counterparts, we can use this to bound,

∥Σ̃− (1− α)Id − αΣ̃p − α(1− α)∆̃∆̃T ∥
≤ (1− α)∥Σ̂−1/2(Σ̂c − Σc)Σ̂−1/2∥+ (1− α)∥Σ̂−1/2ΣcΣ̂−1/2 − Id∥

+ α∥Σ̂−1/2(Σp − Σ̂p)Σ̂−1/2∥+ α(1− α)∥Σ̂−1/2(∆∆T − ∆̂∆̂T )Σ̂−1/2∥
≤ c′α log(1/α) , (4)

for a large enough sample size nr = Ω̃(d2/α3). Among other things, this implies that

∥Σ̃− (1− α)I∥ ≥ α(1− α)∥∆̃∥2 − c′α log(1/α) . (5)
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We use Davis-Kahan theorem to turn a spectral norm bound between two matrices into a angular distance
bound between the top singular vectors of the two matrices:√

1− (vT ∆̃)2

∥∆̃∥2
≤ ∥(∥Σ̃∥ − (1− α))vvT − α(1− α)∆̃∆̃T ∥F

∥Σ̃− (1− α)I∥

≤
√

2∥(∥Σ̃∥ − (1− α))vvT − α(1− α)∆̃∆̃T ∥
∥Σ̃− (1− α)I∥

≤ 2
√

2∥Σ̃− (1− α)I− α(1− α)∆̃∆̃T ∥
∥Σ̃− (1− α)I∥

≤ cα(log(1/α) + ∥Σ̃p∥)
α(1− α)∥∆̃∥2 − c′α log(1/α)

, (6)

where ∥A∥ and ∥A∥F denote spectral and Frobenius norms of a matrix A, respectively, the first inequality
follows from Davis-Kahan theorem (Davis & Kahan, 1970), the second inequality follows from the fact that
Frobenius norm of a rank-2 matrix is bounded by

√
2 times the spectral norm, and the third inequality

follows from the fact that (∥Σ̃∥ − (1− α))vvT is the best rank one approximation of Σ̃− (1− α)I and hence
∥(∥Σ̃∥ − (1− α))vvT − ∆̃∆̃T ∥ ≤ ∥(∥Σ̃∥ − (1− α))vvT − (Σ̃− (1− α)I)∥+ ∥(Σ̃− (1− α)I)− ∆̃∆̃T ∥ ≤ 2∥Σ̃−
(1− α)I− ∆̃∆̃T ∥. The last inequality follows from Eq. (4) and Eq. (5). For α ≤ 1/2 and ∥∆̃∥ ≥

√
log(1/α),

this implies the desired result.

D.1.2 Proof of Lemma D.2

We consider a scenario where the QUEscore of a (whitened and centered) representation h̃i = Σ̂−1/2(hi − µ̂c),
where µ̂c is the robust estimate of µc, is computed as

τ
(β)
i = h̃T

i Qβh̃i

Tr(Qβ) , (7)

where Qβ = exp((α/∥Σ̃∥−1)(Σ̃− I)). We analyze the case where we choose β =∞, such that τ
(∞)
i = (vT h̃i)2

and the threshold T returned by SPECTRE satisfies the following. If we have infinite samples and there is
no error in the estimates v, Σ̃, and µ̂c, then we have Q−1((3/4)α) ≤ T 1/2 ≤ Q−1((1/4)α), which follows from
the fact that for the clean data with identity covariance, we can filter out at most 1.5α fraction of the data
(which happens if we do not filter out any of the poisoned data points) and we can filter out at least 0.5α
fraction of the data (which happens if we filter out all the poisoned data). With finite samples and estimation
errors in the robust estimates, we get the following:

Q−1((3/4)α + α2/d)− c′α/d ≤ T 1/2 ≤ Q−1((1/4)α− c′α2/d) + c′α/d , (8)

where Q(·) is the tail of a standard Gaussian as defined in Lemma D.2 and we used the fact that for a large
enough sample size we have ∥vT Σ̂−1/2(µc − µ̂c)∥ ≤ c′α/d.

At test time, when we filter out data points with QUEscore larger than T , we have that we filter out at most
clean |Sclean ∩ Sfilter| ≤ 2αnr representations for a large enough d. Similarly, we are guaranteed that the
remaining poisoned representations are at most |Spoison \ Sfilter| ≤ Q((vT ∆̃− T 1/2)/ξ1/2)(αnr). Since from
above bound T 1/2 ≤ c

√
log(1/α), this proves the desired bound.

D.2 Assumptions for Corollary 4.1

Corollary 4.1 follows as a corollary of Li et al. (2020a)[Theorem 2.2]. This critically relies on an assumption on
a (ε0, M)-clusterable dataset {(xi ∈ Rd0 , yi ∈ R)}nr

i=1 and overparametrized two-layer neural network models,
as defined in Assumption 2 below.
Assumption 2 ((α, nr, ε0, ε1, M, L, M̂, C, λ, W )-model). The (1− α) fraction of data points are clean and
originate from M clusters with each cluster containing nr/M data points. Cluster centers are unit norm
vectors, {µq ∈ Rd0}M

q=1. An input xi that belong to the q-th cluster obeys ∥xi − µq∥ ≤ ε0, with ε0 denoting
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the input noise level. The labels y belong to one of the L classes and we place them evenly in [−1, 1] in the
training such that labels correspond to y ∈ {−1,−1 + 1/(L− 1), . . . , 1}. We let C = [µ1, . . . , µM ]T ∈ RM×d0

and define λ = λ(C) as the minimum eigenvalue of the matrix CCT ⊙ E[ϕ′(Cg)ϕ′(Cg)T ] for g ∼ N (0, Id0).

All clean data points in the same cluster share the same label. Any two clusters obey |µq − µq′ | ≥ 2ε0 + ε1,
where ε1 is the size of the trigger. The corrupted data points are generated from a data point xi with a source
label yi = ysource belonging to one of the clusters for the source. A fixed trigger δ is added to the input and
labelled as a target label q such that the corrupted paired example is (xi + δ, q). We train on the combined
dataset with αnr corrupted points and (1− α)nr uncorrupted points. We train a neural network of the form
fW (x) = vT ϕ(Wx) for a trainable parameter W ∈ RM̂×d0 and a fixed v ∈ RM̂ , where the head v is fixed as
1/

√
M̂ for half of the entries and −1/

√
M̂ for the other half. We assume the activation function ϕ : R→ R

satisfy |ϕ′(z)|, |ϕ′′(z)| < c′′ for some constant c′′ > 0.

D.3 Necessity of robust covariance estimation

To highlight that SPECTRE, and the robust covariance estimation, is critical in achieving this guarantee,
we next show that under the same assumptions, using the QUEscore filtering without whitening fails and
also using whitening with non-robust covariance estimation also fails, in the sense that the fraction of the
corrupted data is non-decreasing. We construct an example within Assumption 1 as follows: µc = 0 and
Σc = σ2(I− (1− δ)uuT ) for a unit norm u. We place all the poisons at µp = au with ξ = 0 and covariance
Σp zero. We let δ ≤ a/(c2

m log(1/α)) such that the separation condition is met. By increasing σ2, we can
make the inner product of top PCA direction vcombined of the combined data and the direction of the poisons
u arbitrarily small. Hence, after finding the threshold T in the projected representations vT

combinedhi and
using this to filter out the representations, as proposed in Tran et al. (2018), the ratio of the poisons can
only increase as all the poisons are placed close to the center of the clean representations after projection.
The same construction and conclusion holds for the case when we whitened with not the robustly estimated
covariance, but the QUEscore based filter with β = ∞ projects data first onto the PCA direction of the
whitened data, which can be made arbitrarily orthogonal to the direction of the poisons, in high dimensions,
i.e. vT

whitenedu ≤ 2/d with high probability. This follows from the fact that after (non-robust) whitening, all
directions are equivalent and the chance of PCA finding the direction of the poisons is uniformly at random
over all directions in the d dimensional space.

E Experimental Details

In the experiments in §5 and Appendix F, we train on the EMNIST, CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets. In the EMNIST dataset, there are 3383 users with roughly 100 images in ten labels
per user with heterogeneous label distributions. We train a convolutional network with two convolutional
layers, max-pooling, dropout, and two dense layers. The CIFAR-10 dataset has 50, 000 training examples,
with 5000 samples in each label. We partition those samples to 500 users uniformly at random and train a
ResNet-18 (He et al., 2016). With 500 samples in each label, the CIFAR-100 and Tiny-ImageNet datasets
have 50, 000 and 100, 000 training examples respectively. For both datasets, we partition those samples to
100 users uniformly at random and train a ResNet-18.

For all datasets, the server randomly selects 50 clients each round, and each client trains the current model
with the local data with batch size 20, learning rate 0.1, and for two iterations. The server learning rate is
0.5. The attacker tries to make 7’s predicted as 1’s for EMNIST, horses as automobiles for CIFAR-10, roses
as dolphin for CIFAR-100, and bees as cats for Tiny-ImageNet. The backdoor trigger is a 5×5-pixel black
square at the bottom right corner of the image. An α fraction of the clients are chosen to be malicious, who
are given 10 corrupted samples. We set the malicious rate α as its upper bound, i.e., α = ᾱ. We study first
homogeneous and static settings, and we discuss heterogeneous and dynamic settings in §5.4 and §5.2. In our
framework, we set the retraining threshold ϵ1 as 2%, and the convergence threshold ϵ2 as 0.05%. We let the
dimensionality reduction parameter k be 32 and set the QUE parameter β as 4 in Algorithm 1.

Baselines. SPECTRE (Hayase et al., 2021) adopts robust covariance estimation and data whitening to
amplify the spectral signature of corrupted data, and then detects backdoor samples based on quantum
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entropy (QUE) score. In federated learning settings, we adopt gradient- and representation-based SPECTRE,
which takes as input the gradient updates or sample representations averaged over a single client’s local data
with target label ℓ. For both versions, we conduct the robust estimation and quantum score filtering every
training round regardless of the computation constraints. We let the dimensionality reduction parameter k
be 32 and set the QUE parameter β as 4.

RFA (Pillutla et al., 2019) provides a robust secure aggregation oracle based on the geometric median, which is
calculated by the Weiszfeld’s Algorithm. In our experiments, we implement RFA with 4-iteration Weiszfeld’s
Algorithm. We also consider the label-level RFA: for each label, the geometric median of the aggregated
gradient uploaded from each client is estimated. The server then updates the model based on the averaged
geometric medians of all labels.

Norm Clipping defense (Sun et al., 2019) bounds the norm of each model update to at most some threshold
M , and Noise Adding method (Sun et al., 2019) is to add a small amount of Gaussian noise to the updates.
In our experiments, we set the norm threshold M as 3 and add independent Gaussian noise with variance
0.03 to each coordinate.

Multi-Krum (Blanchard et al., 2017b) provides an aggregation rule that only select a subset of uploaded
gradients that are close to most of their neighbors. In our experiments, we set the Byzantine parameter f as
50ᾱ, where ᾱ is the malicious rate upper bound, and set the number of selected gradients as m = 20.

FoolsGold (Fung et al., 2018) provides an aggregation method that uses an adaptive learning rate per client
based on inter-client contribution similarity. In our experiments, we set the confidence parameter as 1.

FLAME (Nguyen et al., 2022) adopts noise adding method, and uses the model clustering and norm clipping
approach to reduce the amount of noise added. In our experiments, we set the noise level factors as λ = 0.001.

CRFL (Xie et al., 2021) trains a certifiably robust FL model by adopting noise adding and norm clipping
during the training time and using randomized parameter smoothing during testing. In our experiments, we
set the norm threshold M as 3 and add independent Gaussian noise with variance 0.03 to each coordinate
during training. We use σT = 0.01 to generate M = 500 noisy models in parameter smoothing procedure,
and set the certified radius as 1 and the error tolerance as 0.001.

E.0.1 Resource Costs

All algorithms including ours are implemented and performed on a server with two Xeon Processor E5-2680
CPUs. Running all defenses for our experiments took approximately 1000 CPU-core hours.

F Additional Experimental Results

F.1 Backdoor leakage under more datasets

Under the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, we show that backdoor leakage phenomenon
also results in the failure of existing backdoor defenses in Figure 5. Similar to Figure 1(a), we fix the malicious
rate as α = 3% and run the experiments for 12, 000 training rounds under the static setting where data
distribution is fixed over time. We can observe that the attack success rate (ASR) of all competing defenses
eventually approach around 1, 0.85, and 0.7 for each dataset, while the ASR of our algorithm keeps near 0
(0.009, 0.027, and 0.030 for each dataset) all the time.

F.2 Defense under homogeneous and static clients with more datasets

We evaluate our shadow learning framework under CIFAR-100 and Tiny-ImageNet datasets in Table 8 and 9.
We can observe that all existing defenses suffer from backdoor leakage. CIFAR-100 and Tiny-ImageNet are
also more difficult to learn compared with EMNIST dataset, and therefore the ASRs of our shadow learning
framework in Table 8 and 9 are slightly larger than those in Table 1. Besides, with different α, the MTA of
Algorithm 1 is always above 0.85 and 0.70 for CIFAR-100 and Tiny-ImageNet respectively, and the MTA
convergence rate of Algorithm 1 is always similar to the no defense scenario.
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(a) CIFAR-10
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(b) CIFAR-100
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(c) Tiny ImageNet

Figure 5: Backdoor leakage causes competing defenses to fail eventually, even with a small α = 3%.

Table 8: ASR for CIFAR-100 under continuous training shows the advantage of Algorithm 1.

Defense \ α 0.15 0.25 0.35 0.45
Noise Adding 0.8688 0.8634 0.8525 0.8743
Clipping and
Noise Adding 0.8593 0.8604 0.8629 0.8688

RFA 0.8642 0.8697 0.8739 0.8697
Multi-Krum 0.8576 0.8594 0.8635 0.8741
FoolsGold 0.8107 0.8251 0.8299 0.8415
FLAME 0.8361 0.8592 0.8688 0.8691
CRFL 0.8142 0.8197 0.8033 0.8251

G-SPECTRE 0.8415 0.8597 0.8542 0.8673
R-SPECTRE 0.7978 0.8033 0.8306 0.8467

Shadow Learning 0.0765 0.0929 0.1694 0.2247

Table 9: ASR for Tiny-ImageNet under continuous training shows the advantage of Algorithm 1.

Defense \ α 0.15 0.25 0.35 0.45
Noise Adding 0.7079 0.6920 0.7253 0.9139
Clipping and
Noise Adding 0.6839 0.6907 0.6971 0.7182

RFA 0.7164 0.7206 0.7091 0.6981
Multi-Krum 0.6841 0.7193 0.7032 0.7167
FoolsGold 0.6693 0.6872 0.7013 0.6944
FLAME 0.6767 0.6931 0.6792 0.6784
CRFL 0.6360 0.6519 0.6440 0.6279

G-SPECTRE 0.6423 0.6691 0.6945 0.6932
R-SPECTRE 0.5519 0.6090 0.6495 0.6826

Shadow Learning 0.0720 0.0799 0.1127 0.1519
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F.3 Ablation study: Main Task Accuracy (MTA) vs. Attack Success Rate (ASR) Tradeoff
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(a) α = 0.45
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(b) α = 0.15

Figure 6: MTA-ASR tradeoff shows simple early stopping with no (other) defense far from the ideal (0,1).
R-SPECTRE with early stopping is more resilient, but all early-stopping-based prior defenses suffer when
clients’ data changes dynamically as we show in §5.2. Algorithm 1 achieves close-to-ideal tradeoffs.

Under homogeneous and static EMNIST dataset, we run an ablation study on one of the main components:
the backbone network. Without the backbone network, our framework (in the one-shot setting) reduces to
training baseline defenses with early stopping. Figure 6 shows the resulting achievable (ASR, MTA) as we
tune the early-stopping round for α = 0.45 and 0.15. The curves start at the bottom left (0,0) and most of
them first move up, learning the main tasks. Then, the curves veer to the right as the backdoor is learned.
We want algorithms that achieve points close to the top left (0, 1).

When α = 0.45, Algorithm 1 achieves the green star. The blue curve (early stopping with no other defense)
is far from (0, 1). This suggests that the backbone network and SPECTRE filtering are necessary to achieve
the performance of Algorithm 1. The curve for early-stopped RFA (purple x’s) is also far from (0, 1) for large
α. Early-stopped R-SPECTRE without the backbone network (orange triangles) achieves a good MTA-ASR
tradeoff (though still worse than that of Algorithm 1). However, we show in §5.2 that the MTA-ASR tradeoff
of R-SPECTRE is significantly worse when clients’ data distribution changes dynamically.

When α = 0.15, the learning rate of backdoor samples is much smaller than the main task learning rate for
all curves. However, the curves for early-stopping with no defense and early-stopped RFA still cannot achieve
close-to-ideal tradeoffs.

F.4 Synthetic heterogeneous clients

In synthetic heterogeneous EMNIST, each client receives shuffled images from 4 randomly selected classes
with 25 samples per class. As shown in Table 10, it has a similar trend as the naturally heterogeneous dataset
from the original EMNIST shown in Table 5.

Further, we analyze the situation where the user-level version of our algorithm works. We construct variants
of EMNIST dataset with different heterogeneity level h. We call the dataset h-heterogeneous if the first
h-fraction of the overall training images are shuffled and evenly partitioned to each client, and for the
remaining (1− h)-fraction samples, each client receives shuffled images from 4 randomly selected classes with
⌊25(1 − h)⌋ samples per class. For the adversarial clients, they also own 10 backdoor images. We fix the
malicious rate as α = 0.15%. Table 11 shows the ASR of the user-level version of our algorithm under the
dataset with different heterogeneity levels.

The ASR of the user-level version of our algorithm is smaller than 0.1 when h ≤ 0.4, indicating that our
user-level method can achieve the defense goal when under the dataset with low heterogeneity level. However,
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Table 10: ASR under synthetic heterogeneous EMNIST

α
Our Method with

Sample-level Defense Our Method Our Method with
User-level Defense

0.15 0.0134 0.0334 0.6756
0.25 0.0268 0.0401 0.7424
0.35 0.0535 0.0970 0.8127
0.45 0.0669 0.1305 0.9833

when the heterogeneity level is high, the malicious clients cannot be distinguished by the aggregated statistic
over all local samples, which results in the failure of the user-level defense method.

Table 11: ASR of Our Method in User-level Version with α = 0.15

Heterogeneity Level h 0 0.2 0.4 0.6 0.8 1
ASR 0.0216 0.0334 0.0969 0.2508 0.4816 0.6756

We also analyze the ASR and MTA of our algorithm (label-level version) under the datasets CIFAR-100 and
Tiny-ImageNet with different heterogeneity level h. We fix the malicious rate as α = 0.15. As shown in Table
12 and 13, the ASR is always smaller than 0.11 under any heterogeneity level for both datasets, while the
MTA is always larger than 0.85 and 0.76 for CIFAR-100 and Tiny-ImageNet respectively.

Table 12: ASR and MTA of Our Method under synthetic heterogeneous CIFAR-100 with α = 0.15

Heterogeneity Level h 0 0.2 0.4 0.6 0.8 1
ASR 0.077 0.079 0.086 0.091 0.094 0.103
MTA 0.864 0.859 0.861 0.858 0.851 0.853

F.5 More experiments under the dynamic setting

Recall the initial phases e1 and e2 in Section 5.2. In the third phase e3, for all clients, we reduce the number
of samples with labels 0 and 1 to 10% of the original while keeping other samples at the same level in e1, i.e.,
each client has one image for label 0 and 1 respectively, and ten images for any other label. This tradeoff is
shown in Figure 7. Since the number of samples with the target label ℓ = 1 is reduced, the learning rates of
both the backdoor samples and the benign samples with the target label decrease. This is similar to the
setting in Figure 6(b) except that the proportion of samples with the target label is smaller.

We also consider the case where the data distribution over malicious clients is fixed over time, which rarely
happens in practice. In a new phase e4, we let each benign client contain 5 images for label 0 and 1 respectively,
and 10 images for any other label. In phase e5, we further reduce the number of images each benign client
contains for label 0 or 1 to one. However, the local dataset of each adversarial client is always fixed as the
malicious dataset in e1, i.e., 10 backdoor images in target label ℓ = 1 and 90 images for other labels. The
MTA-ASR tradeoffs of phases e4 and e5 are shown in Fig.8

Our algorithm detects the data distribution change and renews the retraining period at the beginning of
both phases. The MTA-ASR point our algorithm achieves is (0.9944, 0.1471) and (0.9937, 0.7458) in phases
e4 and e5 respectively. The MTA-ASR tradeoffs of the comparing algorithms are much worse than ours in
both phases.
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Table 13: ASR and MTA of Our Method under synthetic heterogeneous Tiny-ImageNet with α = 0.15

Heterogeneity Level h 0 0.2 0.4 0.6 0.8 1
ASR 0.072 0.071 0.078 0.083 0.089 0.091
MTA 0.793 0.767 0.798 0.802 0.789 0.794
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Figure 7: Analysis of MTA-ASR Tradeoff with α = 0.15 after distribution shift in phase e3.
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(a) Phase e4
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Figure 8: Analysis of MTA-ASR Tradeoff with α = 0.15 under Time-varying Dataset and Static Adversarial
Clients
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Since the benign features with label 1 becomes more difficult to learn due to the leak of samples, and the
proportion of backdoor samples among samples with target labels increases to 26% and 64% in phases e4 and
e5 respectively, it is difficult to achieve the close-to-ideal MTA-ASR tradeoff. If we increase the convergence
threshold ϵ2 from 0.05% to 0.5% when determining the early-stopping point, we can obtain the new MTA-ASR
point indicated by the red star as (0.9834, 0.0418) and (0.9834, 0.3378) in e4 and e5 respectively. By scarifying
a little bit MTA (around 0.01 in both cases), we can significantly reduce the ASR (around 0.1 in e4 and 0.4
in e5).

F.6 Defense against adaptive malicious rate attack

We focus on an adaptive attacker strategy where the attack knows the time windows when the shadow
learning framework conducts outlier detection and changes the number of malicious participating clients
in each round accordingly. We assume that for every r0 rounds, the attackers have the backdoor budget
B = αnCr0, i.e., the adversary cannot corrupt more than αnCr0 participating clients every r0 rounds, where
nC denotes the number of participating clients in each round.

In our experiments, we set α = 0.3, nC = 50, r0 = 150, and suppose the attacker has the knowledge that
the outlier detection is conducted in a 30-round time window. In the time window, the attack corrupts
αmax-fraction participating clients, where αmax ≥ α, intending to corrupt the learned SPECTRE filter. In
the future 120 rounds, the malicious rate will drop to αmin = 5

4 α− 1
4 αmax due to unlimited backdoor budget.

We vary αmax from 0.3 to 1 and show the ASR under shadow learning framework in Figure 9.
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Figure 9: ASR of adaptive malicious rate attack with α = 0.3

As observed in Figure 9, the ASR is smaller than 0.05 when αmax < 0.4, indicating the robustness of shadow
learning framework to the adaptive malicious rate attack with moderate αmax. With the increase of αmax, the
SPECTRE filter will be corrupted and perform worse, and therefore, the ASR will increase when αmax < 0.6.
However, when αmax is large enough, αmin drops significantly such that there are no sufficient malicious
clients to further corrupt the model even with more corrupted filter. Therefore, the ASR then drops as the
αmax grows.

F.7 Aggregation with noise

Our approach does not allow for secure aggregation, which may introduce privacy concerns. To this end, we
consider the setting where all gradients and representations are corrupted with i.i.d. Gaussian noise N (0, σ2),
which is added to each coordinate before being uploaded from each client to the server. This is similar to
Differentially-Private Stochastic Gradient Descent (DP-SGD). We vary the variance σ2 from 0.001 to 1, and
analyze the performance of our method in terms of (MTA, ASR) pairs under the homogeneous EMNIST
dataset in Table 14.
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Table 14: (MTA, ASR) Pair of Our Method under Different Noise Level

α σ2 = 0 σ2 = 0.001 σ2 = 0.01 σ2 = 0.1 σ2 = 1

0.15 (0.997, 0.007) (0.998, 0.003) (0.994, 0.003) (0.983, 0.000) (0.873, 0.000)
0.25 (0.998, 0.010) (0.996, 0.013) (0.995, 0.007) (0.983, 0.000) (0.863, 0.000)
0.35 (0.998, 0.031) (0.998, 0.031) (0.994, 0.027) (0.980, 0.000) (0.852, 0.000)
0.45 (0.997, 0.050) (0.996, 0.050) (0.993, 0.042) (0.980, 0.017) (0.867, 0.000)

We can observe that as the noise level increases, both the MTA and ASR decrease. The intuition is that with
large noise, the learning rate of the backdoor samples decreases, which makes the early-stopping framework
more effective. However, the accuracy on main tasks also drops due to the noise. When σ2 = 0.1, the ASR
is 0 with α ≤ 0.35, while the MTA drops from around 0.997 to 0.98. With σ2 = 0.01, the added noise can
reduce the ASR while keeping MTA around 0.995.

F.8 Sensitivity analysis of the filtering algorithm hyperparameters

For the filtering algorithm we adopt, there are three hyperparameters: malicious rate upper bound ᾱ,
dimensionality reduction parameter k, and the QUE parameter β.

For ᾱ, we set the malicious rate α as its upper bound, i.e., α = ᾱ in most experiments. We also study the
case where the malicious rate can be larger than its upper bound ᾱ in Figure 9. For other hyperparameters,
we set k = 32 and β = 4 in our experiments. We conduct the sensitivity analysis under CIFAR-100 for k and
β in Table 15 and 16. We set the malicious rate as α = 0.15.

Table 15: Sensitivity analysis of dimensionality reduction parameter k

k 8 16 32 64
ASR 0.084 0.079 0.077 0.083
MTA 0.861 0.866 0.864 0.859

Table 16: Sensitivity analysis of dimensionality reduction parameter β

β 2 4 6 8
ASR 0.081 0.077 0.082 0.082
MTA 0.867 0.864 0.859 0.853

We can observe that different values of hyperparameters k and β do not significantly affect the performance
of our defense method.
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