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Abstract

Motivated by broad applications in machine learning, we study the popular accelerated stochastic
gradient descent (ASGD) algorithm for solving (possibly nonconvex) optimization problems. We char-
acterize the finite-time performance of this method when the gradients are sampled from Markov pro-
cesses, and hence biased and dependent from time step to time step; in contrast, the analysis in existing
work relies heavily on the stochastic gradients being independent and sometimes unbiased. Our main
contributions show that under certain (standard) assumptions on the underlying Markov chain generat-
ing the gradients, ASGD converges at the nearly the same rate with Markovian gradient samples as with
independent gradient samples. The only difference is a logarithmic factor that accounts for the mixing
time of the Markov chain.

One of the key motivations for this study are complicated control problems that can be modeled by
a Markov decision process and solved using reinforcement learning. We apply the accelerated method
to several challenging problems in the OpenAI Gym and Mujoco, and show that acceleration can signif-
icantly improve the performance of the classic REINFORCE algorithm.

1 Introduction

Stochastic gradient descent (SGD) and its variants, originally introduced in [29] under the name of stochas-
tic approximation (SA), is the most efficient and widely used method for solving optimization problems in
machine learning (RL) [3, 16, 6, 25] and reinforcement learning [30, 31]. It can substantially reduce the cost
of computing a step direction in supervised learning, and offers a framework for systematically handling
uncertainty in reinforcement learning. In this context, we want to optimize an (unknown) objective function
f when queries for the gradient are noisy. At a point x, we observe a random vector G(x, ξ) whose mean is
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the (sub)gradient of f at x. Through judicious choice of step sizes, the “noise” induced by this randomness
can be averaged out across iterations, and the algorithm converges to the stationary point of f [12, 3, 26].

To further improve the performance of SGD, stochastic versions of Nesterovs acceleration scheme [24] have
been studied in different settings [14, 41, 23]. In many of these cases, it has been observed that acceleration
improves the performance of SGD both in theory [12, 35, 7] and in practice [17], with a notable application
in neural networks [1]. This benefit of accelerated SGD (ASGD) has been studied under the i.i.d noise
settings. Almost nothing is known when the noise is Markovian, which is often considered in the context of
RL problems modeled by Markov decision processes [37].

In this paper, we show that a particular version of ASGD is still ergodic when the gradients of the objective
are sampled from Markov process, and hence are biased and not independent across iterations. This model
for the gradients has been considered previously in [11, 34, 15, 28], where different variants of SGD are
considered. Moreover, it has also been observed that the SGD performs better when the gradients are
sampled from Markov process as compared to i.i.d samples in both convex and nonconvex problems [34].
This paper shows that the benefits of acceleration extend to the Markovian setting in theory and in practice;
we provide theoretical convergence rates that nearly match those in the i.i.d. setting, and show empirically
that the algorithm is able to learn from significantly fewer samples on benchmark reinforcement learning
problems.

Main contributions. We study accelerated stochastic gradient descent where the gradients are sampled from
a Markov process. We show that, despite the gradients being biased and dependent across iterations, the
convergence rate across many different types of objective functions (convex and smooth, strongly convex,
nonconvex and smooth) is within a logarithmic factor of the comparable bounds for independent gradients.
This logarithmic factor is naturally related to the mixing time of the underlying Markov process generating
the stochastic gradients. To our knowledge, these are the first such bounds for accelerated stochastic gradient
descent with Markovian sampling.

We also show that acceleration is extremely effective in practice by applying it to multiple problems in
reinforcement learning. Compared with the popular temporal difference learning and Monte-Carlo policy
gradient REINFORCE algorithms, the accelerated variants require significantly fewer samples to learn a
policy with comparable rewards, which aligns with our theoretical results.

2 Accelerated Markov gradient descent

We consider the (possibly nonconvex) optimization problem

minimize
x∈X

f(x), (1)

where X ⊂ Rd is a closed convex set and f : X → R is given as

f(x) , Eπ[F (x; ξ)] =

∫
Ξ
F (x; ξ)dπ(ξ). (2)

Here Ξ is a statistical sample space with probability distribution π and F (·; ξ) : X → R is a bounded
below (possibly nonconvex) function associated with ξ ∈ Ξ. We are interested in the first-order stochastic
optimization methods for solving problem (1). Most of existing algorithms, such as SGD, require a sequence
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of {ξk} sampled i.i.d from the distribution π. Our focus is to consider the case where {ξk} are generated
from an ergodic Markov process, whose stationary distribution is π.

We focus on studying accelerated gradient methods for solving problem (1), originally proposed by Nesterov
[24] and studied later in different variants; see for example [20, 12, 14, 41] and the reference therein. In
particular, we study an ergodic version of ASGD studied in [20, 21, 12], where the gradients are sampled
from a Markov process. We name this algorithm as accelerated Markov gradient descent formally stated in
Algorithms 1 and 2 for nonconvex and convex problems, respectively. Our goal is to derive the rates of this
method, which is unknown in the literature.

In our algorithms, G(x; ξ) ∈ ∂F (x; ξ) is the subgradient of F (·; ξ) evaluated at x. As mentioned we
consider the case where {ξk} is drawn from a Markov ergodic stochastic process. We denote by τ(γ)
the mixing time of the Markov chain {ξk} given a positive constant γ, which basically tells us how long
the Markov chain gets close to the stationary distribution [22]. To provide a finite-time analysis of this
algorithm, we consider the following fairly standard assumption about the Markov process.

Assumption 1. The Markov chain {ξk} with finite state Ξ is ergodic, i.e., irreducible and aperiodic.

Assumption 1 implies that {ξk} has geometric mixing time1 , i.e., given γ > 0 there exists C > 0 s.t.

τ(γ) = C log(1/γ) and ‖Pk(ξ, ·)− π‖TV ≤ γ, ∀k ≥ τ(γ), ∀ξ ∈ Ξ, (3)

where ‖ · ‖TV is the total variance distance [22]. This assumption holds in various applications, e.g, in
incremental optimization [28], where the iterates are updated based on a finite Markov chain. Similar
observation holds in reinforcement learning problems that have a finite number of states and actions, for
example in AlphaGo [32]. Assumption 1 is used in the existing literature to study the finite-time performance
of SA under Markov randomness; see [34, 33, 5, 8, 43, 9] and the references therein.

Before proceeding to the finite-time analysis of the accelerated Markov gradient descent, we present the
motivation behind our approach and theoretical results given later. To study the asymptotic convergence
of SGD under Markovian noise, one may use the popular ordinary differential equation (ODE) approach
in stochastic approximation literature, where the geometric mixing time is unnecessary, see for example
[2, 19]. However, we note that our focus is to study the finite-time performance of ASGD. The existing
techniques in studying ASGD rely on the main assumptions that the gradients are sampled i.i.d from the
(unknown) stationary distribution π and unbiased. In our setting, since the gradients are sampled from a
Markov process, they are dependent and biased (nonstationary). Even if we can sample from π (τ = 0 and
the gradient samples are unbiased), they are still dependent. Thus, it is not trivial to handle the bias and
dependence simultaneously using the existing techniques. We, therefore, utilize the geometric mixing time
to eliminate this issue in our analysis. Indeed, under Assumption 1, we show that the convergence rates
of the accelerated Markov gradient descent are the same with the ones in ASGD under i.i.d. samples for
solving both convex and nonconvex problems, except for a log(k) factor which captures the mixing time of
the underlying Markov chain.

3 Convergence analysis: Nonconvex case

We study Algorithm 1 for solving problem (1) whenX = Rd, and f is nonconvex satisfying the assumptions
below.

1τ depends on the second largest eigenvalue of the transition probability matrix of the Markov chain.
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Algorithm 1 Accelerated Markov Gradient Descent
Initialize: Set arbitrarily x0, x̄0 ∈ X , step sizes {αk, βk, γk}, and an integer K ≥ 1

Iterations: For k = 1, . . . ,K do

yk = (1− αk)x̄k−1 + αkxk−1 (4)

xk = xk−1 − γkG(yk; ξk) (5)

x̄k = yk − βkG(yk; ξk) (6)

Output: yR randomly selected from the sequence {yk}Kk=1 with probability pk defined as

pk =
γk(1− Lγk)∑K
k=1 γk(1− Lγk)

· (7)

Assumption 2. f∗ = infx∈Rd f(x) > −∞.

In addition, we assume that∇f and its samples are Lipschitz continuous and bounded as in [5, 34].

Assumption 3. There exists a constant L > 0 such that ∀x, y and ∀ξ ∈ Ξ

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ and ‖G(x; ξ)−G(y; ξ)‖ ≤ L‖x− y‖. (8)

Assumption 4. There exists a constant M > 0 such that ∀x and ∀ξ ∈ Ξ

max{‖∇f(x)‖, ‖G(x; ξ)‖} ≤M. (9)

In this section, we assume that Assumptions 1–4 always hold. Given αk, let Γk be defined as

Γk =

{
1, k ≤ 1
(1− αk)Γk−1 k ≥ 2.

(10)

We first consider the following key lemma, which is essential in the analysis of Theorem 1 below.

Lemma 1. Let {γk, βk} be nonnegative and nonincreasing and βk ≤ γk. Then

E[f(xk)] ≤ E[f(xk−1)]− γk (1− Lγk)E
[
‖∇f(yk)‖2

]
+ 8LM2τ(γk)γk−τ(γk)γk

+M2L

2Mγk

k∑
t=k−τ(γk)

αtΓt +
Γk
2

 k∑
t=1

(γt − βt)2

Γtαt
+ (4M2L+M)γ2

k . (11)

Sketch of proof. A complete analysis of this lemma is presented in the supplementary material. Here, we
briefly discuss the main technical challenge in our analysis due to Markov samples, that is, the gradient
samples are biased and dependent. First, using Assumption 3 with some manipulation gives

f(xk) ≤ f(xk−1)− γk (1− Lγk) ‖∇f(yk)‖2 +
M2LΓk

2

k∑
t=1

(γt − βt)2

Γtαt
+ 4M2Lγ2

k

− γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉.
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In the i.i.d settings, since the gradient samples are unbiased and independent, the last term on the right-hand
side has a zero expectation. However, in our setting this expectation is different to zero and the samples are
dependent. We, therefore, cannot apply the existing techniques to show (11). Our key technique to address
this challenge is to utilize the geometric mixing time τ defined in (3). In particular, although the noise in our
algorithm is Markovian, its dependence is very weak at samples spaced out at every τ step. We, therefore,
carefully characterize the progress of the algorithm in every τ step, resulting to the sum of over τ steps on
the right-hand side of (11).

To show our result for smooth nonconvex problems, we adopt the randomized stopping rule in [12], which is
common used in nonconvex optimization. In particular, given a sequence {yk} generated by Algorithm 1 we
study the convergence on yR, a point randomly selected from this sequence (a.k.a (13)). The convergence
rate of Algorithm 1 in solving problem (1) is stated as follows.

Theorem 1. Let K > 0 be an integer such that

αk =
2

k + 1
, γk ∈ [βk , (1 + αk)βk] , βk = β =

1√
K
≤ 1

4L
, ∀k ≥ 1. (12)

In addition, let yR be randomly selected from the sequence {yk}Kk=1 with probability pk defined as

pk =
γk(1− Lγk)∑K
k=1 γk(1− Lγk)

· (13)

Then yR returned by Algorithm 1 satisfies2

E
[
‖∇f(yR)‖2

]
≤

2(E[f(x0)]− f∗)
(

4L+
√
K
)

K
+

2M(LM2(9 + 16C log(K)) + 1 +M2)√
K

· (14)

Proof. Using (10) and (12) yields Γk = 2/k(k + 1). Thus, using the integral test we have

γk

k∑
t=k−τ(γk)

αtΓt = γk

k∑
t=k−τ(γk)

4

t(t+ 1)2
≤ 2γk

(k − τ(γk))2
· (15)

Next, using (12) and Γk = 2/k(k + 1) we consider

K∑
k=1

Γk

k∑
t=1

(γt − βt)2

Γtαt
=

K∑
t=1

(γt − βt)2

Γtαt

K∑
k=t

Γk =

K∑
t=1

(γt − βt)2

Γtαt

K∑
k=t

2

k(k + 1)

=
K∑
t=1

2(γt − βt)2

Γtαt

K∑
k=t

(
1

k
− 1

k + 1

)
≤

K∑
t=1

2(γt − βt)2

Γtαt

1

t
≤ 2

K∑
t=1

β2
t α

2
t

tΓtαt
= 2β2K. (16)

Similarly, using (15), αk ≤ 1, γk ≤ 2βk = 2β we have

K∑
k=1

γk

k∑
t=k−τ(γk)

αtΓt

k∑
t=1

(γt − βt)2

Γtαt
≤

K∑
k=1

2γk
(k − τ(γk))2

k∑
t=1

(γt − βt)2

Γtαt

≤
K∑
t=1

2β3α2
t

Γtαt

K∑
k=t

1

(k − τ(γk))2
≤ 2β3

K∑
t=1

t

t− τ(γt)
≤ 4β3K. (17)

2Note that the same rate can be achieved for the quantity mink E
[
‖∇f(yk)‖2

]
.
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Moreover, using (3) and γk ≥ βk = β we have τ(γk) = C log
(

1
γk

)
≤ C log (1/β), which gives

K∑
k=1

τ(γk)γk−τ(γk)γk ≤ 4C
K∑
k=1

βkβk−τ(γk) log(k) = 2Cβ2K log(K). (18)

Since αk ≤ 1 for k ≥ 1 we have
∑K

k=1 γ
2
k ≤ 2β2K. We now use the relations (16)–(18) to derive (14).

Indeed, summing up both sides of (11) over k from 1 to N and reorganizing yield

K∑
k=1

γk (1− Lγk)E
[
‖∇f(yk)‖2

]
≤ E[f(x0)]− E[f(xK)] + (4LM2 +M)

K∑
k=1

γ2
k + 8LM2

K∑
k=1

τ(γk)γk−τ(γk)γk

+
K∑
k=1

M2LΓk
2

k∑
t=1

(γt − βt)2

Γtαt
+ 2M3L

K∑
k=1

γk

k∑
t=k−τ(γk)

αtΓt

k∑
t=1

(γt − βt)2

Γtαt

≤ (E[f(x0)]− f∗) + (9LM2 + 2M +M3)β2K + 16CLM2β2K log(K), (19)

where we use E[f(xK)] ≥ f∗ and β ≤ 1/4L. Dividing both sides by
∑K

k=1 γk(1− Lγk) gives∑K
k=1 γk (1− Lγk)E

[
‖∇f(yk)‖2

]∑K
k=1 γk(1− Lγk)

≤ (E[f(x0)]− f∗)∑K
k=1 γk(1− Lγk)

+
(9LM2 + 2M +M3)β2K∑K

k=1 γk(1− Lγk)

+
16CLM2β2K log(K)∑K

k=1 γk(1− Lγk)
·

Using (12) yields 1− Lγk ≥ 1/2 and
∑K

k=1 γk(1− Lγk) ≥
∑K

k=1 βk/2 = Kβ/2. Thus, we obtain∑K
k=1 γk (1− Lγk)E

[
‖∇f(yk)‖2

]∑K
k=1 γk(1− Lγk)

≤ 2(E[f(x0)]− f∗)
Kβ

+
2(9LM2 + 2M +M3)β2K

Kβ
+

32CLM2β2K log(K)

Kβ

≤
2(E[f(x0)]− f∗)

(
4L+

√
K
)

K
+

2(9LM2 + 2M +M3)√
K

+
32CLM2 log(K)√

K
,

which by using (13) gives (14).

4 Convergence analysis: Convex case

In this section, we study Algorithm 2 for solving (1) when f is convex and X is compact.

For simplicity we consider V in Algorithm 2 is the Euclidean distance, i.e., ψ(x) = 1
2‖x‖

2 and V (y, x) =
1
2‖y − x‖

2. Since X is compact, there exist D,M > 0 s.t.

D = max
x∈X
‖x‖, ‖G(x; ξ)‖ ≤M, ∀ξ ∈ Ξ, ∀x ∈ X . (23)
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Algorithm 2 Accelerated Markov Gradient Descent
Initialize: Set arbitrarily x0, x̄0 ∈ X , step sizes {αk, βk, γk}, and an integer K ≥ 1

Iterations: For k = 1, . . . ,K do

yk = (1− βk)x̄k−1 + βkxk−1 (20)

xk = arg min
x∈X

{
γk [〈G(yk; ξk) , x− yk〉+ µV (yk, x)] + V (xk−1, x)

}
(21)

x̄k = (1− αk)x̄k−1 + αkxk (22)

Output: x̄k

In addition, let x∗ = arg minx∈X f(x). We assume that {αk, βk} are chosen such that α1 = 1 and

βk(1− αk)
αk(1− βk)

=
1

1 + µγk
, 1 + µγk > Lαkγk, (24)

where µ ≥ 0 and L is given in (8). The key idea to derive the results in this section is to utilize Assumption
1 to the handle the Markovian ”noise”, similar to the one in Section 3. For an ease of exposition, we present
the analysis of the results in this section to the supplementary material.

4.1 Smooth convex functions

We now study the rates of Algorithm 2 when the function f is only convex and Assumption 3 holds. In this
case ∂f(·) = ∇f(·) and µ = 0. Since µ = 0, Eq. (24) gives βk = αk and yk = x̄k. The convergence rate
of Algorithm 2 in this case is given below.

Theorem 2. Let Assumptions 1–3 hold. Suppose that the step sizes are chosen as

αk =
2

k + 1
, γk =

1

2L
√
k + 1

· (25)

Then we have for all k ≥ 1

f(x̄k)− f(x∗) ≤ f(x̄0) + 4LD

2k(k + 1)
+

2(D + 2M2)

3L
√
k

+
2(4D2L+M2)(L+ 1) log(2L

√
k)√

k
· (26)

4.2 Strongly convex functions

We now provide the rates of Algorithm 2 when f is strongly convex.

Assumption 5. There exists a constant µ > 0 s.t. ∀x, y and g(x) ∈ ∂f(x) we have

µ

2
‖y − x‖2 ≤ f(y)− f(x)− 〈g(x), y − x〉. (27)

Theorem 3. Suppose that Assumptions 1, 3, and 5 hold. Consider the step sizes chosen as

αk =
2

k + 1
, γk =

2

µ(k + 1)
, βk =

αk
αk + (1− αk)(1 + µγk)

· (28)
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Then we have for all k ≥ 1

f(x̄k)− f(x∗) ≤ 2f(x̄0) + 6µD

k(k + 1)
+

2D + 10M2 + 8µMD

µ(k + 1)
(29)

+
4(M2 + 2µMD + 12µLD2)(2 + µ) log(µ(k+1)

2 )

µk
· (30)

Remark 1. We note that in Theorem 2, ASGD has the same worst case convergence rate as compared to
SGD, i.e.,O 1/

√
k. However, ASGD has much better rate on the initial condition than SGD, i.e.,O(1/k2)

versus O(1/k). Similar observation holds for Theorem 3. This gain is very important, for example, in
improving the data efficiency of RL algorithms as illustrated in Section 5.1.

5 Numerical experiments

In this section, we apply the proposed accelerated Markov gradient methods for solving a number of prob-
lems in reinforcement learning, where the samples are taken from Markov processes. In particular, we
consider the usual setup of reinforcement learning where the environment is modeled by a Markov decision
process (MDP) [37]. Let S andA be the (finite) set of states and action. We denote by πθ(s, a) = Pr(ak =
a|sk = s, θ) the randomized policy parameterized by θ, where s ∈ S and a ∈ A. The goal is to find θ to
maximize the cumulative reward

f(πθ) = E

[ ∞∑
k=0

γkrk | s0, πθ

]
,

where γ is the discounted factor and rk is the reward returned by the environment at time k. We study the
accelerated variants of temporal difference learning and Monte-Carlo policy gradient (REINFORCE) meth-
ods, and compare their performance with the classic (non-accelerated) counterparts. In all the experiments
we consider below, the proposed accelerated variants of RL algorithms outperform the classic ones, which
agrees with our theoretical results.

General setup: For each simulation, we run the algorithm 10 times with the same initial policy and record
the performance measures. The performance of each algorithm is specified by averaging the metric over the
number of episodes. Here, an episode is defined as the set of state-action pairs collected from beginning
until the terminal state or a specified episode is reached. The plots consist of the mean with 90% confidence
interval (shaded area) of the performance metric. For REINFORCE-based methods, we randomly generate
an initial policy represented by a neural network.

5.1 Accelerated temporal difference learning

One of the central problems in RL is the so-called policy evaluation problem, that is, we want to estimate
f(πθ) for a fixed policy πθ. Temporal difference learning TD(λ), originally proposed by Sutton [36], is one
of the most efficient and practical methods for policy evaluation. It is shown in [27] that if the underlying
Markov process is reversible, TD learning is a gradient descent method. In addition, under linear function
approximation the TD method can be viewed as gradient descent for solving a strongly convex quadratic
problem [40]. In this problem, the data tuple {sk, ak, sk+1} generated by the MDP is ξk in our model; see
[40] for more details.
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For our simulation, we consider the policy evaluation problem over the GridWorld environment [37, Exam-
ple 4.1], where the agent is placed in a grid and wants to reach a goal from an initial position. The starting
and goal positions are fixed at the top-left and bottom-right corners, respectively. We implement the one-
step TD (or TD(0)), and apply our framework to obtain its accelerated variant, denoted as TD(0)-Acc. The
value function is approximated by using linear function approximation, i.e., fθ(s) = 〈θ,Φ(s)〉 where Φ(s)
is the feature at s ∈ S using O(3) order Fourier basis [18]. We consider a randomized policy choosing ac-
tion uniformly over the set {up, down, left, right}. In this case, the transition matrix is doubly stochastic,
therefore, reversible with uniform distribution.

Since the optimal solution is unknown, we use the norm of expected TD update (NEU) as in [38] to compare
the performance of TD(0) and TD(0)-Acc. In each run, after every 10 episodes, the NEU is computed by
averaging over 10 test episodes. The performance of both TD(0) variants the gridworld environment with
size 10 × 10 and 50 × 50 are presented in Figure 1, which shows that the proposed method, TD(0)-Acc,
outperforms the classic TD(0). The detail of parameter selection of this simulation is presented in the
supplementary material.

0 20 40 60 80 100
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10 13
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10 9
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10 3
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101
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GridWorld 10x10
TD(0)
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10 13

10 10
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10 4

10 1
NE

U

GridWorld 50x50
TD(0)
TD(0)-Acc

Figure 1: The performance of two TD(0) variants on GridWorld with sizes 10× 10 (left) and 50× 50 (right).

5.2 Accelerated REINFORCE methods

The REINFORCE method can be viewed as SGD in reinforcement learning [42]. To evaluate the two
variants of REINFORCE, we consider five different control problems, namely, Acrobot, CartPole, Ant,
Swimmer, and HalfCheetah, using the simulated environments from OpenAI Gym and Mujoco [4, 39] . We
utilize the implementation of REINFORCE from rllab library [10]. More details of these environments
and simulations in this section are given in the supplementary material.

Brief summary: At every iteration, we collect a batch of episodes with different length depending on the
environment. We then update the policy parameters and record the performance measure by collecting 50
episodes using the updated policy and average the total rewards for all episodes.

We first compare the algorithms using discrete control tasks: Acrobot-v1 and CartPole-v0 environ-
ments. For these discrete tasks, we use a soft-max policy πθ with parameter θ defined as

πθ(a|s) =
eφ(s,a,θ)∑|A|
k=1 e

φ(s,ak,θ)
, (31)

where φ(s, a, θ) is represented by a neural network and |A| is the total number of actions. Figure 2 presents
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Figure 2: The performance of two algorithms on the CartPole-v0 and Acrobot-v1 environment.

the performance of two algorithms on these environments. In both environments, the accelerated REIN-
FORCE significantly outperforms its non-accelerated variant.
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Figure 3: The performance of two algorithms on 4 Mujoco environments.

Next, we evaluate the performance of these algorithms on continuous control tasks in Mujoco. In these
environments, we also incorporate a linear baseline to reduce the variance of the policy gradient estima-
tor, see [13]. The actions are sampled from a deep Gaussian policy which can be written as πθ(a|s) =
N (φ(s, a, θµ);φ(s, a, θσ)), where φ(.) is a neural network. The mean and variance of the Gaussian distri-
bution is learned in this experiment.

We evaluate these algorithms on four environments with increasing difficulty: Swimmer, Walker2d,
HalfCheetah, and Ant. Figure 3 illustrates the results in those environments, respectively. In all figures,
REINFORCE-Acc indeed shows its advantage over REINFORCE.
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6 Conclusion

In this paper, we study a variant of ASGD for solving (possibly nonconvex) optimization problems, when
the gradients are sampled from Makrov process. We characterize the finite-time performance of this method
when the gradients are sampled from Markov processes, which shows that ASGD converges at the nearly the
same rate with Markovian gradient samples as with independent gradient samples. The only difference is a
logarithmic factor that accounts for the mixing time of the Markov chain. We apply the accelerated methods
to policy evaluation problems in GridWorld environment and to several challenging problems in the OpenAI
Gym and Mujoco. Our simulations show that acceleration can significantly improve the performance of the
classic RL algorithms.
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A Appendix

We first state the following result, as a consequence of the geometric mixing time in Assumptions 1 and
Lipschitz continuity in 3 and 4. The proof of this result can be found in [5, Lemma 3.2], therefore, it is
omitted here for brevity.

Corollary 1. Suppose that Assumptions 1, 3, 4 hold. Let g(x) ∈ ∂f(x) and τ(γ) defined in (3). Then

‖E[G(x; ξk)]− g(x) | ξ0 = ξ‖ ≤ γ, ∀x, ∀k ≥ τ(γ). (32)

A.1 Proof of Lemma 1

Proof. Since f satisfies Assumption 3, by (6) and (5) we have

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2

= f(xk−1)− γk〈∇f(xk−1), G(yk; ξk)〉+
Lγ2

k

2
‖G(yk; ξk)‖2

= f(xk−1)− γk〈∇f(xk−1), ∇f(yk)〉 − γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉

+
Lγ2

k

2
‖G(yk; ξk)‖2

= f(xk−1)− γk‖∇f(yk)‖2 − γk〈∇f(xk−1)−∇f(yk), ∇f(yk)〉

− γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉+
Lγ2

k

2
‖G(yk; ξk)−∇f(yk) +∇f(yk)‖2

= f(xk−1)− γk
(

1− Lγk
2

)
‖∇f(yk)‖2 − γk〈∇f(xk−1)−∇f(yk), ∇f(yk)〉

− γk〈∇f(xk−1)− Lγk∇f(yk), G(yk; ξk)−∇f(yk)〉+
Lγ2

k

2
‖G(yk; ξk)−∇f(yk)‖2

≤ f(xk−1)− γk
(

1− Lγk
2

)
‖∇f(yk)‖2 + Lγk‖xk−1 − yk‖‖∇f(yk)‖

− γk〈∇f(xk−1)− Lγk∇f(yk), G(yk; ξk)−∇f(yk)〉+ 2M2Lγ2
k ,

where the last inequality is due to 8 and (9). Using (6) we have from the preceding relation

f(xk) ≤ f(xk−1)− γk
(

1− Lγk
2

)
‖∇f(yk)‖2 + L(1− αk)γk‖xk−1 − x̄k−1‖‖∇f(yk)‖

− γk〈∇f(xk−1)− Lγk∇f(yk), G(yk; ξk)−∇f(yk)〉+ 2M2Lγ2
k

≤ f(xk−1)− γk (1− Lγk) ‖∇f(yk)‖2 +
L(1− αk)2

2
‖xk−1 − x̄k−1‖2

− γk〈∇f(xk−1)− Lγk∇f(yk), G(yk; ξk)−∇f(yk)〉+ 2M2Lγ2
k , (33)

where the last inequality we apply the relation 2ab ≤ a2 + b2 to the third term. Next, using (4)–(6) we have

x̄k − xk = (1− αk)(x̄k−1 − xk−1) + (γk − βk)G(yk; ξk),
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which dividing both sides by Γk, using (10) and α1 = 1, and summing up both sides yields

x̄k − xk = Γk

k∑
t=1

γt − βt
Γt

G(yt; ξt).

Thus, by using the Jensen’s inequality for ‖ · ‖2 and (48) we have from the preceding equation

‖x̄k − xk‖2 =

∥∥∥∥∥Γk

k∑
t=1

γt − βt
Γt

G(yt; ξt)

∥∥∥∥∥
2

=

∥∥∥∥∥Γk

k∑
t=1

αt
Γt

γt − βt
αt

G(yt; ξt)

∥∥∥∥∥
2

≤ Γk

k∑
t=1

αt
Γt

∥∥∥∥γt − βtαt
G(yt; ξt)

∥∥∥∥2

≤M2Γk

k∑
t=1

(γt − βt)2

Γtαt
, (34)

where the last inequality is due to (9). Substituing the preceding relation into (33) and since (1−αk)2Γk−1 ≤
Γk we have

f(xk) ≤ f(xk−1)− γk (1− Lγk) ‖∇f(yk)‖2 +
M2LΓk

2

k∑
t=1

(γt − βt)2

Γtαt

− γk〈∇f(xk−1)− Lγk∇f(yk), G(yk; ξk)−∇f(yk)〉+ 2M2Lγ2
k

≤ f(xk−1)− γk (1− Lγk) ‖∇f(yk)‖2 +
M2LΓk

2

k∑
t=1

(γt − βt)2

Γtαt

− γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉+ 4M2Lγ2
k , (35)

where the last inequality is due to (9). We next analyze the inner product on the right-hand side of (35).
Indeed, by Assumptions 3 and 4 we have

− γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉
= −γk〈∇f(xk−τ(γk)), G(yk; ξk)−∇f(yk)〉
− γk〈∇f(xk−1)−∇f(xk−τ(γk)), G(yk; ξk)−∇f(yk)〉

= −γk〈∇f(xk−τ(γk)), G(yk−τ(γk); ξk)−∇f(yk−τ(γk))〉
− γk〈∇f(xk−τ(γk)), G(yk); ξk)−G(yk−τ(γk); ξk)〉
− γk〈∇f(xk−τ(γk)), ∇f(yk−τ(γk))−∇f(yk)〉
− γk〈∇f(xk−1)−∇f(xk−τ(γk)), G(yk; ξk)−∇f(yk)〉

≤ −γk〈∇f(xk−τ(γk)), G(yk−τ(γk); ξk)−∇f(yk−τ(γk))〉+ 2MLγk‖yk − yk−τ(γk)‖
+ 2LMγk‖xk−1 − xk−τ(γk)‖. (36)

First, we denote byFk the filtration containing all the history generated by the algorithm up to time k. Using
Eq. (32) we consider

E[−γk〈∇f(xk−τ(γk)), G(yk−τ(γk); ξk)−∇f(yk−τ(γk))〉 | Fk−τ(γk)]

= −γk〈∇f(xk−τ(γk)), E[G(yk−τ(γk); ξk)−∇f(yk−τ(γk)) | Fk−τ(γk)]〉
≤Mγk

∣∣E[G(yk−τ(γk); ξk)−∇f(yk−τ(γk)) | Fk−τ(γk)]
∣∣ ≤Mγ2

k .

Second, by Eq. (6) we have

yk+1 − yk = yk+1 − x̄k+1 + x̄k+1 − x̄k + x̄k − yk
= βk+1G(yk+1; ξk+1)− βkG(yk; ξk) + x̄k+1 − x̄k,
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which by Assumption 4 and since βk+1 ≤ βk implies that

‖yk+1 − yk‖ ≤ 2Mβk + ‖x̄k+1 − x̄k‖. (37)

Using (4) and (6) we have

x̄k+1 − x̄k = αk+1(xk − x̄k)− βk+1G(yk+1; ξk+1),

which by using Eq. (34), αk+1 ≤ αk, and Assumption 4 implies that

‖x̄k+1 − x̄k‖ ≤M2αkΓk

k∑
t=1

(γt − βt)2

Γtαt
+Mβk.

Substituting the preceding relation into (37) yields

‖yk+1 − yk‖ ≤ 3Mβk +M2αkΓk

k∑
t=1

(γt − βt)2

Γtαt
,

which gives

2LMγk‖yk − yk−τ(γk)‖ ≤ 2LMγk

k−1∑
t=k−τ(γk)

‖yt+1 − yt‖

≤ 6LM2γk

k−1∑
t=k−τ(γk)

βt + 2LM3γk

k−1∑
t=k−τ(γk)

αtΓt

t∑
u=1

(γu − βu)2

Γuαu

≤ 6LM2τ(γk)γkβk−τ(γk) + 2LM3γk

k−1∑
t=k−τ(γk)

αtΓt

k∑
t=1

(γt − βt)2

Γtαt

≤ 6LM2τ(γk)γk−τ(γk)γk + 2LM3γk

k−1∑
t=k−τ(γk)

αtΓt

k∑
t=1

(γt − βt)2

Γtαt
·

Third, we have

2LMγk‖xk−1 − xk−τ(γk)‖ ≤ 2LMγk

k−1∑
t=k−τ(γk)+1

‖xt − xt−1‖

= 2LMγk

k−1∑
t=k−τ(γk)+1

‖γtG(yt; ξt)‖ ≤ 2LM2τ(γk)γk−τ(γk)γk.

Taking the expectation on both sides of (36) and using the preceding three relations we obtain

E [−γk〈∇f(xk−1), G(yk; ξk)−∇f(yk)〉]

≤Mγ2
k + 8LM2τ(γk)γk−τ(γk)γk + +2LM3γk

k−1∑
t=k−τ(γk)

αtΓt

k∑
t=1

(γt − βt)2

Γtαt
.

Taking the expectation on both sides of (35) and using the equation above give (11).
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A.2 Proofs of Section 4

The analysis of Theorems 2 and 3 are established based on the following two key lemmas. The proof of the
first lemma is adopted from the results studied in [20]. We restate here with some minor modification for
the purpose of our analysis.

Lemma 2. Let αk and γk satisfy (24) and

αk
γkΓk

≤ αk−1(1 + µγk−1)

γk−1Γk−1
, (38)

where Γk is defined in (10). Then {x̄k} generated by Algorithm 2 satisfies for all k ≥ 1

f(x̄k)− f(x∗) ≤ Γk
γ0f(x̄0) + α0(1 + µγ0)D

γ0Γ0
+ Γk

k∑
t=1

4M2γtαt
Γt(1 + µγt − Lγtαt)

+ Γk

k∑
t=1

αt
Γt

〈
G(yt; ξt)−∇f(yt) , z − x̃t−1

〉
, (39)

where x̃k−1 is defined as

x̃k−1 =
1

1 + µγk
xk−1 +

µγk
1 + µγk

yk. (40)

Proof. Using the convexity of f , i.e.,

f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ Rd

and (22) we have for all z ∈ X

f(z) + 〈∇f(z), x̄k − z〉 = f(z) + 〈∇f(z), αkxk + (1− αk)x̄k−1 − z〉
= (1− αk)

[
f(z) + 〈∇f(z), x̄k−1 − z〉

]
+ αk

[
f(z) + 〈∇f(z), xk − z〉

]
≤ (1− αk)f(x̄k−1) + αk

[
f(z) + 〈∇f(z), xk − z〉

]
.

By the preceding relation and (8) we have for all z ∈ X

f(x̄k) ≤ f(z) + 〈∇f(z), x̄k − z〉+
L

2
‖x̄k − z‖2

≤ (1− αk)f(x̄k−1) + αk
[
f(z) + 〈∇f(z), xk − z〉

]
+
L

2
‖x̄k − z‖2,

which by letting z = yk we obtain

f(x̄k) ≤ (1− αk)f(x̄k−1) + αk
[
f(yk) + 〈∇f(yk), xk − yk〉

]
+
L

2
‖x̄k − yk‖2. (41)

By the update of xk in (21) and Lemma 3.5 in [21] we have for all z ∈ X

γk
[〈
G(yk; ξk) , xk − yk

〉
+ µV (yk, xk)

]
+ V (xk−1, xk)

≤ γk
[〈
G(yk; ξk) , z − yk

〉
+ µV (yk, z)

]
+ V (xk−1, z)− (1 + µγk)V (xk, z),
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which implies that〈
∇f(yk) , xk − yk

〉
≤ µV (yk, z) +

1

γk
V (xk−1, z)−

1 + µγk
γk

V (xk, z)− µV (yk, xk)−
1

γk
V (xk−1, xk)

+
〈
G(yk; ξk) , z − yk

〉
−
〈
G(yk; ξk)−∇f(yk) , xk − yk

〉
= µV (yk, z) +

1

γk
V (xk−1, z)−

1 + µγk
γk

V (xk, z)− µV (yk, xk)−
1

γk
V (xk−1, xk)

+
〈
∇f(yk) , z − yk

〉
+
〈
G(yk; ξk)−∇f(yk) , z − xk

〉
.

Substituting the preceding equation into Eq. (41) yields

f(x̄k) ≤ (1− αk)f(x̄k−1) + αk
[
f(yk) +

〈
∇f(yk) , z − yk

〉
+ µV (yk, z)

]
+
L

2
‖x̄k − yk‖2

+
αk
γk

[
V (xk−1, z)− (1 + µγk)V (xk, z)− V (xk−1, xk)− µγkV (yk, xk)

]
+ αk

〈
G(yk; ξk)−∇f(yk) , z − xk

〉
. (42)

We denote by x̃k−1

x̃k−1 =
1

1 + µγk
xk−1 +

µγk
1 + µγk

yk. (43)

And note that

1

1 + µγk
=
βk(1− αk)
αk(1− βk)

and
µγk

1 + µγk
=

αk − βk
αk(1− βk)

Thus, using Eqs. (20) and (22), and the preceding relations we then have

x̄k − yk = αkxk +
1− αk
1− βk

(yk − βkxk−1)− yk = αk

[
xk −

βk(1− αk)
αk(1− βk)

xk−1 −
αk − βk
αk(1− βk)

yk

]
= αk(xk − x̃k−1). (44)

On the other hand, using the strong convexity of V we have

V (xk−1, xk) + µγkV (yk, xk) ≥
1

2
‖xk−1 − xk‖2 +

µγk
2
‖xk − yk‖2

≥ 1 + µγk
2

∥∥∥∥ 1

1 + µγk

(
xk − xk−1

)
+

µγk
1 + µγk

(
xk − yk

)∥∥∥∥2

=
1 + µγk

2

∥∥∥∥xk − 1

1 + µγk
xk−1 −

µγk
1 + µγk

yk

∥∥∥∥2

=
1 + µγk

2α2
k

‖αk(xk − x̃k−1)‖2 . (45)

We denote by ∆k = G(yk; ξk)−∇f(yk). Then we consider〈
G(yk; ξk)−∇f(yk) , z − xk

〉
=
〈
G(yk; ξk)−∇f(yk) , x̃k−1 − xk

〉
+
〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
≤ ‖∆k‖‖xk − x̃k−1‖+

〈
∆k , z − x̃k−1

〉
. (46)
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Substituting Eqs. (44)–(46) into Eq. (42) yields

f(x̄k) ≤ (1− αk)f(x̄k−1) + αk
[
f(yk) +

〈
∇f(yk) , z − yk

〉
+ µV (yk, z)

]
+
αk
γk

[
V (xk−1, z)− (1 + µγk)V (xk, z)

]
+ αk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
−
(

1 + µγk
2γkαk

− L

2

)
‖αk(xk − x̃k−1)‖2 + ‖∆k‖‖αk(xk − x̃k−1)‖

≤ (1− αk)f(x̄k−1) + αk
[
f(yk) +

〈
∇f(yk) , z − yk

〉
+ µV (yk, z)

]
+
αk
γk

[
V (xk−1, z)− (1 + µγk)V (xk, z)

]
+ αk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
+

γkαk‖∆k‖2

1 + µγk − Lγkαk
· (47)

Diving both sides of Eq. (47) by Γk and using (10) we have

1

Γk
f(x̄k) ≤

1− αk
Γk

f(x̄k−1) +
αk
Γk

[
f(yk) +

〈
∇f(yk) , z − yk

〉
+ µV (yk, z)

]
+

γkαk‖∆k‖2

Γk(1 + µγk − Lγkαk)

+
αk

Γkγk

[
V (xk−1, z)− (1 + µγk)V (xk, z)

]
+
αk
Γk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
≤ 1

Γk−1
f(x̄k−1) +

αk
Γk
f(z) +

γkαk‖∆k‖2

Γk(1 + µγk − Lγkαk)

+
αk

Γkγk

[
V (xk−1, z)− (1 + µγk)V (xk, z)

]
+
αk
Γk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
,

where the last inequality due to the convexity of f . Summing up both sides of the preceding relation over k
from 1 to K yields

f(x̄K) ≤ ΓK
Γ0

f(x̄0) + ΓK

K∑
k=1

αk
Γk
f(z) + ΓK

K∑
k=1

γkαk‖∆k‖2

Γk(1 + µγk − Lγkαk)

+ ΓK

K∑
k=1

αk
Γkγk

[
V (xk−1, z)− (1 + µγk)V (xk, z)

]
+ ΓK

K∑
k=1

αk
Γk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
≤ ΓK

Γ0
f(x̄0) + f(z) + ΓK

K∑
k=1

γkαk‖∆k‖2

Γk(1 + µγk − Lγkαk)

+ ΓK

[
α0(1 + µγ0)

γ0Γ0
V (x0, z)−

αK(1 + µγK)

ΓKγK
V (xK , z)

]
+ ΓK

K∑
k=1

αk
Γk

〈
G(yk; ξk)−∇f(yk) , z − x̃k−1

〉
,

where the second inequality is due to (38), α1 = 1, and the definition of Γk to have

K∑
k=1

αk
Γk

=
α1

Γ1
+

K∑
k=2

1

Γk

(
1− Γk

Γk−1

)
=

1

Γ1
+

K∑
k=2

(
1

Γk
− 1

Γk−1

)
=

1

ΓK
. (48)

Thus, by letting z = x∗ in the preceding equation and since ‖∆k‖2 ≤ 4M2 we obtain (39).
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A.2.1 Proof of Theorem 2

To prove theorem 2, we first consider the following lemma, where handle the inner product on the right-hand
side of (39) by using the geometric mixing time, similar to Lemma 1. Recall that since µ = 0, we have
βk = αk and yk = x̄k. Thus, the updates in Algorithm 2 become

x̄k = (1− αk)x̄k−1 + αkxk−1 (49)

xk = arg min
x∈X

{
γk〈G(x̄k; ξk) , x− x̄k〉+

1

2
‖x− xk−1‖2

}
. (50)

Lemma 3. Let the sequences {xk, yk} be generated by Algorithm 2. Then

E[〈G(x̄k; ξk)−∇f(x̄k), z − xk−1〉] ≤ 2Dγk + 2(4D2L+M2)τ(γk)γk−τ(γk). (51)

Proof. First, by the optimality condition of (50) we have

〈γkG(x̄k; ξk) + xk − xk−1 , xk−1 − xk〉 ≥ 0,

which by rearranging the equation and using (23) we have

‖xk − xk−1‖2 ≤ 〈γkG(x̄k; ξk) , xk−1 − xk〉 ≤Mγk‖xk − xk−1‖,

Dividing both sides of the equation above by xk − xk−1 gives

‖xk − xk−1‖ ≤Mγk. (52)

Since µ = 0, x̃k−1 = xk−1. Next, we consider

〈G(x̄k; ξk)−∇f(x̄k), z − xk−1〉 = 〈G(x̄k; ξk)−∇f(x̄k) , z − xk−τ(γk)〉
+ 〈G(x̄k; ξk)−∇f(x̄k) , xk−τ(γk) − xk−1〉. (53)

We now provide upper bounds for each term on the right-hand side of Eq. (53). First, using (23) consider
the first term on the right-hand side of Eq. (53)

〈G(x̄k; ξk)−∇f(x̄k), z − xk−τ(γk)〉
= 〈G(x̄k; ξk)−G(x̄k−τ(γk); ξk), z − xk−τ(γk)〉+ 〈G(x̄k−τ(γk); ξk)−∇f(x̄k−τ(γk)), z − xk−τ(γk)〉

+ 〈∇f(x̄k−τ(γk))−∇f(x̄k), z − xk−τ(γk)〉
≤ 2L‖x̄k − x̄k−τ(γk)‖‖z − xk−τ(γk)‖+ 〈G(x̄k−τ(γk); ξk)−∇f(x̄k−τ(γk)), z − xk−τ(γk)〉

≤ 4DL

k−1∑
t=k−τ(γk)

‖x̄t+1 − x̄t‖+ 〈G(x̄k−τ(γk); ξk)−∇f(x̄k−τ(γk)), z − xk−τ(γk)〉

≤ 8D2Lτ(γk)αk−τ(γk) + 〈G(x̄k−τ(γk); ξk)−∇f(x̄k−τ(γk)), z − xk−τ(γk)〉,

where τ(γk) be the mixing time of the underlying Markov chain associated with the step size γk, defined in
(3). We denote by Fk the filtration containing all the history generated by the algorithm up to time k. Then,
using (32) we have

E[〈G(x̄k; ξk)−∇f(x̄k), z − xk−τ(γk) | Fk−τ(γk)〉]
≤ 8D2Lτ(γk)αk−τ(γk) + ‖z − xk−τ(γk)‖‖E[G(x̄k; ξk)−∇f(x̄k) | Fk−τ(γk)‖
≤ 8D2Lτ(γk)αk−τ(γk) + 2Dγk. (54)
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Second, using Eqs. (52) and (23) we consider the second term on the right-hand side of (53)

〈G(x̄k; ξk)−∇f(x̄k) , xk−τ(γk) − xk−1〉 ≤ 2M‖xk−τ(γk) − xk−1‖

≤ 2M

k−2∑
t=k−τ(γk)

‖xt+1 − xt‖ ≤ 2M2τ(γk)γk−τ(γk). (55)

Taking the expectation on both sides of (53) and using Eqs. (54), (55), and αk ≤ γk immediately gives Eq.
(51).

A.2.2 Proof of Theorem 3

Similar to Lemma 3, we start with the following lemma.

Lemma 4. Let the sequences {xk, yk} be generated by Algorithm 2 and x̃ is defined in (43). Then

E[〈G(yk; ξk)−∇f(yk), z − x̃k−1〉] ≤ (2M2 + 4µMD + 24µLD2)τ(γk)γk−τ(γk)

+ (2D + 2M2 + 8µMD)γk. (56)

Proof. First, by the optimality condition of (21) we have

〈γkG(yk; ξk) + µγk(xk − yk) + xk − xk−1 , xk−1 − xk〉 ≥ 0,

which by rearranging the equation and using (23) we have

‖xk − xk−1‖2 ≤ 〈γkG(yk; ξk) + µγk(xk − yk) , xk−1 − xk〉 ≤ (M + 2Dµ)γk‖xk − xk−1‖,

Dividing both sides of the equation above by xk − xk−1 gives

‖xk − xk−1‖ ≤ (M + 2Dµ)γk. (57)

Second, we consider

yk+1 − yk = x̄k − x̄k−1 − βk+1(x̄k − xk) + βk(x̄k−1 − xk−1)

= αk(xk − x̄k−1)−−βk+1(x̄k − xk) + βk(x̄k−1 − xk−1),

which implies that

‖yk+1 − yk‖ ≤ 2Dαk + 4Dβk ≤ 6µDγk, (58)

where we use the fact that βk ≤ αk = µγk. Third, we consider

〈G(yk; ξk)−∇f(yk), z − x̃k−1〉 = 〈G(yk; ξk)−∇f(yk) , z − xk−τ(γk)〉
+ 〈G(yk; ξk)−∇f(yk) , xk−τ(γk) − xk〉
+ 〈G(yk; ξk)−∇f(yk) , xk − x̃k−1〉. (59)

Note that by (43) we have

xk − x̃k−1 = xk −
1

1 + µγk
xk−1 −

µγk
1 + µγk

yk = xk − xk−1 +
µγk

1 + µγk
(xk−1 − yk),
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which by substituing into Eq. (59) yields

〈G(yk; ξk)−∇f(yk), z − x̃k−1〉 = 〈G(yk; ξk)−∇f(yk) , z − xk−τ(γk)〉
+ 〈G(yk; ξk)−∇f(yk) , xk−τ(γk) − xk〉
+ 〈G(yk; ξk)−∇f(yk) , xk − xk−1〉

+
µγk

1 + µγk
〈G(yk; ξk)−∇f(yk) , xk − yk〉. (60)

Next, we provide upper bounds for each term on the right-hand side of Eq. (60). Using (23) and Assumption
3, consider the first term on

〈G(yk; ξk)−∇f(yk), z − xk−τ(γk)〉
= 〈G(yk; ξk)−G(yk−τ(γk); ξk), z − xk−τ(γk)〉+ 〈G(yk−τ(γk); ξk)−∇f(yk−τ(γk)), z − xk−τ(γk)〉

+ 〈∇f(yk−τ(γk))−∇f(yk), z − xk−τ(γk)〉
≤ 4DL‖yk − yk−τ(γk)‖+ +〈G(yk−τ(γk); ξk)−∇f(yk−τ(γk)), z − xk−τ(γk)〉

≤ 4DL

k−1∑
t=k−τ(γk)

‖yt+1 − yt‖+ 〈G(yk−τ(γk); ξk)−∇f(yk−τ(γk)), z − xk−τ(γk)〉

≤ 24µLD2
k−1∑

t=k−τ(γk)

γt + 〈G(yk−τ(γk); ξk)−∇f(yk−τ(γk)), z − xk−τ(γk)〉

≤ 24µLD2τ(γk)γk−τ(γk) + +〈G(yk−τ(γk); ξk)−∇f(yk−τ(γk)), z − xk−τ(γk)〉,

where the second last inequality is due to (58). Taking the conditional expectation w.r.t Fk and using (32)
we have

E[〈G(yk; ξk)−∇f(yk), z − xk−τ(γk)〉 | Fk−τ(γk)〉] ≤ 24µLD2τ(γk)γk−τ(γk) + 2Dγk. (61)

Second, using Eqs. (57) and (23) we consider the second and third terms on the right-hand side of (60)

〈G(yk; ξk)−∇f(yk) , xk−τ(γk) − xk〉+ 〈G(yk; ξk)−∇f(yk) , xk − xk−1〉

≤ 2M‖xk−τ(γk) − xk‖+ 2M‖xk − xk−1‖ ≤ 2M
k∑

t=k+1−τ(γk)

‖xt − xt−1‖+ 2M‖xk − xk−1‖

(57)
≤ 2M(M + 2µD)

k∑
t=k+1−τ(γk)

γt + 2M(M + 2µD)γk ≤ 2M(M + 2µD)
[
τ(γk)γk−τ(γk) + γk

]
, (62)

where the last inequality is due to the fact that γk is nonincreasing. Finally, using (23) we consider the last
term of Eq. (60)

µγk
1 + µγk

〈G(yk; ξk)−∇f(yk) , xk − yk〉 ≤
4µMDγk
1 + µγk

· (63)

Taking the expectation on both sides of (60) and using Eqs. (61)–(63) immediately gives Eq. (56).

Proof of Theorem 3. First, using (10) and (28) gives Γ0 = 1, α0 = 2, and γ0 = 2/µ. Second, it is
straightforward to verify that (28) satisfies (24) and (38). Thus, using (56) into (39) and since L = 0 we
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have

f(x̄k)− f(x∗) ≤ [f(x̄0) + 3µD]Γk + Γk

k∑
t=1

4M2γtαt
Γt(1 + µγt)

+ (2M2 + 4µMD + 24µLD2)Γk

k∑
t=1

τ(γt)αtγt−τ(γt)

Γt

+ 2(D +M2 + 4µMD)Γk

k∑
t=1

αtγt
Γt
· (64)

Next, consider each summand on the right-hand side of (64). Using (28) and (10) (to have Γt = 2/t(t+ 1))
yields

k∑
t=1

γtαt
Γt(1 + µγt)

=

k∑
t=1

4t(t+ 1)

2µ(t+ 1)2(1 + 2
t+1)

=

k∑
t=1

2t

µ(t+ 3)
≤ 2k

µ
· (65)

Using (3) and (28) gives τ(γk) = log(µ(k + 1)/2). Theregore, µ(k + 1)/2 ≥ τ(γk) and we obtain

γk−γ(γk) =
2

µ(k + 1− log(µ(k + 1)/2))
≤ (2 + µ)τ(γt)

µk
·

Using the relation above, (25), and Γt = 2/(t(t+ 1)) gives

k∑
t=1

αtτ(γt)γt−τ(γt)

Γt
≤ 2 + µ

µ

k∑
t=1

τ(γt) ≤
(2 + µ)(k + 1) log(µ(k + 1)/2)

µ
· (66)

Finally, we consider

k∑
t=1

αtγt
Γt
≤ 2k

µ
· (67)

Using (65)–(67) into (64) together with Γk = 2/k(k + 1) immediately gives (30), i.e.,

f(x̄k)− f(x∗) ≤ 2f(x̄0) + 6µD

k(k + 1)
+

8M2

µ(k + 1)
+

2(D +M2 + 4µMD)

µ(k + 1)

+
4(M2 + 2µMD + 12µLD2)(2 + µ)[log(µ/2) + log(k + 1)]

µk

=
2f(x̄0) + 6µD

k(k + 1)
+

2D + 10M2 + 8µMD

µ(k + 1)

+
4(M2 + 2µMD + 12µLD2)(2 + µ) log(µ(k+1)

2 )

µk
·
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B More details of environments in Section 5

B.1 GridWorld Simulations

We use discount factor of 0.9 in all GridWorld environments. We use the episodic version of TD(0) where
we set the episode length to be 10 times the grid size, i.e. episode length is 100 for a 10 × 10 grid. The
learning rate of TD(0) is set to 0.001 while we follow (28) to set the stepsizes βk and αk for TD(0)-Acc
while we use γk = δ 2

µ(k+1) with δ = 0.1. Due to the episodic nature of the problems, these stepsizes are
adapted at the episodic level.

B.2 REINFORCE Simulations

We present all parameters setup for all environments with REINFORCE variants in Table 1. The network
parameters are specified as (input×hidden layers×output), i.e. a 4×8×2 network contains 1 hidden layer
of 8 neurons.

Table 1: Parameters for Acrobot-v1, CartPole-v0, Swimmer-v2, Walker2d-v2, HalfCheetah-v2, and
Ant-v2 environments.

Environment Algorithm Policy Network Discount Factor Episode Length Baseline Batch Size Learning Rate

CartPole-v0 REINFORCE 4x8x2 0.99 200 None 25 0.1
REINFORCE-Acc 25 0.1

Acrobot-v1 REINFORCE 6x16x3 0.99 500 None 25 0.1
REINFORCE-Acc 25 0.1

Swimmer-v2 REINFORCE 8x32x32x2 0.99 1000 Linear 100 0.01
REINFORCE-Acc 100 0.01

Walker2d-v2 REINFORCE 17x32x32x6 0.99 1000 Linear 100 0.05
REINFORCE-Acc 100 0.05

HalfCheetah-v2 REINFORCE 17x32x32x6 0.99 1000 Linear 100 0.05
REINFORCE-Acc 100 0.05

Ant-v2 REINFORCE 111x128x64x32x8 0.99 1000 Linear 100 0.01
REINFORCE-Acc 100 0.01

Table 2 specifies the descriptions of 6 environments used in this paper including the observation and action
spaces.

Table 2: Descriptions of environments used for numerical experiments.

Environment Observation Space Action Space Action Type Descriptions

Acrobot-v1 2 3 Discrete
The Acrobot-v1 environment contains two joints and two links where we can actuate
the joints between two links. The links are hanging downwards at the beginning
and the goal is to swing the end of the lower link up to a given height.

CartPole-v0 4 2 Discrete
A pole is attached by an un-actuated joint to a cart moving along a frictionless track.
The pole starts upright, and the goal is to prevent it from falling over.

Swimmer-v2 8 2 Continuous The goal is to make a four-legged creature walk forward as fast as possible.
Walker2d-v2 8 2 Continuous The goal is to make a two-dimensional bipedal robot walk forward as fast as possible.
HalfCheetah-v2 17 6 Continuous Make a two-legged creature move forward as fast as possible.
Ant-v2 111 8 Continuous Make a four-legged creature walk forward as fast as possible.
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