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ABSTRACT

Despite recent efforts, federated learning (FL) still faces performance challenges
due to non-IID data distributions among clients. This distribution shift compli-
cates the addition of new clients and the transfer of federally learned models to
unseen data. Inspired by the adaptation ability of normalization layer parameters,
we first demonstrate the effectiveness of models trained using FedBN when be-
ing adapted to so far unseen data. Specifically, we extend the adaptation method
based on a visual analysis of the normalization layer feature vectors. We introduce
Federated Personalized Client Embeddings (FedPCE), which utilizes local em-
beddings to capture the underlying structure of the normalization feature vectors
and, by extension, the dataset. Our results show that FedPCE performs compara-
bly to other common FL algorithms during both training and adaptation. Notably,
FedPCE achieves this performance using only a fraction of the parameters during
fine-tuning (32 parameters in our experiments) compared to other methods.

1 INTRODUCTION

The field of computer vision has progressed significantly in recent years, largely due to the emer-
gence of deep learning. This rapid advancement of deep learning has been powered by the abundance
of data available for training. Typically, the most effective setup in deep learning involves utilizing
a single model on a centralized system that can access the complete training dataset.

However, collecting sufficient data on a central system to support effective deep learning is not
always feasible. This is particularly true when dealing with personal or medical data, where sharing
is restricted due to data privacy regulations. Federated learning (FL) has emerged as a solution to
utilize decentralized data McMahan et al. (2017).

This decentralization of data poses several challenges. One of the most significant is that the data
collected in this way is often not independently and identically distributed (non-IID) Li et al. (2022),
Rieke et al. (2020). For example, this issue can arise when healthcare centers use different imaging
devices, or when variations in user practices exist across devices. In general, non-IID data hinders
the performance of FL Zhao et al. (2018). Moreover, problems may arise when a model, already
trained on certain data, is applied to newly acquired data with a distribution that differs from the
original training set. Under such circumstances, the model’s performance is not guaranteed.

This scenario is common in the medical domain. Laws protecting patient privacy often make it
difficult to gather data centrally, and establishing agreements with new medical centers to use their
data can be a lengthy process. Some centers may be unable or unwilling to participate in a FL
process, meaning their data can only be used to adapt the model and evaluate its performance.

For both challenges, there are suggested solutions involving the adaptation of normalization layers
Li et al. (2021b), Li et al. (2016). We have observed that when using FedBN on artificially non-IID
data, some feature vectors of normalization layers tend to cluster together. As shown in Figure 1,
when clients with non-IID data are created using three different types of artificial degradation, the
local normalization feature vectors of similar clients are closer to each other. We aimed to capture
this similarity in a low-dimensional embedding space, leading to the introduction of FedPCE.

Our approach seeks to capture the underlying data structure through learnable embedding vectors.
We modify the model architecture by replacing normalization layer parameters with feature vec-
tors generated from an embedding vector through a Multi-Layer Perceptron (MLP). This allows us
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to focus on the low-dimensional embeddings during fine-tuning, making it possible to use fewer
parameters and training samples.

Our primary contribution is the introduction of a novel method in which all parameters of the normal-
ization layers are generated from a local embedding vector. We further demonstrate that adapting
these low-dimensional embedding vectors to new data is sufficient to achieve competitive perfor-
mance, thereby reducing the dimensionality of the adaptation problem. This approach not only
minimizes the number of parameters that need to be adjusted but also decreases the required data
for adaptation, making it highly efficient for scenarios with limited data.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated learning (FL) was introduced by McMahan et al. (2017) by the development of Federated
Averaging (FedAvg), which laid the foundations for distributed learning in scenarios where data
privacy and communication efficiency is critical. Since then, FL has attracted significant attention
due to its ability to collaboratively train machine learning models across decentralized data sources
without sharing raw data.

A primary challenge in FL is the heterogeneity of data across clients, commonly referred to as non-
IID (independently and identically distributed) data as this phenomenon makes the models trained
using FedAvg suboptimal Li et al. (2020b), Zhao et al. (2018), Hsieh et al. (2020). Several ap-
proaches have been proposed to address this. FedProx Li et al. (2020a) extends FedAvg by in-
troducing a proximal term to stabilize training on heterogeneous data. SCAFFOLD Karimireddy
et al. (2020) mitigates the effects of client drift by correcting updates using control variates, FedMA
Wang et al. (2020) uses matched averaging to better aggregate during global updates, MOON Li
et al. (2021a) introduces contrastive learning to align model representations between the client and
the server, further enhancing personalization, FedBS Idrissi et al. (2021) assigns weights to client
model updates based on the local loss and switches to FedProx after a while, FedDNA Duan et al.
(2021) weights the statistical parameters of the model differently and pFedLA Ma et al. (2022) uses
server-side hypernetworks to personalize model aggregation for each client.

2.2 DOMAIN ADAPTATION

Domain adaptation aims to transfer knowledge from a source domain with abundant data to a target
domain with limited data. Challenges arise because the data distribution in the target domain differs
from that in the source domain. Li et al. (2016) has shown that batch norm layers can play an
important role in adapting models to new domains. Lian et al. (2022) utilize scaling and shifting
features to adapt models to new data, and in FedIN Feng et al. (2023) this approach is applied to
improve FL. The significance of scale and shift is also evident in style transfer Dumoulin et al.
(2016); Huang & Belongie (2017). Additionally, Feature-wise Modulation Layers (FiLM), which
scale and shift feature vectors, have been shown to support synergistic learning on partially labeled
region-based segmentations, as demonstrated by Billot et al. (2024).

3 METHOD

In this section, we briefly recall a widespread setting for personalized FL in Subsection 3.1 and
normalization layers in Subsection 3.2. These concepts are necessitated for FedPCE, which is intro-
duced here to promote decentralized learning with embeddings.

3.1 PERSONALIZED FEDERATED LEARNING

In this section, we briefly recall the concept of personalized FL and introduce the relevant notation.
For this reason, we assume that no data can be shared with a central server or any other clients
due to data privacy reasons. We consider a scenario with N distinct clients (e.g., medical centers
or user devices), each with access to a local dataset and corresponding labels, as well as their own
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Figure 1: Visualisation of feature vectors of the first, 12th and last normalization layers from the 24
collaborative training clients when using FedBN, first showing the vectors projected onto the first
two dimensions of PCA, second using t-SNE. The data distribution at each client has been artificially
altered by applying a degradation. Feature vectors corresponding to the same type of degradation
appear closer to each other. Larger dots represent larger degradation levels for Gaussian noise and
Class imbalance.

computational resources. Additionally, all clients are connected to a central server, where model
aggregation occurs.

Let C1, . . . , CN represent the N clients and denote the dataset available at client Cn by Xn =
{(xℓ

n, y
ℓ
n)}ℓ=1,...,ℓn , where each (xℓ

n, y
ℓ
n) is a pair of input image and corresponding ground truth.

The most widespread and easiest method to implement FL is Federated Averaging (FedAvg) McMa-
han et al. (2017). In FedAvg, all clients perform stochastic gradient descent using their local data,
and after a fixed number of local iterations, send their model updates to a central server that averages
the updates. In personalized FL, instead of updating all model parameters, we assume that certain
parameters will remain local, meaning they will only be updated during local training. These param-
eters will neither be sent to the central server nor receive global updates. Both FedPer (Arivazhagan
et al., 2019) and FedBN (Li et al., 2021b) can be understood from this point of view. In FedPer,
the local parameters are the parameters of the last (few) layers, and in FedBN, they comprise the
normalization layers. We denote the entity of model parameters at client Cn by Ωn and split them
into global parts Ωgl

n = {ωi
n}i∈I and local parts Ωloc

n = {ωi
n}i∈J , where I and J denote the index

sets of the global and local parameters, respectively. This split is the same for each client.

In many cases, the objective function in FL can be framed as solving the following minimization
problem:

min
Ω1,...,ΩN

N∑
n=1

|Xn| · L(Xn; Ωn),

where L represents the loss function, and |Xn| is the number of data points at client Cn.

The training process proceeds as follows: all local model parameters are initialized identically. Each
client Cn then runs a gradient descent algorithm using its local data Xn and model parameters Ωn

to minimize the local loss L(Xn; Ωn). After a fixed number of iterations, clients send their global
weight updates to the central server, which averages these updates to yield

(ωi
k)

′ =
1

N

N∑
n=1

ωi
n ∀1 ≤ k ≤ N, i ∈ I.
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Crucially, local parameters are neither sent to the server nor updated during global model aggre-
gation. This process alternates between local training and global parameter aggregation until a
termination condition is met—in this case, aggregating the models for a specified number of times.

3.2 NORMALIZATION LAYERS

FedBN attempts to address the problem posed by data shift in FL by keeping the parameters of the
normalization layers local. In the case of the most common normalization layers (e.g., Batch Norm
(Ioffe & Szegedy, 2015), Instance Norm (Ulyanov et al., 2016), Layer Norm (Ba et al., 2016)), this
refers to the scale and shift parameters. These were introduced by Ioffe & Szegedy (2015) to restore
the representation power of the network after normalization. The action of these normalization
layers is as follows for a feature vector x:

ŷ =
x− E[x]√

Var(x)
, (1)

y = ŷ · γ + β, (2)
where the expectation and variance are calculated along dimensions depending on the specific choice
of normalization layer, and β and γ are learnable parameters. FedBN personalizes models by keep-
ing the parameters β and γ local, i.e., these parameters are not shared among the clients.

3.3 LOCAL EMBEDDINGS

Figure 2: Left: In FedPCE, a client Cn is personalized to the local data distribution by conditioning
the scale γ and shift β vectors of all normalization layers onto a semantic embedding vector vn.
Top right: This embedding is learned during collaborative training of multiple clients that share all
trainable parameters except the local embedding vectors vn, n = 1 . . . N . Bottom right: The se-
mantic embedding space enables an effective personalization to new clients CN+1 by only adapting
its embedding vector vN+1.

To distill the information encoded in the personalized shift and scale parameters depicted in Figure 1,
we facilitate local embeddings. Using these embeddings, we drastically reduce the number of client-
specific parameters and thereby simplify extending federated models to new clients.

Let there be K normalization layers, and denote the shift and scale vectors at normalization layer k
by βk and γk, respectively. Usually βk and γk are learnable parameters during federated training
and are either globally shared (FedAvg) or locally personalized (FedBN). Instead of directly param-
eterizing βk and γk, we introduce a Multi-Layer Perceptron (MLPk) in each normalization layer to
predict suitable shift and scale parameters from a client specific embedding vector vn ∈ RE , i.e.,

(βk,γk)(vn) = MLPk(vn). (3)
Thus, each of the K MLPs implements a nonlinear mapping from the embedding space RE to the
parameters space of the kth normalization layer R2 dim(yk). Here dim(yk) denotes the number of
feature channels of the kth normalization layers’ input. As a result, the rule (equation 2) of each
normalization layer used in our approach changes to

y = ŷ · γj(vi) + βj(vi). (4)
Each MLP consists of fully-connected layers with ReLU activation functions (Nair & Hinton, 2010)
in between. The complexity of these MLPs is defined by the width and the number of hidden layers.
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3.4 DECENTRALISED LEARNING WITH EMBEDDINGS

We now describe the usage of embeddings, which involves first training the model using the clients
available for FL—a process we refer to as collaborative training (Col. tr.)—and then adapting it to
unseen data, which we will call client training (Cl. tr.).

Collaborative training is conducted using personalized FL, as outlined in Subsection 3.1. At each
client Cn, only vn serves as a local parameter, i.e., Ωloc

n = {vn}, while the remaining weights
are global, denoted as Ωgl

n . Specifically, the weights of the MLPs mapping from the embedding
to the normalization shifts and scales are global parameters. Thus, only an E dimensional vector
characterizes the personalization of each client. To initialize the embedding vector of each client for
collaborative training, we set vn = e(n) if n ≤ E and 0 otherwise. We experimented with different
initialization strategies but did not observe any empirical difference.

The collaborative training enables the model to distill knowledge from the different local data dis-
tributions and represent it by local vn. Thereby, encoding semantic information in the associated
embedding. Since the weights of the MLPs are global, the model collectively learns how to interpret
this condensed information.

In the client training process, we utilize this encoded representation of the training data distribution
to effectively personalize new clients to its associated data. To do so, we freeze all global param-
eters of the model and only fine-tune the embedding vector vN+1, as shown in the bottom right
of Figure 2. Due to the low dimensionality of the embedding, only a small subset of the model’s
parameters have to be fine-tuned during client training, which reduces the number of labeled data
samples required to effectively adapt the model to unseen clients.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN AND DATASETS

We now describe the experiments that will demonstrate the effectiveness of local embeddings in
adapting a model to unseen data. The experiments simulate a scenario in which data centralization
is not possible, and the data at some clients cannot be used for training; it can only be used to adapt
the model for local usage. Therefore, we will generate a number of clients with artificially non-IID
data distribution, use some of them for collaborative training, and then fine-tune the model on the
remaining clients during client training.

To demonstrate the versatility of embeddings, we conduct experiments on three standard datasets:

• CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009) are classification datasets, each con-
sisting of 50,000 training and 10,000 validation images. Each of these RGB images is of
size 32× 32 and belongs to one of 10 or 100 classes, respectively.

• The third dataset, which we denote as Digits, is the union of four different public computer
vision datasets, all containing images of digits (0-9). These are the MNIST (LeCun, 1998),
USPS (Hull, 1994), SVHN (Netzer et al., 2011), and SYN (Roy et al., 2018) datasets. They
contain 60,000, 7,291, 73,257, and 10,000 training images, respectively, and 10,000, 2,007,
26,032, and 2,000 validation images, respectively. The SVHN and SYN datasets consist of
colored images, while MNIST and USPS contain grayscale images. For training, all images
were resized to 32 × 32 using bilinear interpolation. We convert all grayscale images to
color images.

4.2 SIMULATING NON-IID DATA

For the Digits dataset, we set the total number of clients to be a multiple of 4, denoted as 4K. For
each dataset in Digits, we split the images uniformly into K subsets. This results in 4K clients,
simulating 4 different modalities, each with K clients.

For CIFAR-10 and CIFAR-100, we apply three data degradation techniques to artificially alter the
data distribution. These methods are as follows:
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• Gaussian noise: We apply pixel-wise additive Gaussian noise to the images. For each
client, the variance of the Gaussian noise is fixed, but the noise instance is randomly sam-
pled every time. If there are M total clients with Gaussian noise degradation, the variances
used are M points chosen linearly between 0.005 and 1.

• ColorJitter: Modeled after PyTorch’s ColorJitter, this method adjusts the brightness,
contrast, saturation, and hue of images. The extent of these adjustments is fixed for each
client and determined as follows: For M ColorJitter clients, we take M points linearly
spaced between 0.5 and 1.5 for brightness (b1, . . . , bM ), contrast (c1, . . . , cM ), and satu-
ration (s1, . . . , sM ), and between -0.5 and 0.5 for hue (h1, . . . , hM ). We then randomly
permute the values for each category separately, i.e. chose four random permutations of
(1, . . ., M), φ1, φ2, φ3 and φ4. Then the ith client will be assigned the parameters bφ1(i),
cφ2(i), sφ3(i) and hφ4(i) for brightness, contrast, saturation, and hue, respectively. The
order of the change in brightness, contrast, saturation, and hue is applied in a random order.

• Class imbalance: When generating the clients corresponding to this degradation, the dis-
tribution of class labels is not uniform. If there are 2M Class imbalance clients, we choose
M values of α (logarithmically spaced between 0.1 and 10) and divide the entire set of im-
ages for these clients into M subsets uniformly. Each α is paired with one subset, and the
images of that subset are distributed using the Dirichlet distribution with the corresponding
α. This ensures that some clients have a fairly uniform class distribution (corresponding to
a high α value), while others have a very uneven class distribution (corresponding to a low
α).

We set the total number of clients as a multiple of 6, denoted by 6M . Each degradation type is as-
signed to 2M clients, ensuring an even number of Class imbalance clients. The dataset is uniformly
divided into three parts, one for each degradation method. These parts are then further subdivided
into 2M clients: uniformly for Gaussian noise and ColorJitter, and using the previously described
method for Class imbalance. Training and validation images are partitioned separately but follow
the same distribution. Gaussian noise and ColorJitter are applied to both the training and the vali-
dation images.

The data partitioning process, a random selection of ColorJitter and Gaussian noise parameters,
Gaussian noise application, and data loading are performed in a reproducible manner, ensuring fair
comparisons between models trained under the same conditions.

4.3 ARCHITECTURE

We will conduct all of our experiments using ResNet-18 He et al. (2016). The models are imple-
mented as described in He et al. (2016), with the following modifications. We use the ’CIFAR’ ver-
sion of ResNet, meaning the first convolution layer has a kernel size of 3, a stride of 1, and padding of
1, instead of the usual kernel size of 7, stride of 2, and padding of 3. We use instance normalization
layers (Ulyanov et al., 2016) instead of the usual batch normalization Ioffe & Szegedy (2015), as we
observed that instance normalization improves the performance of FedPCE. Additionally, we insert
an extra normalization layer into the classification head, right before the final fully connected layer.
This allows the embeddings to more directly influence the class predictions through the shift and
scale vectors of the normalization layer, which is particularly helpful in the case of Class imbalance.

Because we only need to fine-tune the low-dimensional embedding vector in FedPCE during
client training, the fine-tuning process requires training significantly fewer parameters. Although
a ResNet-18 adjusted to FedPCE is 6.9% larger than ResNet-18 in terms of the number of pa-
rameters due to the additional MLPs (11.9M vs. 11.2M), fine-tuning it requires training only 32
parameters, compared to 10,624 for FedBN, representing a 332-fold decrease. To show that the per-
formance does not stem from the extra number of parameters, we also conduct our experiments on
a smaller version of ResNet and FedPCE, which we will denote by FedPCE(62). This is the same
architecture as a ResNet-18 adjusted to FedPCE but we replace the original channel dimensions of
the ResNet blocks of (64, 128, 256, 512) by (62, 124, 248, 496). FedPCE(62) has only an extra
600K parameters, a difference of 0.54% compared to ResNet-18.

We will compare the collaborative and client training of our models with four well-established FL
methods: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), FedPer (Arivazhagan et al.,
2019), and FedBN (Li et al., 2021b). In FedProx, the weight of the proximal loss term is set to
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Table 1: Illustration of the accuracy of various FL algorithms on the CIFAR-10, CIFAR-100,
and Digits datasets, for both collaborative and client training. The rightmost column displays the
number of parameters optimized during the training phases for each method.

CIFAR-10 CIFAR-100 Digits # of parameters
Col. tr. (%) Cl. tr. (%) Col. tr. (%) Cl. tr. (%) Col. tr. (%) Cl. tr. (%) Col. tr. Cl. tr.

FedAvg 70.62 ± 0.45 52.13 ± 1.65 35.23 ± 0.2 24.71 ± 0.66 92.96 ± 0.12 92.15 ± 0.69 11.2M -
FedProx 70.54 ± 0.27 52.12 ± 1.14 35.07 ± 0.28 24.56 ± 0.95 93.04 ± 0.12 92.67±0.35 11.2M -
FedPer 67.96 ± 0.42 63.67 ± 1.03 24.97 ± 0.36 24.49 ± 0.69 92.93 ± 0.14 92.16 ± 0.17 11.2M 5.1K
FedBN 70.83±0.33 66.44±0.83 35.63±0.37 31.99±0.78 92.37 ± 0.12 89.60 ± 0.46 11.2M 10.6K
FedPCE 70.71 ± 0.26 65.67 ± 0.82 33.26 ± 0.33 27.97 ± 0.91 93.24±0.09 91.95 ± 0.17 12M 32

FedPCE(62) 70.74 ± 0.32 65.77 ± 1.06 32.91 ± 0.3 26.87 ± 1.08 93.11 ± 0.15 91.75 ± 0.19 11.2M 32

µ = 0.01. In FedPer, the parameters of the last fully connected layer are kept local, while FedBN
involves keeping the parameters of the normalization layers local. If a method has local parameters,
we fine-tune those during client training. If it has no local parameters, we do not fine-tune the model
during client training but use the validation sets of the fine-tuning clients to evaluate the model from
collaborative training All other implementation details are the same across methods, as described in
Section 5.

We conduct each experiment using 5-fold cross-validation. To implement this, we first partition
the dataset among the clients, and then each client Cn splits its local dataset Xn into 5 folds. The
partitioning of the local datasets and the selection of folds are carried out in a reproducible manner,
ensuring that the training and validation sets at each client remain consistent. During each experi-
ment, one fold serves as validation set, the rest of the dataset is used as training set, meaning at each
site 80% of the data is used for training and 20% for validation.

5 NUMERICAL RESULTS

In this section, the numerical results of the experiments are presented and discussed along with an
ablation study of the model’s hyperparameters.

5.1 TRAINING DETAILS AND BENCHMARK RESULTS

In the main experiments, we use a total of 30 clients for CIFAR-10 and CIFAR-100, and 40 clients
for Digits. In all cases, 80% of the clients are used for collaborative training, and the remaining 20%
for client training. Unless stated otherwise, we use MLPs with 2 layers and a hidden layer dimension
of 64. Local training is conducted using the Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 10−4, betas of (0.5, 0.9), a weight decay of 10−4, and cosine learning rate scheduling
with a minimum learning rate of 10−6. For FedPCE, the same optimizer and scheduler are used,
except for the embeddings, where the initial learning rate is 0.1 with a minimum of 10−4, and for
the MLP parameters, the initial learning rate is 10−2. We use a batch size of 64 and train for 50
local iterations between each global model aggregation. The same hyperparameters are used during
client training, except for the starting learning rate for the embeddings which is 10−2. Collaborative
training is run until the 1000th global aggregation, while client training is done for 200 global
aggregations. The training images are augmented by first padding with 4 pixels of value 0 on all
sides, randomly cropping the image to 32 × 32, flipping the image horizontally with a probability
of 0.25, rotating it by a degree uniformly sampled from (−15◦, 15◦) with a probability of 0.25, and
randomly erasing a rectangle of size between 16 and 256 pixels with a probability of 0.5.

In these experiments, we compare our method FedPCE, its smaller version, FedPCE(62), and the
ResNet-18 architecture used in conjunction with four different FL methods: FedAvg, FedProx, Fed-
Per, and FedBN. The results of the experiments are shown in Table 1.

The numerical results show that FedBN yields the highest accuracy scores for collaborative and
client training for both CIFAR datasets, but it personalizes the largest number of parameters in client
training. For CIFAR-10, our approach generates comparable results for collaborative and client
training and even outperforms FedBN on the Digits dataset. Interestingly, FedAvg and FedProx
achieved the highest accuracy scores on the Digits dataset for new clients, although both methods
do not personalized.
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Table 2: Results from collaborative and client training on the CIFAR-10 and CIFAR-100 datasets,
organized by the degradation of clients. Displayed are the mean accuracies over the clients with a
given degradation.

CIFAR-10 Gaussian noise ColorJitter Class imbalance
Col. tr. (%) Cl. tr. (%) Col. tr. (%) Cl. tr. (%) Col. tr. (%) Cl. tr. (%)

FedAvg 53.23± 0.3 14.45± 2.42 75.36± 0.79 64.24± 2.95 83.4 ± 0.76 77.63 ± 2.42

FedProx 53.4 ± 0.34 14.23± 2.78 75.11± 0.62 64.09± 1.74 83.3 ± 0.58 77.97 ± 0.94

FedPer 51.05± 0.42 46.19± 1.22 72.11± 0.94 67.39± 2.8 80.84± 0.49 77.39 ± 0.69

FedBN 53.27± 0.63 47.92± 0.84 76.01±0.83 70.87±1.98 83.37± 0.53 80.49±1.64

FedPCE 53.35±0.69 48.92±0.28 75.33± 0.48 68.49± 1.85 83.59±0.42 79.58 ± 1.36

FedPCE(62) 53.2 ± 0.77 48.29± 0.84 75.76± 0.67 69.42± 2.05 83.43± 0.43 79.58 ± 1.74

CIFAR-100 Gaussian noise ColorJitter Class imbalance
Col. tr. (%) Cl. tr. (%) Col. tr. (%) Cl. tr. (%) Col. tr.(%) Cl. tr. (%)

FedAvg 23.32±0.47 9.11± 1.29 35.43± 1.4 23.33± 0.85 46.88± 0.91 41.53 ± 0.72

FedProx 23.00± 0.8 9.27± 1.37 35.24± 0.72 22.88± 1.56 46.92±1.13 41.37 ± 0.78

FedPer 17.11± 0.3 18.05± 0.73 23.74± 0.88 21.26± 1.89 34.06± 0.87 34.08 ± 1.33

FedBN 23.07± 0.38 20.64± 0.67 37.01±0.74 30.13±1.26 46.75± 0.58 45.10±1.67

FedPCE 22.94± 0.39 22.25±0.88 33.38± 1.14 24.82± 1.39 43.40± 0.75 36.75 ± 1.49

FedPCE(62) 23.06± 0.47 22.15± 0.89 32.65± 0.81 22.15± 1.61 42.98± 1.19 36.23 ± 1.43
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Figure 3: Visualization of the embedding vectors after collaborative training using the CIFAR-100
dataset. The first plot shows the vectors projected onto the first two dimensions of PCA, the second
uses t-SNE. The embedding vectors of clients corresponding to the same degradation appear closer
to each other. Larger dots represent larger degradation levels when applicable, i.e., for Gaussian
noise and Class imbalance.

To investigate the performance drop of FedPCE on the CIFAR-100 dataset, we listed the stratified
accuracies for the different degradations in Table 2. Here, we observe that our approach clearly
outperforms all others for new clients degraded by Gaussian noise on CIFAR-10 and CIFAR-100.
However, client training for ColorJitter and Class imbalance works best using FedBN. We argue
that the performance drop of FedPCE for these degradations originates from the limited expressivity
of the 32-dimensional embedding space, which cannot smoothly encode all relevant properties for
CIFAR-100.

5.2 ABLATION STUDIES

Table 3: Ablation study for the embedding dimension.

E 2 4 8 16 32 64
Col. tr. (%) 70.52± 0.27 70.85± 0.48 70.68± 0.21 70.67± 0.18 70.71± 0.26 70.82± 0.39

Cl. tr. (%) 65.18± 0.57 65.67± 0.62 66.10± 0.95 65.64± 1.08 65.67± 0.82 66.72± 0.79
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Figure 4: Performance of FedBN and FedPCE trained models when the number of available training
images is restricted during client training.

Table 4: Ablation study for the number of clients.

# clients 12 30 60 90
Col. tr. (%) 73.06± 0.5 70.71± 0.26 68.52± 0.36 66.50± 0.31

Cl. tr. (%) 65.69± 0.4 65.67± 0.82 68.10± 0.96 68.20± 0.59

To better understand the effects and behavior of embeddings, we conduct a series of ablation studies
concerning the embedding dimension, the number of clients, the structure of the MLPs, and the
number of training images during client training. All the ablation experiments were conducted on
CIFAR-10 using the training setup described in Subsection 5.1 unless specified otherwise.

First, we demonstrate that, due to the low dimensionality of the embedding space, a model trained
with FedPCE can be fine-tuned effectively using a very small number of data points. In this ex-
periment, we compare FedBN and FedPCE models that were collaboratively trained on CIFAR-10.
During client training, we limit the number of available training images per client, ranging from
as few as 2 images to the full dataset of 1600 images per client. The validation set remains con-
sistent across all trials. The results are illustrated in Figure 4 and show that FedPCE consistently
outperforms FedBN for a low number of available training samples. Its performance stabilizing af-
ter around 100 training samples. Beyond this point, the additional fine-tuning parameters of FedBN
enable it to close the gap with FedPCE and eventually surpass it for more than 800 training samples.
This demonstrates FedPCE’s advantage in low-data regimes, while also highlighting the benefits of
FedBN’s more complex adaptation as the data volume increases.

Table 3 presents the results of the embedding dimension (E) ablation experiments conducted with
FedPCE, using dimensions ranging from 2 to 64. The findings reveal that the performance of Fed-
PCE is not significantly impacted by the embedding dimension. Strong results were achieved in
both collaborative and client training even with smaller embedding sizes, indicating that the method
remains robust across various embedding configurations.

Table 4 shows the results of experiments conducted with FedPCE across 12, 30, 60, and 90 clients.
As anticipated in FL, collaborative training accuracy declines as the number of clients increases

Table 5: Ablation study for the dimension of the hidden layer.

hidden dim 16 64 256
Col. tr. (%) 70.66± 0.22 70.71± 0.26 71.17± 0.37

Cl. tr. (%) 65.47± 0.8 65.67± 0.82 66.50± 0.83
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due to the increased data heterogeneity. However, client training accuracy exhibits an upward trend
as the number of clients grows. This suggests that the model’s MLPs become increasingly adept at
interpreting and adapting to diverse data when exposed to a larger pool of clients during collaborative
training.

Finally, Table 5 examines the effect of the MLPs’ size on the performance of FedPCE. We evaluated
2-layer MLPs with hidden dimensions of 16, 64, and 256. While increasing the hidden dimension
results in slight performance gains, the improvements are not substantial.

Despite the advantages of FedPCE presented above there are some minor limitations. For datasets
with a large number of classes, the embeddings might not fully capture the complexity of the under-
lying data. Additionally, the introduction of MLPs increases model complexity and might lead to
more difficult optimization.

6 CONCLUSION

In this work, we proposed to distill the implicit representations encoded in the parameters of person-
alized normalization layers in FL using embeddings. These embeddings are learned from multiple
clients during collaborative training. Afterwards, the model can be easily extended to new clients
with different data distributions by just fine-tuning the client’s embedding vector. Extensive numer-
ical experiments demonstrated that the proposed FedPCE approach generates comparable results to
established personalization approaches, while drastically reducing the number of local parameters.
This suggests that the adaptation problem is inherently low-dimensional. Moreover, the ability to
fine-tune fewer parameters not only improves computational efficiency but also reduces the amount
of labeled data required for effective adaptation. This is particularly important in the field of health-
care, where labeled data is usually scarce and very costly.
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