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Reproducibility Summary1

Scope of Reproducibility2

This work aims to confirm the effectiveness of MixStyle[8], which suggests mixing instance-level feature statistics of3

training samples across source domains in order to generalize the model to unseen domain in domain generalization,4

by achieving competing results on classification task. Furthermore, we extend the method to MixAll to improve the5

stability, which combine feature statistics across all source domains at each step.6

Methodology7

All experiments were conducted on PACS[5] using ResNet-18[3] or ResNet-50. A single V100 or K80 is used for8

experiments with an average training time of 2 hours, nearly 80 hours in total. We have reproduced MixStyle mainly9

based on the paper using PyTorch and refer to the official implementation(Dassl.pytorch) for details and replicated10

similar results shown in the last row of Table 1 in [8]. Ablation studies were focused on answering the question where11

to apply MixStyle. We have implemented and supplemented most of the experiments on classification task.12

Results13

Compared with the average accuracy reported in in MixStyle, our implementation achieves similar accuracy but differs14

a lot when switching model selection strategies. Therefore it is supported that MixStyle has a comparable results over15

other methods like L2A[9] , considering MixStyle greatly saves computational resources and time. And the results of16

our additional experiments demonstrate the method’s limitations that the performance is sensitive to hyper-parameters17

of α and the place to apply MixStyle. Furthermore, our MixAll method achieves more stable results under different18

model selection strategies.19

What was easy20

It is generally easy to re-implement MixStyle given the idea and pseudo-code in the paper, with key idea and motivation21

stated clearly and completely. And we have borrowed the data pre-processing code segment from Dassl.pytorch, which22

save us much time.23

What was difficult24

The official implementation assembled in Dassl.pytorch is complicated for us students, thus spending a lot of time25

to go through the library. Since experimenting with the official hyper-parameters would cost a lot of time, which26

contradicting the author saying that this method saves time, we tried to use adam as optimizer with 30 epochs and come27

out similar results. Besides, it is difficult for us to follow three totally different tasks including category classification,28

instance retrieval and reinforcement learning, for the other two tasks requires four GPUs, so we could only experiment29

on category classification with knowledge and computational resources jointly limited.30

Communication with original authors31

No communication with the original authors was required to reproduce their work.32

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction33

Convolutional neural networks(CNNs) have boosted a great success in computer vision over the past few years. However,34

the ability of CNN is largely limited when a trained model meets out-of distribution test data, which is commonly met in35

real world. To strengthen the generalization ability of CNNs, diverse source data from multiple relevant heterogeneous36

domains is collected so that CNN model is allowed to learn more domain-invariant features, and hence generalize to37

unseen out-of-distribution data, which is named unseen target domain. This problem is largely studied under domain38

generalization(DG).39

Among recent DG methods, a widely used assumption is that images are generated from style and semantic information40

or disentangled into style features and semantic features, whose semantic information is domain-agnostic while the style41

information is domain-specific. As a result, the more semantic information a model learns, the stronger generalization42

ability the model will have. For instance, data augmentation is proven to be useful for enhancing the generalization43

ability of the model, such as learning to generate more novel domains using given source domains[9] or reconstructing44

images with mixed amplitude information and original phase information by a fourier-based framework[7]. However,45

model-based data augmentation requires more computational resources and training time, and fourier-based method is46

proposed in an innovative view thus hard to follow. The state-of-the-art method STEAM[1] belongs to disentanglement47

method, retaining style-invariant information and separating style from semantic information through a contrastive48

learning framework.49

Observing that the first three outputs of residual block contain domain-related information as Figure1 while the last50

residual block encodes label-related information as Figure2, MixStyle[8] is proposed to mix the domain-related features51

directly in the similar way borrowed from AdaIN[4]. It is a plugin module playing the same role as dropout. The place52

to apply MixStyle is after the residual block while dropout is commonly applied after linear layers. Under domain53

generalization, however, one of the most important issue is where to apply Mixstyle.54

In original paper, MixStyle appears to work in three totally different tasks including category classification, instance55

retrieval and reinforcement learning. For the sake of research interest and knowledge limitation, we reproduce the56

classification task on PACS dataset with sufficient experiments to exhibit how MixStyle works in CNNs and improves57

performance of classification.58

Furthermore, we are not only re-implementing MixStyle, but also extend MixStyle to MixAll. According to the59

assumption that mixing style information leads to better generalization ability, we are motivated to explore whether60

mixing all statistic features of the provided source domains would perform better.61

(a) after first (b) after second (c) after third (d) after fourth

(e) after first (f) after second (g) after third (h) after fourth

Figure 1: 2-D visualization of flattened feature maps(top) and the corresponding style statistics(bottom) with respect
to domain labels. res1-4 denote the four residual blocks in order in a ResNet architecture. We observe that res1 to
res4 all contain domain-related information, but res4 further encodes category information. Although domain-related
information still remains after res4, label-related information lead the feature representation
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(a) after first (b) after second (c) after third (d) after fourth

(e) after first (f) after second (g) after third (h) after fourth

Figure 2: 2-D visualization of flattened feature maps(top) and the corresponding style statistics(bottom) with respect to
category labels. res1-4 denote the same as those in Figure 1. We observe that res1-4 encodes category information step
by step, and the feature extractor projects images to a linearly separable feature space after the fourth residual block.

2 Scope of reproducibility62

As follows from the introduction, MixStyle considers mixing mean and standard variation from different domains thus63

generating more styles implicitly, motivated by the findings that bottom layers of CNN captures style information. The64

authors shift and scale the mean and standard variation by AdaIN[4].65

The main tested contributions are that66

• Mixing styles of training instances results in novel domains being synthesized implicitly, and hence improves67

the generalizability of the trained model.68

• The performance of MixStyle on PACS dataset is not sensitive to hyper-parameter α, descending with the69

increasing value of α.70

• Applying MixStyle to multiple layers instead of single layer generally achieves better performance on category71

classification, except for the last residual block leading to a plunge.72

3 Methodology73

For the purpose of reproducing MixStyle, several steps were taken to cover the scope of the original paper with74

limited resources. Firstly, we went through the paper, grasped the meaning of method and ran with the official library75

Dassl.pytorch. However, the original library has implemented a great amuont of DG algorithms whose codes are76

redundant for us. So we extracted the core code and reorganized them into a simple demo referring to Dassl.pytorch.77

Secondly, in order to verify the conclusion of the original paper, we have designed extra experiments besides the78

original experiments carefully and reached other conclusions contradicting the original results. Thirdly, we conducted79

experiments on a single K80 on Colab or V100 on Huawei Cloud.80

3.1 Model descriptions81

3.1.1 Background82

Instance normalization. Instance normalization(IN) has been found effective for removing image style in style transfer83

models and gain a great success in AdaIN[2017]. Let x ∈ RB×C×H×W denoting the batch, channel, height and width84

of an image, respectively. IN is formulated as85
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IN(x) = γ
x− µ(x)

σ(x)
+ β (1)

where γ, β ∈ RC are learnable parameters, and µ(x), σ(x) are mean and standard deviation computed across the spatial86

dimension within each channel of each instance, i.e.87

µ(x)b,c =
1

HW

H∑
h=1

W∑
w=1

xb,c,h,w (2)

and88

σ(x)b,c =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xb,c,h,w − µ(x)b,c)2 (3)

Adaptive instance normalization(AdaIN) replace the scale and shift parameters in Eq.(1) with the feature statistics of89

style input y to achieve arbitrary style transfer:90

AdaIN(x) = σ(y)
x− µ(x)

σ(x)
+ µ(y) (4)

3.1.2 MixStyle91

MixStyle draws inspiration from AdaIN, which is designed for the purpose of regularizing CNN training by pertubing92

the style information of source domain training instances. To be more specific, it is plugged into CNN layers such as93

inserting after a residual block module in ResNet-18 or ResNet-50 as our backbone during our reproducibility.94

In practice, Mixtyle is applied by integrating feature statistics of two instances with a random convex weight to simulate95

new styles. Given an input batch x, we firstly compute the standard-normalized x̃. When domain labels are given, x̃ is96

sampled uniformly from two different domains i and j, e.g., namely x = [xi, xj ]. Then we generate a new batch x by a97

shuffling operation along both the domain dimension and in-domain instances, i.e.x = [Shuffle(xj), Shuffle(xi)].98

In cases where domain labels are unknown, x is randomly sampled from the training data, and x = [Shuffle(x)].99

After shuffling, MixStyle computes the mixed feature statistics by computing100

γmix = λσ(x) + (1− λ)σ(x) (5)
101

βmix = λµ(x) + (1− λ)µ(x) (6)

In practice, λ ∈ RB are instance-wise weights sampled from the beta distribution, λ ∼ Beta(α, α) with α ∈ (0,∞)102

being a hyper-parameter. In our experiments, we investigate how the value of α affect the results. Finally, the mixed103

feature statistics are applied the style-normalized x and sent to the following layers as input.104

MixStyle(x) = γmix
x− µ(x)

σ(x)
+ βmix (7)

In our work, we research the effect of MixStyle on the classification task.As a popular choice, ImageNet pre-trained105

ResNet-18 is our main backbone and ImageNet pre-trained ResNet-50 is set as extended backbone whose results are106

not shown in the original paper.107

3.2 Datasets108

We reproduce the experiments on PACS dataset, which is a commonly used benchmark in domain generalization due to109

its larger domain shifts over VLCS dataset. PACS includes 4 domains(Photo, Sketch, Cartoon, Art), and 7 common110

categories ’dog’, ’elephant’, ’giraffe’, ’guitar’, ’horse’, ’house’, ’person’. The total number of images is 9991, but after111

ignoring one error image(’sketch/dog/n02103406_4068-1.png’) there are 9990 images in fact. For instances in domains,112

there are 2048 images in Art, 2344 images in Cartoon, 1670 images in Photo, 3928 images in Sketch, respectively.113
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Model Photo Art Cartoon Sketch Avg.
ResNet-18 95.03/95.75 76.76/76.61 76.83/75.21 67.39/67.39 79.00/78.74

+MixStyle(res1234) 92.40/92.87 77.20/75.20 75.30/69.84 57.03/63.87 75.48/75.45
+MixStyle(res3) 95.33/95.87 81.98/80.08 75.60/81.48 63.65/67.69 79.14/81.28
+MixStyle(res1) 96.11/96.11 79.39/77.88 76.02/77.86 66.57/71.31 79.52/80.79

+MixStyle(res13) 96.17/96.11 81.69/81.69 80.63/79.01 62.30/68.69 80.20/81.38
+MixStyle(res23) 95.87/95.45 84.52/83.20 77.94/81.61 64.15/62.98 80.62/80.81

+MixStyle(res123) 94.67/95.87 84.03/81.45 74.83/77.86 73.78/76.96 81.83/83.04
+MixStyle(res12) 95.69/95.69 84.52/83.01 77.01/75.90 70.93/71.44 82.04/81.51
+MixStyle(res2) 95.75/95.75 84.13/81.49 78.84/78.92 77.04/60.92 83.94/79.27

+MixStyle(original results with res123) 96.1± 0.3 84.1± 0.4 78.8± 0.4 75.9± 0.9 83.7
Table 1: Leave-one-domain-out generalization ascending results on PACS with the form of last-step/best-validation
evaluation strategy. Feature statistics are shuffled by domain labels and the value of alpha is set to 0.1 by default.

α Photo Art Cartoon Sketch Avg.
0.1 94.67/95.87 84.03/81.45 74.83/77.86 73.78/76.96 81.83/83.04
0.2 94.13/94.97 81.98/83.06 78.58/79.74 77.11/65.33 82.95/80.78
0.3 93.95/95.57 83.25/81.79 75.17/77.90 76.35/69.42 82.18/81.17
0.4 94.37/95.33 83.45/81.98 79.31/79.01 78.31/78.31 83.86/83.66
0.5 93.83/94.67 83.01/83.64 79.10/76.88 77.67/69.96 83.40/81.29
0.6 93.95/95.33 82.18/82.57 73.81/78.11 72.66/61.91 80.65/79.48

Table 2: Leave-one-domain-out generalization ascending results on PACS with the form of last-step/best-validation
evaluation strategy. Feature statistics are shuffled by domain labels. the MixStyle is set after res123 of ResNet-18.

3.3 hyper-parameters114

In the reproducibility experiments, we mainly focus on the positions p after which block MixStyle layers are plugged115

into, and the value of α which controls how the beta distribution influence the value of λ. We experiment with all116

elements p in the power set of {1, 2, 3}. And we select alpha from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} manually. The best117

combination of hyper-parameters are p = {1, 2, 3} and α = 0.4. Besides, it is worth noticing that when choosing the118

last step model to evaluate the results, p = {2} and α = 0.1 reach the peak of 83.94%. The number of total experiments119

is 32× 4. Experimental meta-results are shown in table4.120

3.4 Experimental setup and computational requirements121

We start the experiment by re-organizing the original code from Dassl.pytorch and make it to easily modify our122

experiments on PACS datasets. For data preparation, we split the images from each training domains to 9(train):1(val)123

Method Photo Art Cartoon Sketch Avg.
ResNet-18

Baseline 95.03/95.75 76.76/76.61 76.83/75.21 67.39/67.39 79.00/78.74
CrossDomain 94.67/95.87 84.03/81.45 74.83/77.86 73.78/76.96 81.83/83.04

RandomShuffle 95.21/95.81 83.30/81.93 76.66/77.05 72.30/69.20 81.87/81.00
MixAll 95.93/95.75 83.15/82.03 79.69/80.38 71.89/72.33 82.67/82.62

ResNet-50
Baseline 96.89/97.43 86.23/86.23 80.93/80.93 70.95/73.42 83.78/84.50

CrossDomain 96.89/96.35 87.35/87.89 81.70/76.75 76.17/77.24 85.53/84.56
RandomShuffle 96.59/97.54 88.13/84.57 77.22/80.03 77.11/74.90 84.76/84.26

MixAll 97.07/97.31 86.91/86.62 80.29/80.29 75.08/75.48 84.84/84.93
Table 3: Leave-one-domain-out generalization results on PACS with the form of last-step/best-validation evaluation
strategy. Feature statistics are shuffled by domain labels. the MixStyle is set after res123 of ResNet-18. And α is set 0.1.

5



Backbone Photo Art Cartoon Sketch Avg.
ResNet-18 30:23/14:35 29:46/12:28 26:27/14:03 26:57/12:37 28:23/13:25
ResNet-50 14:59 14:11 12:59 12:42 13:42

Table 4: Rounded training time per experiment, measured on K80 on Colab or V100 on Huawei Cloud, with the form of
minute:second.On ResNet-18, we experiment on both Colab and Huawei Cloud, thus present the form of on K80/V100.
On ResNet-50, we could only experiment on Huawei Cloud, for the memory of Colab discouraging batch size of 128.
The choice of hyper-parameters and Mixstyle don’t affect the training and inference time.

and test on the whole held-out domain. For example, when experimenting on Photo, Art, Cartoon to the unseen Sketch,124

we train the training set of Photo, Art, Cartoon and validate the quality of model on validation set. After training, we125

choose a best model and test on the while held-out Sketch set. The final accuracy on Sketch is recorded. When each126

domain is held out and recorded its accuracy, the average accuracy across four domains is reported as the results to127

assess the effect of MixStyle compared to baselines.128

For our implementation, we use the ImageNet pre-trained ResNet-18 CNN as our main backbone with one layer129

exporting to the evidence of each category, and ResNet-50 is used for extra experiments. It is worth noting that batch130

normalization is used while the paper mentioned not to use batch normalization or dropout.Using adam as optimizer,131

Our initial learning rate is 1e-4 and batch size is 64 for each training domain. To save computational resources, the132

number of epoch is 30 instead of 150 in the original library suggested. We also take cosine annealing learning rate to133

search a better optimal, setting the T_max parameter to 30. For training sets’ transformations, we use ’random_flip’,134

’random_translation’, ’normalize to mean of zero and standard of one’ and resize to 224 × 224, while for test sets, we135

only resize them to 224 × 224 and normalize to mean of zero and standard of one. We use accuracy to measure the136

performance of the method, and all results omit the percent sign.137

As is pointed out in [2], model selection plays an essential part in domain generalization. Thus, we evaluate on138

accordance with last step and best validation strategies simultaneously. The last step strategy chooses the model after139

the whole training process regardless of accuracy on validation set, and the best validation strategy considers accuracy140

on validation set during training process.141

Experimental meta-results are shown in table 4. The original code can be found on the Github repository1, our142

easy-to-modify code can be found on the Github repository2143

4 Results144

With respect to the insight assumption, we visualize the feature maps and the feature statistics after each residual blocks145

in accordance with the author’s observation. However, the output of the third residual block begins to encode category146

information. After shuffling the output of the fourth residual block, the performance drop immediately. We reproduce147

the paper in totally new combination of hyper-parameters which saves 80% of the time compared with original paper148

and our results nearly approaches the original results with fewer epochs than that of original paper. In contrast to the149

original results, accuracy is sensitive to the hyper-parameter α as well as the places where to insert MixStyle. Besides,150

evaluation strategies including last-step and best-validation influence the results greatly. Lastly, when we change our151

backbone to ResNet-50, MixStyle still works but not that efficient as other methods.Furthermore, we test the effect of152

MixAll and get a pretty good results in case the hyper-parameters align with the suggested settings and a relatively153

stable results in our settings.154

4.1 Results reproducing original paper155

In figure 1, figure 2 and table 1 , results shows that res1-3 mainly encodes domain information while res1-4 encodes156

category information block by block, and it is a valid strategy to insert MixStyle after any residual block in res1-3.157

Restricted to computational resources, we couldn’t experiment with the suggested hyper-parameters in Dassl.pytorchs.158

In our common hyper-parameters, table 2 indicates that the results are sensitive to the value of α and seemingly irregular,159

1https://github.com/KaiyangZhou/Dassl.pytorch
2https://github.com/xuboshen/Reproducibility-challenge-2021/tree/master
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which contradicts claim 2. It is supported by table 3 that cross domain performs better than random shuffling in deed.160

Furthermore, table 4 presents the potential in saving costs.161

(a) Influence of α (b) Influence of α from the original paper (c) Influence of p

Figure 3: Evaluation on the hyper-parameter α and the place p to apply MixStyle on PACS

4.2 Results beyond original paper162

Since the original paper does not specify the criterion of model selection, two mainstream model selection methods163

including the last-step and best-validation are exerted to test the method. In addition to experiments, we have tried164

all combinations of the place to insert MixStyle and found the best results are given by only insert MixStyle after165

res2 when choosing the last-step model as the best model, which contradicts claim 3. Moreover, because we only166

value MixStyle on classification task, the universal adaptability of MixStyle isn’t proved, which is one of the essential167

argument of the original paper. Thus we investigate more on classification task by changing backbone from ResNet-18168

to ResNet-50. The results in table 3 shows that the improvements are not obvious as well as that MixAll provides169

stability than methods of MixStyle.170

5 Discussion171

In our work, we have done as much as we could to exploit the potentials of MixStyle. To sum up, we build the code172

project extracted from the library Dassl.pytorch successfully and our experimental results support the main claims of173

the paper except for some auxiliary arguments which may be affected by the selection of hyper-parameters. And we174

proposed MixAll to increase the stability of MixStyle in order to make MixStyle robust to methods of model selection.175

The results of GPU time indicate that MixStyle works as an easy-to-plug-in module that can easily improve generaliz-176

ability of CNN models especially ResNet with little time cost. And it is indicated that the places to apply MixStyle177

don’t matter as long as we don’t insert after the fourth residual block. According to figure 3, the results are sensitive178

to the selection of α. Though α influence results, the accuracy deviate too little to omit. We suggest choosing from179

α = {0.1, 0.2, 0.3, 0.4} , tuning them and getting the best combination during training stage.180

Furthermore, we observed that different model selection strategies influence the results a lot. Since the more style181

information are mixed, the better generalizability model is, we have tried to mix all feature statistics. Results in table182

3 tell us MixAll is more stable faced to different model selection strategies. By the way, we have tried to change183

backbone to ResNet-50 to verify the effect of MixStyle. Compared to state-of-the-art method’s accuracy of 90.15%[6]184

and baseline of 83.78%, MixStyle only reaches 85.53% at most, showing both its little improvement and limitation.185

Although MixStyle shows efficiency across different tasks, we are not knowledgeable enough to implement the remaining186

two task, unable to verify the tasks that MixStyle can apply to. Besides, the original paper presents a relatively small187

improvement on Digits-DG and Office-Home datasets. We are limited to time and computational resources provided by188

Huawei Cloud and daily limitations of Colab. The MixStyle still remains to be verified and improved to better utilize189

the domain information encoded by residual block together with the mixed category information gradually encoded.190
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5.1 What was easy191

The role of MixStyle playing in ResNet is easy to understand and the way to manipulating data statistics is trivial192

according to AdaIN[4]. The paper is well-written and the code is easy to run, so it was simple to verify the majority193

of original claims. The original code provide prepared data and data pre-processing module, which saves us a great194

amount of time.195

5.2 What was difficult196

At first, it is confusing for us to understand why MixStyle work in domain generalization while the effect of mixup197

is limited. After reading related papers, including image translations and domain generalization, and visualizing the198

feature maps and feature statistics by t-SNE, we comprehend the insight of MixStyle and started to design experiments.199

Next, we spend a little more time to evaluate and design the experiments, which is of vital importance for us due to the200

lack of computational resources. And going through the Dassl.pytorch library has also taken us much time so that we201

could delete those irrelevant codes, extract the core code and make a demo to edit and experiment quickly.202

5.3 Communication with original authors203

Since we track almost all papers in DG of the authors, we are familiar with the experiment settings and Dassl.pytorch.204

No communication with original authors is needed. And we solve problems quickly.205

References206

[1] Yang Chen et al. “A Style and Semantic Memory Mechanism for Domain Generalization”. In: Proceedings of the207

IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2021, pp. 9164–9173.208

[2] Ishaan Gulrajani and David Lopez-Paz. “In Search of Lost Domain Generalization”. In: 9th International209

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,210

2021. URL: https://openreview.net/forum?id=lQdXeXDoWtI.211

[3] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer212

Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society,213

2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90. URL: https://doi.org/10.1109/CVPR.2016.90.214

[4] Xun Huang and Serge J. Belongie. “Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization”.215

In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE216

Computer Society, 2017, pp. 1510–1519. DOI: 10.1109/ICCV.2017.167. URL: https://doi.org/10.1109/217

ICCV.2017.167.218

[5] Da Li et al. “Deeper, Broader and Artier Domain Generalization”. In: IEEE International Conference on Computer219

Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 5543–5551. DOI:220

10.1109/ICCV.2017.591. URL: https://doi.org/10.1109/ICCV.2017.591.221

[6] Prashant Pandey et al. “Generalization on Unseen Domains via Inference-Time Label-Preserving Target Projec-222

tions”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June223

2021, pp. 12924–12933.224

[7] Qinwei Xu et al. “A Fourier-Based Framework for Domain Generalization”. In: IEEE Conference on Computer225

Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE,226

2021, pp. 14383–14392. URL: https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%227

5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_228

paper.html.229

[8] Kaiyang Zhou et al. “Domain Generalization with MixStyle”. In: 9th International Conference on Learning230

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL: https://231

openreview.net/forum?id=6xHJ37MVxxp.232

[9] Kaiyang Zhou et al. “Learning to Generate Novel Domains for Domain Generalization”. In: Computer Vision233

- ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI. Ed.234

by Andrea Vedaldi et al. Vol. 12361. Lecture Notes in Computer Science. Springer, 2020, pp. 561–578. DOI:235

10.1007/978-3-030-58517-4\_33. URL: https://doi.org/10.1007/978-3-030-58517-4%5C_33.236

8

https://openreview.net/forum?id=lQdXeXDoWtI
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.591
https://doi.org/10.1109/ICCV.2017.591
https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu%5C_A%5C_Fourier-Based%5C_Framework%5C_for%5C_Domain%5C_Generalization%5C_CVPR%5C_2021%5C_paper.html
https://openreview.net/forum?id=6xHJ37MVxxp
https://openreview.net/forum?id=6xHJ37MVxxp
https://openreview.net/forum?id=6xHJ37MVxxp
https://doi.org/10.1007/978-3-030-58517-4\_33
https://doi.org/10.1007/978-3-030-58517-4%5C_33

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Background
	MixStyle

	Datasets
	hyper-parameters
	Experimental setup and computational requirements

	Results
	Results reproducing original paper
	Results beyond original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors


