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Abstract
While Large Language Models (LLMs) have001
demonstrated proficiency in handling complex002
reasoning, much of the past work has de-003
pended on extensively annotated datasets by004
human experts. However, this reliance on fully-005
supervised annotations poses scalability chal-006
lenges, particularly as models and data require-007
ments grow. In this work, we begin by ana-008
lyzing the limitations of existing data-efficient009
reinforcement learning (RL) methods in LLMs’010
reasoning enhancement. To mitigate this, we011
introduce self-reinforcement, an efficient weak-012
to-strong approach to optimize language mod-013
els’ reasoning abilities utilizing both annotated014
and unlabeled samples. Our method enhances015
the quality of synthetic feedback by fully har-016
nessing annotated seed data and introducing017
a novel self-filtering mechanism to remove in-018
valid pairs. We also present PUZZLEBEN, a019
weakly supervised benchmark for reasoning020
that comprises 25,147 complex questions, an-021
swers, and human-generated rationales across022
various domains, such as brainteasers, puzzles,023
riddles, parajumbles, and critical reasoning024
tasks. Our experiments underscore the signifi-025
cance of PUZZLEBEN, as well as the effective-026
ness of our methodology as a promising direc-027
tion in future endeavors. Our dataset and code028
will be published soon on Anonymity Link.029

1 Introduction030

Large language models (LLMs) (Brown et al.,031

2020; Zhang et al., 2022a; Chowdhery et al.,032

2022; Touvron et al., 2023) with Chain-of-Thought033

(CoT)-based prompting (Wei et al., 2022; Wang034

et al., 2022; Yao et al., 2024; Besta et al., 2024)035

have demonstrated strong capabilities across var-036

ious tasks and applications. To further enhance037

LLMs’ reasoning capabilities, many previous work038

have relied on extensive datasets fully annotated by039

human experts (Longpre et al., 2023; Zhang et al.,040

2022b; Ranaldi and Freitas, 2024) or rationale dis-041

tilled from larger models (Wang et al., 2023; Kim042

et al., 2023). This reliance, while beneficial for 043

model training, presents significant scalability and 044

availability challenges, particularly given the data 045

requirement scale with the size of the LLMs. 046

Recent studies have demonstrated that Rein- 047

forcement Learning (RL), coupled with heuristic 048

feedback, can bolster the reasoning capabilities of 049

LLMs with only a few annotations (Luong et al., 050

2024; Feng et al., 2024; Tan et al., 2024). These 051

approaches can be roughly categorized into two 052

types: rule-based and self-construction. The rule- 053

based (Luong et al., 2024) method devises a group 054

of criteria to determine the reward assigned to the 055

specific reasoning process. In contrast, the self- 056

construction method (Feng et al., 2024) tends to 057

construct the pair of reasoning samples in different 058

qualities based on different assumptions about the 059

factors influencing quality. While the abovemen- 060

tioned techniques alleviate the availability issue in 061

reasoning enhancement, they still suffer from sev- 062

eral limitations. Firstly, the inflexibility and lack 063

of comprehensiveness in rule-based reward assign- 064

ments can aggravate inherent problems in LLMs, 065

such as bias (Casper et al., 2023) and reward hack- 066

ing (Chen et al., 2024a; Jinnai et al., 2024). Sec- 067

ondly, while preference feedback produced by self- 068

construction aligns with human intuition, there are 069

still instances where assumptions may not hold 070

valid. For example, while Feng et al. (2024) rea- 071

sonably assume that reasoning samples leading to 072

correct answers should be superior to those lead- 073

ing to incorrect ones, there exist scenarios where 074

rigorous reasoning may only err in the final step, 075

or a poor rationale may coincidentally yield a cor- 076

rect answer. Besides, both types of approaches 077

fail to fully exploit seed annotations in datasets, 078

which, though sparse, have been proven valuable 079

and crucial in weakly-supervised scenarios(Zhou, 080

2018). 081

To address the challenges and foster LLMs’ rea- 082

soning abilities with weak supervision, we intro- 083
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(a). Overview Pipeline

When A is added to the two-digit number 

MA, result in the number AM with the 

positions of M and A swapped. The 

possible values are within the 0-9 range. 

After calculations we can get M=8  A=9 

so that 89+9=98. 

Question: MA + A = AM, …

Response1: When A is added to the two-digit number MA, …

Response2: Assuming M = 1 and A = 1 might lead to checking if 11 + 1 = 11, …

A good Response is:

    – 1. relevant to the Question

    – 2. seemingly correct and coherent

    – 3. do not output repeated or nonsense words.

    – 4. provide some rationales, explanations or answer

Do you think Response1 is better than Response2? Only answer "yes" or "no":

Yes.

SFT LLM Generation Base LLM Generation

Assuming M = 1 and A = 1 might lead to 

checking if 11 + 1 = 11, which is correct. 

So the answer is 1 and 1. 

(b). Self-filtering

Rule of Thumb:

“Supervised Fine-Tuning model will perform 

better than its unfinetuned base model”

Filtering Result

Question: MA + A = AM, what digits are represented by the letters M and A?

<<

Figure 1: The overview pipeline of our methods, self-reinforcement and the detailed implementation of self-filtering
in our methodology. This is an iterative weak-to-strong learning framework that intends to improve LLMs’ reasoning
under weak supervision. Blue indicates this response comes from strong models while red is from weaker models.

duce self-reinforcement in this work. Our method-084

ology unfolds in three phases: initial base model-085

ing, self-filtering, and self-reinforcement. In the086

base modeling stage, we hypothesize that the Su-087

pervised Fine-Tuned (SFT) model shows better per-088

formance compared to its unfinetuned counterpart089

when addressing unlabeled questions. Thus, we090

train the model in the seed annotation data and091

build comparisons using the response from the SFT092

LLM and base LLM. This tuning-based approach093

intuitively maximizes the utilization of seed anno-094

tations, thereby potentially yielding response pairs095

with more substantial quality distinctions compared096

to other self-construction methods. During the sec-097

ond phase, We borrow insights from recent self-098

judging methods (Yuan et al., 2024; Pang et al.,099

2024), proposing a self-filtering step where the100

LLM evaluates and eliminates undesirable response101

pairs to further ensure the quality of pairwise feed-102

back. In the reinforcement learning phase, we use103

Direct Preference Optimization (DPO) (Rafailov104

et al., 2023) to refine the models by learning from105

the quality differences between their responses to106

the unlabeled question set. Noticable, our self-107

reinforcement allows iterative self-improvement108

while reducing the reliance on extensively anno-109

tated datasets.110

Besides, we collect and introduce PUZZLEBEN,111

a weakly-supervised reasoning benchmark specifi-112

cally designed to support and validate the effec-113

tiveness of weak-to-strong (Burns et al., 2023)114

learning paradigms. PUZZLEBEN encompasses 115

a diverse collection of 25,147 labeled questions 116

with answers and meticulously designed human 117

rationale references, as well as 10,000 unlabeled 118

questions. It consists of various problem types, 119

including brainteasers, puzzles, riddles, parajum- 120

bles, and critical reasoning tasks. The presence of 121

both annotated and unannotated questions within 122

PUZZLEBEN enables the practical application of 123

our self-reinforcement strategies. Additionally, the 124

brainteaser subset in PUZZLEBEN features with 125

human-labeled difficulty and fun scores, which 126

could be used for further in-depth analysis. 127

Our experiments in PUZZLEBEN highlight the 128

significant impact of human-annotated rationales 129

and diverse problem types within PUZZLEBEN, as 130

well as the efficacy of self-reinforcement in future 131

reasoning work. There is also a significant observa- 132

tion that the current models’ perception of difficulty 133

in reasoning tasks does not always align with hu- 134

man perceptions, highlighting a potential area for 135

further superalignment in the field of reasoning. 136

To sum up, our contribution can be summarized 137

into the following aspects: 138

• We expose the limitations of previous RL- 139

based data-efficient methods in enhancing the 140

LLMs’ reasoning abilities and propose our self- 141

reinforcement tailored for weakly-supervised rea- 142

soning learning. 143

• We build PUZZLEBEN, a comprehensive weakly- 144

supervised reasoning benchmark consisting of 145
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various problem types.146

• With extensive experiments conducted, we vali-147

date the effectiveness of our method and propose148

further hints and guidance on LLM’s reasoning.149

2 Related Work150

LLMs’ Reasonings CoT (Wei et al., 2022)151

equips LLMs with enhanced reasoning capabilities,152

leading to a series of subsequent studies (Wang153

et al., 2022; Zhou et al., 2022; Creswell and Shana-154

han, 2022; Besta et al., 2023; Li et al., 2023; Light-155

man et al., 2023) that simulate human logical pro-156

cesses. These methods are applied across various157

reasoning tasks, including commonsense (Geva158

et al., 2021; Zhao et al., 2024), logical (Pan et al.,159

2023; Lei et al., 2023), and mathematical reason-160

ing (Cobbe et al., 2021; Hendrycks et al., 2021).161

To enhance LLMs’ reasoning, training on anno-162

tated reasoning datasets (Longpre et al., 2023;163

Zhang et al., 2022b; Ranaldi and Freitas, 2024) and164

distilling from larger models (Wang et al., 2023;165

Kim et al., 2023) are two common ways. However,166

these two methods suffer from resource availability167

and that stimulates our motivation to explore data-168

efficient and self-powered methods to boost LLMs’169

reasoning abilities.170

Reinforcement Learning Proximal Policy Op-171

timization (PPO) (Schulman et al., 2017) is a key172

RL technique for aligning models with human pref-173

erences (Ouyang et al., 2022). They further lead to174

the development of Direct Preference Optimization175

(DPO) (Rafailov et al., 2023), which uses the LLM176

as an implicit reward model. Recent efforts are ex-177

ploring the use of reinforcement learning in tasks178

that involve reasoning. For example, Luong et al.179

(2024) adopts PPO to differentiate between correct180

and incorrect reasoning explanations, requiring a181

large corpus of human-annotated golden references.182

Feng et al. (2024) propose self-motivated learning183

by training the reward model with synthetic feed-184

back produced from the policy.185

Self-training and Self-improvement Many pre-186

vious works in this direction assign a pseudo la-187

bel from a learned classifier to further improve188

the base model (Xie et al., 2020; RoyChowdhury189

et al., 2019; Chen et al., 2021). Huang et al. (2022)190

propose utilizing language models to self-improve191

without supervised data. Chen et al. (2024b) em-192

ploying LLMs from earlier iterations along with193

human-annotated SFT data to refine the models.194

They contrast data decoded by the models with data 195

supervised by humans and learn from this compar- 196

ison, which still necessitates considerable human 197

effort. Although our work shares similar insights 198

with this direction, we intend to unveil the potential 199

to supervise strong models with a weak model in 200

the field of reasoning. 201

Weak-to-strong Learning and Generalizations 202

Burns et al. (2023) introduces the potential of lever- 203

aging weak model supervision to elicit the full ca- 204

pabilities of much stronger models for superalign- 205

ment in the future. Following this trend, our work 206

tends to explore how to improve LLMs’ reasoning 207

abilities under weakly low-resource supervision. 208

This direction is significant when humans cannot 209

provide large-scale confident answers when the 210

questions become too hard. 211

Weakly-supervised Learning Many previous 212

works in this field concern about how to benefit 213

from unreliable or noisy labels (Bach et al., 2017; 214

Ratner et al., 2017; Guo et al., 2018; Song et al., 215

2022). Semi-supervised learning (Kingma et al., 216

2014; Laine and Aila, 2016; Berthelot et al., 2019), 217

when only a subset of labels are available, is closely 218

related to our methodology. We fine-tune a base 219

model on a random seed dataset, then iteratively 220

train it on unlabeled data in a semi-supervised man- 221

ner to progressively improve the initially weak 222

model without full supervision. 223

3 Our Methodology: Self-Reinforcement 224

In this section, we describe our method to elicit the 225

potential of language models for weak-to-strong 226

generalization in reasoning tasks aimed at minimiz- 227

ing human annotation effort. 228

Our methodology assumes access to a base lan- 229

guage model, a small amount of seed data, and 230

a collection of unlabelled questions. The key as- 231

sumption is that Supervised Fine-Tuning (SFT) 232

models will perform better in some questions 233

than its unfinetuned base model within the same 234

training domain. 235

Our overall pipeline would entail three core 236

steps: 237

• base modeling: Access unfinetuned base pre- 238

trained model π0. Sample a seed data set 239

A(0) = {(xg, rg, yg)} from the training set in 240

PUZZLEBEN to optimize an SFT model π1 by 241

maximizing p(rg, yg | xg), where xg is the sam- 242

pled question labeled with rationale rg and an- 243
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swer yg.244

• self-filtering: Randomly sample a set of un-245

labeled questions {xu} to generate rationales246

r0 ∼ π0(y | xu) and r1 ∼ π1(y | xu). We247

then design a self-filtering prompt to select re-248

sponses where r1 is preferred over r0 using cri-249

teria like relevance and coherence, enhancing250

the unlabeled dataset with pairs of annotations251

A(1) = {(xu, r1, y1, r0, y0) | r1 ≻ r0}.252

• reinforcement learning: Then, we apply Differ-253

ential Performance Optimization (DPO) to learn254

from the discrepancies between pairs of ratio-255

nales, further fine-tuning π1 on A(1) to get π2.256

We will describe the procedures of our method-257

ology in more detail below.258

3.1 Step 1: Base Modeling259

This initial step involves enhancing the reasoning260

ability of the unsupervised base model π0 by fine-261

tuning it with a small, high-quality annotated seed262

data A(0) = {(xg, rg, yg)}, where xg is a sampled263

question labeled with rationale rg and answer yg.264

This process is aimed at directly improving the265

model’s basic reasoning ability with the supervised266

fine-tuning loss function:267

LSFT(θ) = −E{(xg,rg,yg)}∼A(0)

 |rg|∑
t=1

log(πθ(at|st))


(1)268

where θ represents the model parameters, and269

πθ(at|st) is the probability of taking action at at270

state st, given the policy parameterized by θ. After271

supervised fine-tuning, we could get π1 = πSFT.272

3.2 Step 2: Self-Filtering273

To select high-quality examples for the next step,274

we further prompt π1 itself to evaluate the re-275

sponse pairs to unlabeled questions generated by276

itself and π0. Then we get r0 ∼ π0(y | xu) and277

r1 ∼ π1(y | xu). We attach self-filtering prompt-278

ing we designed in Table 9. We aim to identify279

instances where π1 outperforms π0 based on rel-280

evance, coherence, and the presence of detailed281

rationales. Only responses where π1 demonstrates282

superior reasoning are retained.283

A(1) = {(xu, r1, y1, r0, y0) | r1 ≻ r0} (2)284

This selective approach ensures the inclusion of285

only high-quality rationale pairs in the training pro-286

cess, thereby improving the overall effectiveness287

of our methods.288

3.3 Step 3: Reinforcement Learning 289

The third step in our methodology employs an in- 290

novative RL approach to utilize the augmented re- 291

sponse pairs. This step is based on the assumption 292

that SFT models will exhibit superior rationale- 293

generating capabilities compared to their unfine- 294

tuned counterparts within the same training do- 295

main. This difference in capability is primarily 296

manifested in the quality of rationales produced. 297

The score si for the output (ri, yi) from πi and 298

its reference base model πref is derived as in Equa- 299

tion 3. 300

si = β log
Pπi(ri, yi|xi)
Pπref

(ri, yi|xi)
(3) 301

According to our assumptions, more capable 302

models will obtain higher scores in this phase. 303

This output quality discrepancy can be directly 304

learnt with DPO based on the ranking loss in Equa- 305

tion 4. This enables us to finetune the stronger SFT 306

model π1 in a way that systematically amplifies its 307

strengths in rationale generation. 308

L =
∑

i,j:si>sj

max(0, si − sj) (4) 309

3.4 Iterative Self-Reinforcement 310

Self-reinforcement provides a reasonable approach 311

to continue to refine its own reasoning ability inter- 312

actively. By repeating this process, we enhance the 313

model’s understanding and reasoning capabilities 314

to learn from the comparisons between itself and 315

weaker models. 316

In the iterative process, we leverage the im- 317

proved model from the previous iteration, π1, and 318

compare its output against the base model, π0, to 319

obtain a new model π2. This is formalized as fol- 320

lows: 321

πt = Self-Reinforcement (πt−1, πt−2) (5) 322

Notably, our experiments in Section 6 demon- 323

strate that our approach can continually grow with 324

the improvements in the SFT model’s capabili- 325

ties. With each iteration of training, the previously 326

"strong" model can serve as the "weaker" model 327

for the next cycle, since the new, stronger model 328

is developed based on the comparison between the 329

two models from the prior round. 330

Liter =
∑

i,j:i̸=j;st−1
i >st−2

j

max(0, st−1
j − st−2

i ) (6) 331
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Here, Liter represents the iterative self-332

reinforcement learning loss, st−1
i and st−2

j333

represent the scores of the rationales produced334

by πt−1 and πt−2 respectively. This iterative335

process allows the model to improve upon itself,336

leveraging the comparative strengths of each337

iteration’s outcome.338

4 Data Collection for PUZZLEBEN339

In this section, we introduce PUZZLEBEN, a diver-340

sified and challenging benchmark with 25,147 an-341

notated questions and 10,000 unannotated queries342

designed to test and enhance the LLMs’ reasoning343

abilities with weak supervision. Our dataset spans344

multiple domains and question styles, and to illus-345

trate this diversity, we create an overview of ques-346

tions from PUZZLEBEN in Table 1 and include the347

detailed questions, answers, and human-annotated348

rationales in Table 8.349

Each question in the training set comes with a350

gold-standard rationale crafted by human experts.351

All the answers and references are well-examined352

by the websites’ users. The unlabeled set serves353

as a special part of PUZZLEBEN that is pivotal354

for exploring unsupervised or weakly-supervised355

learning techniques in the future. As for the test356

set, it has been thoughtfully structured to include357

options and answers, streamlining the evaluation358

process for enhanced convenience.359

Meanwhile, a distinct section of our PUZ-360

ZLEBEN dataset has been enriched with both dif-361

ficulty and fun scores, informed by user interac-362

tions online. This feature emerges as a crucial re-363

source for examining the reasoning capabilities of364

LLMs and their alignment with human supervisory365

thought processes.366

4.1 Brainteasers367

The primary intent of collecting brainteasers in368

PUZZLEBEN is to promote LLMs’ capabilities in369

tackling problems that require deep thought and370

creative solutions. We systematically collect those371

questions from a well-designed open-sourced web-372

site, Braingle1. Each question is accompanied by a373

solution that has garnered widespread acceptance374

among users, along with a difficulty rating and a375

human rationale reference.376

A subset of our dataset is distinguished by an377

additional metric from the website – the success378

1https://www.braingle.com/

Parajumbles
The four sentences below when properly sequenced, would
yield a coherent paragraph. Decide on the proper sequence.

Puzzles
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
If the second half of the alphabet is reversed then which letter
will be 4th to the right of 20th letter from the right?

Brain Teasers
Pointing to a person, a man said to a woman, "His mother is
the only daughter of your father." How was the woman
related to the person?

Riddles
I will disappear every time you say my name. What am I?

Critical Reasoning
Passage: ...
Question 1: In this context, which of the following most
logically explains the paradox?
Question 2: Which of the following is an assumption on
which the argument depends?

Table 1: Question examples from PUZZLEBEN. The
detailed Q&A and human-annotated rationales are at-
tached to Table 8 in Appendix.

rate of individuals who have attempted. The inclu- 379

sion of human-assigned difficulty levels and suc- 380

cess rates in this subset offers invaluable insights 381

for our subsequent exploration into enhancing the 382

weak-to-strong learning capabilities of LLMs. 383

4.2 Riddles 384

The primary intent of collecting riddles in PUZ- 385

ZLEBEN is to compel LLMs to think beyond the 386

immediate context. A riddle can describe com- 387

monsense knowledge in explicit or counterlogical 388

methods (Lin et al., 2021). We collect those well- 389

designed riddles from an open-sourced website fa- 390

mous for stimulating cognitive explosions, ahaPuz- 391

zles2. 392

While Lin et al. (2021) initiated the conversa- 393

tion, our dataset goes a step further by incorporat- 394

ing human rationale, vividly showcasing the intri- 395

cacies of human thought processes. This addition 396

significantly enhances the potential for LLMs to 397

evolve innovatively and critically weak-to-strong 398

generalizations from human’s step-by-step reason- 399

ing iterations. 400

4.3 Puzzles 401

Puzzles are designed to challenge our cognitive fac- 402

ulties, forcing us to tap into both learned knowledge 403

and innate logic in real-world problems. Unlike 404

2https://www.ahapuzzles.com/
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riddles, which play on linguistic ambiguities or re-405

constructing logically coherent narratives, Puzzles406

hinge on methodical, step-by-step deduction and407

inference of structured problems.408

We collect puzzles from sawaal3, a well-known409

public website. This aspect is meticulously re-410

viewed and validated by the community, ensuring411

the dataset serves as a rigorous training ground to412

promote LLMs from weak and basic capabilities to413

generalize strong reasoning capabilities.414

4.4 Parajumbles415

Parajumbles involve reordering jumbled sentences416

into a logical sequence, requiring a deep under-417

standing of the relationships within texts. Including418

parajumbles in our dataset helps transition LLMs419

from basic learning to advanced modeling, en-420

abling sophisticated logical reasoning.421

The inspiration for this task is drawn from422

two well-known tests - Common Admission423

Test(CAT)4 and Pearson Test of English for Aca-424

demic(PTE)5. Besides CAT and PTE, we also col-425

lect and shuffle those paragraphs from (Misra,426

2022; Harinatha et al., 2021), two open-sourced427

news datasets collected from various corpora, such428

as HuffPost, Business Insider, and CNN.429

4.5 Critical Reasoning430

Critical Reasoning (CR) is essential for evaluat-431

ing advanced human cognition (Tittle, 2011). In-432

spired by the reasoning questions from GRE6 and433

GMAT7, our CR dataset tests and enhances LLMs’434

abilities to handle complex logical tasks such as435

understanding paradoxes, assumptions, and conclu-436

sions. This helps LLMs reflect the complex nature437

of human logic.438

While our CR question format is similar to Re-439

Clor (Yu et al., 2020), our dataset includes expert440

rationale from experienced educators and excludes441

any identical questions found in ReClor, enhancing442

our benchmark’s distinctiveness and educational443

value.444

Table 2 presents each subset’s size in our PUZ-445

ZLEBEN, and we put more statistics results in Ap-446

pendix A.447

3https://www.sawaal.com/
4https://cdn.digialm.com/EForms/

configuredHtml/756/84433/Registration.html
5https://www.pearsonpte.com/
6https://www.ets.org/gre.html
7https://www.mba.com/exams/gmat-exam/

Subset Size
Annotated Trainset 22,528

Unannotated Question Set 10,000
Testset 2,618

Table 2: Detailed Subset’s Size in PUZZLEBEN.

5 Baseline Performance on PUZZLEBEN 448

In this section, we evaluate several baseline models’ 449

performance on PUZZLEBEN. 450

5.1 Performance on Five Subtasks 451

Table 3 shows standard prompting and zero-shot 452

CoT’s performance of GPT4 and PaLM2 on five 453

categories of tasks in PUZZLEBEN. 454

As we can see, CoT struggles with the para- 455

jumble task. The reason might be that parajumble 456

largely tests concurrent reasoning, where one hy- 457

pothesizes a sequence and then thinks in reverse to 458

verify its correctness. CoT’s step-by-step thinking 459

approach can easily introduce errors at the very be- 460

ginning of the logic. This limitation underpins the 461

necessity for the PUZZLEBEN dataset, which aims 462

to enrich future research’s landscape by focusing 463

on diverse tasks that challenge current models in 464

various novel ways. 465

5.2 Utility of Human Rationale Collected in 466

PUZZLEBEN 467

To convince the utility of the human rationales in 468

PUZZLEBEN, we conduct experiments to utilize 469

those collected rationales both in prompting and 470

fine-tuning directions. Table 4 represents the rela- 471

tions between In-Context Learning (ICL) accuracy 472

and k-shot rationale examples. 473

As the number of shots of the training exam- 474

ples increases, the performance across most tasks 475

seems to improve. Specifically, for the Puzzles and 476

Riddles tasks, there’s a noticeable increase in per- 477

formance from the 0-shot to the 8-shot learning. 478

The Parajumble and Brainteasers task, though start- 479

ing with a lower performance score, also shows a 480

similar positive trend. 481

The evaluation showcases the utility of human 482

reference in PUZZLEBEN. It is evident that increas- 483

ing the number of shots or examples benefits the 484

model’s accuracy, especially in tasks like Puzzles, 485

Riddles, Parajumble and Brainteasers. This anal- 486

ysis suggests that for tasks demanding a deeper 487

understanding of complex reasoning, a higher num- 488

ber of shots might provide better guidance to the 489
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Model Method Puzzles Riddles Parajumble CR Brainteasers

PaLM2 Standard Prompting (Brown et al., 2020) 49.45 61.90 25.54 58.39 34.89
Zero-Shot CoT (Madaan et al., 2023) 53.24 63.03 20.08 51.98 41.96

GPT4 Standard Prompting (Brown et al., 2020) 64.37 67.70 52.17 65.32 52.58
Zero-Shot CoT (Madaan et al., 2023) 81.22 81.92 45.96 63.01 53.53

Table 3: PaLM2 and GPT4’s accuracy on the five tasks in PUZZLEBEN. CR stands for critical reasoning subset.

Shots Puzzles Riddles Parajumble CR BT
0 81.22 81.92 45.96 63.01 53.53
1 82.92 80.53 46.27 65.97 53.02
8 84.90 85.63 51.42 68.73 55.62

Table 4: GPT4’s k-shot ICL performance on PUZ-
ZLEBEN. BT stands for Brainteaser tasks.

model, leading to improved outcomes.490

To further demonstrate the effectiveness of our491

PUZZLEBEN dataset, we have conducted a detailed492

analysis of the effectivenss of collected human ra-493

tionales in PUZZLEBEN for SFT. The results, as494

shown in Table 5, highlights the substantial im-495

provements in LLaMA-13b’s performance when496

finetuned with our dataset. These improvements497

underscore the quality and relevance of the training498

data provided in our PUZZLEBEN. All of those499

results indicate how well our dataset is suited for500

enhancing LLMs’ complex reasoning capabilities.501

Model Method Accuracy

LLaMA2-13b - 10.38
after SFT 41.22

Table 5: LLaMA-13b’s performance on PUZZLEBEN’s
testset before and after Supervised Finetuning (SFT).

5.3 Correlation between Model Performance502

and Human Difficulty Perception503

Our experiments Results depicted in Figure 2 illus-504

trate a broad trend where Llama2-13b’s accuracy505

on the PuzzleBen subset wanes as difficulty score506

intervals rise. This pattern shows that the model’s507

challenges generally match the rising difficulty of508

tasks as humans perceive them, though not per-509

fectly. Our research points to the possibility of510

improving model performance by tuning it to align511

more closely with human perceptions of task diffi-512

culty, rather than merely matching answers to ques-513

tions. This approach could enhance the model’s514

understanding of reasoning tasks.515

6 Experiments about Self-Reinforcement516

6.1 Initialization517

Seed data & Unlabeled Questions We randomly518

select 6400 questions and its rationales from PUZ-519

0

0.3

0.2

0.1

(0.28, 1.48] (1.85, 2.18](1.48, 1.85] (2.18, 2.49] (2.49,3.32]

0.4

A
cc

ur
ac

y

Difficulty Interval

Figure 2: Accuracy of Llama2-13b across interval-based
difficulty score ranges on the subset of PUZZLEBEN.
The difficulty ratings represent the average of all user-
assigned scores ranging from 1 to 4, with each category
containing an equal number of items.

ZLEBEN. Considering the difficulty of our dataset, 520

each question and answer has all been fully exam- 521

ined and discussed by annotators. We also ran- 522

domly select 6400 unanswered questions for each 523

iteration. 524

Training Details We choose the pretrained 525

LLaMA2-13b (Touvron et al., 2023) as our base 526

model. Throughout the training, we consistently ap- 527

ply standard hyperparameters: a learning rate of 5e- 528

5, a batch size of 16 instances, and a total of 3 train- 529

ing epochs. Besides, we employ QLoRA (Dettmers 530

et al., 2024) with a rank of 16, a LoRA alpha set to 531

32, and a LoRA dropout rate of 0.05. 532

Baselines As we discussed in Section 2, we in- 533

troduced a novel method to improve LLM rea- 534

soning abilities with minimal human effort. Self- 535

reinforcement’s motivations and settings are dif- 536

ferent from traditional methods utilizing extensive 537

prompting or heavy fine-tuning. Hence, we have 538

few comparable baselines. However, a similar 539

approach, ReFT (Luong et al., 2024), also uses 540

minimal input and RL to enhance LLMs by learn- 541

ing from model-decoded rationales, specifically by 542

7



sampling reasoning paths and then creating pos-543

itive and negative pairs based on the final result.544

Although this method aligns with ours to some ex-545

tent, it cannot be applied to unformatted human546

rationale texts or datasets lacking an exact answer.547

6.2 Self-reinforcement Results on548

PUZZLEBEN549

Methods Iterations Accuracy
Unfinetune - 10.38

SFT - 17.33
ReFT - 22.47

self-reinforcement (ours) t1 28.11
self-reinforcement (ours) t2 37.82

Table 6: LLaMA2-13b self-reinforcement and the base-
lines’ results on PUZZLEBEN with the same labeled
seed data set.

Our experimental results on the PUZZLEBEN550

dataset using our self-reinforcement approach high-551

light significant enhancements in model perfor-552

mance. Our method surpassed traditional strategies553

such as Unfinetuned, SFT, and ReFT, reflecting the554

efficacy of our iterative, weak-to-strong learning555

framework. From the base accuracy of 10.38%, our556

model’s accuracy improved drastically to 37.82%557

by the second iteration (t2), underscoring the po-558

tential of self-reinforcement in leveraging weak559

supervision for substantial gains in reasoning tasks.560

These findings support the effectiveness of our561

self-reinforcement methodology in continuously re-562

fining the reasoning capabilities of language mod-563

els under limited supervision. By iterating through564

cycles of self-filtering and differential performance565

optimization, our approach not only enhances the566

quality of rationale generation but also steadily in-567

creases the overall model accuracy.568

6.3 Ablation Study569

Iterations Methods Accuracy
- SFT 17.33

t1
w/o self-filtering 18.32
w self-filtering 28.11

t2
w/o self-filtering 18.28
w self-filtering 37.82

Table 7: Our method’s accuracy with and without self-
filtering in each iteration.

In this ablation study, we further explore self-570

filtering’s potential impacts on our method. The571

results in Table 9 distinctly illustrates the crucial572

role of self-filtering in enhancing the performance573

of our self-reinforcement methodology. By com- 574

paring the results of models trained with and with- 575

out the self-filtering component, it becomes evi- 576

dent that self-filtering significantly boosts accuracy 577

across multiple iterations. 578

For instance, at iteration t1, the model incorporat- 579

ing self-filtering achieved an accuracy of 28.11%, 580

which is a substantial increase compared to the 581

18.32% accuracy of the model without self-filtering. 582

Similarly, at iteration t2, the gap widened even fur- 583

ther, with the self-filtering model reaching an accu- 584

racy of 37.82% compared to 18.28% for the model 585

without this feature. This clear disparity under- 586

scores the effectiveness of self-filtering in refining 587

the dataset and improving the model’s reasoning 588

capabilities, thus leading to better performance on 589

complex reasoning tasks. 590

7 Conclusions and Future Work 591

In this work, we introduce PUZZLEBEN, a bench- 592

mark tailored to augment and assess LLMs’ un- 593

derstanding of creative, comprehensive, and non- 594

linear reasoning tasks. Each question is designed 595

with high-quality and well-designed rationale ref- 596

erence annotated by human experts. In this direc- 597

tion, we propose self-reinforcement, in order to 598

unveil LLMs’ weak-to-strong self-learning capa- 599

bilities in reasoning tasks under weak human su- 600

pervision. Our methodology only requires a small 601

annotated dataset compared with previous work. 602

To utilize DPO for learning from the quality differ- 603

ences between the rationales decoded by stronger 604

models and those from weaker base models, self- 605

reinforcement provides a possible solution to ex- 606

ploit minimal human supervision effectively. 607

In future work, we plan to improve the self- 608

reinforcement framework by incorporating dy- 609

namic and adaptive self-filtering criteria to en- 610

hance the quality of model-decoded data. Fur- 611

thermore, employing active learning strategies or 612

collaborative human-in-the-loop interventions may 613

help align the models with complex human rea- 614

soning techniques and guide the development of 615

LLMs from weak to strong reasoning capabilities. 616

These improvements will aid in creating more au- 617

tonomous, efficient, and robust reasoning models. 618

Limitations 619

It is crucial to recognize that the self-reinforcement 620

process could see improvements with further refine- 621

ments in self-filtering. Specifically, choosing more 622

8



impactful positive and negative pairs can greatly623

enhance the effectiveness of DPO training. This624

approach aligns with the strategy of leveraging625

highly capable models or human experts for align-626

ment tasks. Moreover, there remains uncertainty627

regarding the stability of our model with extensive628

iterations; specifically, whether the model might629

experience collapse or increased hallucination phe-630

nomena as iterations progress. Introducing a cer-631

tain proportion of human-annotated data in each632

iteration could serve as an alignment mechanism,633

potentially mitigating these issues and ensuring the634

model remains robust and accurate over long-term635

training.636

Another notable limitation is the inherent chal-637

lenge of tuning parameters to prevent outputs from638

becoming progressively longer or shorter. This is-639

sue is reminiscent of similar behaviors observed in640

many reinforcement learning scenarios. To address641

this, setting appropriate generation-related parame-642

ters (such as early stopping and max new tokens)643

is essential. Additionally, incorporating penalty644

terms during the training process can help regulate645

output length and maintain the desired balance.646
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A More Statistics about PUZZLEBEN937

Creak 54.46

57.62

130.61
149.49

MathQA

Aqua 131.65
162.3

GSM8K 189.8
240.33

PuzzleBen 348.8
396.37

Question Length
Rationale Length

100 200 300 400

Figure 3: Average Length of Questions and Rationales designed in PUZZLEBEN and the other existing benchmarks
designed with human rationales.

In this section, we provide several statistical analyses of our benchmark. As we can see in Figure 3,938

PUZZLEBEN distinguishes itself significantly in terms of the average length of questions and rationales939

when compared to other existing benchmarks. With questions averaging 348.80 characters and rationales940

at 396.37 characters, PuzzleBen’s content not only exhibits a higher degree of complexity but also941

provides more elaborate explanations, which further proves PUZZLEBEN’s uniqueness and necessity to942

the community.943

A distinctive aspect of our PuzzleBen subset lies in its incorporation of difficulty scores for each944

brainteaser, derived from the pass rates of online users, offering a directional reflection of our collective945

grasp on reasoning tasks. The outcomes of our experiments, as detailed in Section 5.3, substantiate the946

effectiveness and necessity of this feature. This subset promises substantial relevance for future reasoning947

work, ensuring alignment with human cognitive perceptions from a novel direction.948

B Detailed Examples in PUZZLEBEN949
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Part 1: Brainteasers
– Question: What characteristic do these three 12-digit numbers share with each other, but with no other 12-digit number?

100307124369, 111824028801, 433800063225.
– Rationale:

* They are all square numbers: 100307124369 = 3167132, 111824028801 = 3344012, 433800063225 = 6566352

* The sum of their digits are square numbers: 1 + 0+ 0+ 3+ 0+ 7+ 1+ 2+ 4+ 3+ 6+ 9 = 36 = 62, 1 + 1+ 1+ 8+ 2+ 4+
0 + 2 + 8 + 8 + 0 + 1 = 36 = 62, 4 + 3 + 3 + 8 + 0 + 0 + 0 + 6 + 3 + 2 + 2 + 5 = 36 = 62.

* The sum of their digit pairs are square numbers: 10 + 03 + 07 + 12 + 43 + 69 = 144 = 122, 11 + 18 + 24 + 02 + 88 + 01 =
144 = 122, 43 + 38 + 00 + 06 + 32 + 25 = 144 = 122.

* The sum of their digit triplets are square numbers: 100 + 307 + 124 + 369 = 900 = 302, 111 + 824 + 028 + 801 = 1764 =
422, 433 + 800 + 063 + 225 = 1521 = 392.

* The sum of their digit quadruplets are square numbers: 1003 + 0712 + 4369 = 6084 = 782, 1118 + 2402 + 8801 = 12321 =
1112, 4338 + 0006 + 3225 = 7569 = 872.

* The sum of their digit sextuplets are square numbers: 100307 + 124369 = 224676 = 4742, 111824 + 028801 = 140625 =
3752, 433800 + 063225 = 497025 = 7052.

– Difficulty: 3.23, Fun: 2.45
Part 2: Riddles
– Question: What has 13 hearts, but no other organs?
– Rationale: A deck of playing cards consists of 52 cards, divided into four suits: hearts, diamonds, clubs, and spades. Each suit

contains one card for each rank from two to ten, plus a jack, queen, king, and ace. This means there are exactly 13 cards in the hearts
suit, each metaphorically referred to as having a heart. However, these cards, being inanimate objects, do not possess any other
organs, unlike living beings which have a heart along with other organs. This riddle plays on the word hearts as a suit in playing
cards and the literal organ, making a deck of playing cards the correct answer since it metaphorically has 13 hearts but lacks any
other organs.

Part 3: Puzzles
– Question: A, B, C, D and E are sitting in a row. B is between A and K Who among them is in the middle ? I. A is left of 13 and

right of D. II.C is at the right end. [Options] A. If the data in statement I alone are sufficient to answer the question B. If the data in
statement II alone are sufficient answer the question C. If the data either in I or II alone are sufficient to answer the question; D. If
the data in both the statements together are needed.

– Rationale: Clearly, we have the order : A. a E. From I, we have the order : D, A, B. E. From II, we get the complete sequence as D,
A, B. E, C. Clearly. B is in the middle. So, both I and II are required.

Part 4: Critical Reasoning
– Question: In the shallow end of Lake Tomwa, there are remains of numerous Jeffery pine trees that grew there during a lengthy

drought. Researchers had believed that this drought lasted at least 150 years, but carbon dating reveals that pines were growing in the
lake bed for only 120 years, from 1200 until 1320. Since the Jeffrey pines, which cannot survive in water, must have died at the end
of the drought, the dating shows that the drought lasted less than 150 years. The argument given relies on which of the following
as an assumption? [Options] A. No other species of tree started growing in the bed of Lake Tomwa after 1200. B. No tree remains
of any kind are present at the bottom of deeper parts of Lake Tomwa. C. There was at least one tree in the lake bed that was alive for
the entire period from 1200 to 1320. D. There has not been a more recent drought that caused a drying up of the shallow end of the
lake. E. The shallow end of the lake had been dry for less than 30 years by the time Jeffrey pines started growing in the lake bed.

– Rationale: The reasoning process in this article can be summarized as follows: (1) Pine trees cannot survive in water (they can
only survive during dry periods) → after the dry period ends, J pine trees will inevitably die; (2) J pine trees only lived for 120
years: (1)+(2) → the duration of the drought was less than 150 years. The problem with this reasoning process is that it cannot
determine when the drought began, as the drought could have started well before the J pine trees began to grow. Option A is
incorrect because whether other species of trees began to grow 1200 years later does not affect the inference in the text, as the dating
method mentioned is specific to J pine trees and is not influenced by other species of trees. Even if other water-resistant species of
trees survived, it is irrelevant to the discussion at hand. Option B is incorrect, as whether trees existed at the deeper bottom of the
lake does not affect the inference in the text. The depth of the lakebed where trees grew at most could only indicate the extent of the
drought, not the existence of the drought itself. Option C is incorrect because whether any trees lived through the entire 120 years
does not affect the inference in the text, as the dating method mentioned has already proven that J pine trees grew from 1200 to
1320. Even if each tree lived only one year, it does not affect the deduction that "J pine trees survived between 1200 and 1320."
Option D is incorrect because whether a drought occurred again later does not affect the inference in the text, as whether there
was a drought later is irrelevant to the study of this period. Additionally, the dating method has already proven that pine trees only
survived during the consecutive 120 years between 1200 and 1320, which indicates that the specific drought period mentioned ended
in 1320. Option E is correct because the text does not provide evidence on when the drought began. If the drought had already
lasted for more than 30 years by the time J pine trees began to grow, then adding the 120 years of J pine trees’ growth period, the
total duration of the drought would exceed 150 years, contradicting the conclusion in the text.

Part 5: Parajumble
– Question: Reorder the following sentences to form a coherent paragraph. Sentence A) For example, if I am a group member, I can

choose group -sending. Sentence B) About what an email list is. Sentence C) What the use of email list is. You can arrange contacts
into a particular group in the email list. Sentence D) Further explanation for the example. No new words, and very easy.

– Rationale: To solve this, we shall analyze the given sentences closely to understand their logical and thematic connections. Sentence
B serves as a general introduction by talking about what an email list is. It sets the stage for further discussion on the specifics of an
email list, making it the natural starting point. Following the introduction of the email list, Sentence C delves into What the use of
email list is by explaining that You can arrange contacts into a particular group in the email list. This explanation directly builds
upon the introductory concept provided in sentence B, expanding the readerś understanding of the functionality and purpose of an
email list. Sentence A presents a specific example For example, if I am a group member, I can choose group-sending. This sentence
illustrates a practical application of the concept introduced in sentences B and C, showing how an individual might utilize the email
listś functionality. Finally, Sentence D offers Further explanation for the example. No new words, and very easy. Since it aims to
elaborate on the example given in sentence A, it logically follows that sentence, rounding off the explanation and providing clarity.
Thus, the coherent sequence is B (introduction to the topic), followed by C (explanation of usage), leading into A (specific example
of usage), and concluded with D (further elucidation of the example). Therefore, the correct order is BCAD, creating a logical flow
from a general introduction to a specific example and its explanation.

Table 8: Examples collected from our PUZZLEBEN.
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C Self-Filtering’s Prompt Design950

• Question: {}
• Response1: {}
• Response2: {}
• A good Response is:

– 1. relevant to the Question
– 2. seemingly correct and coherent
– 3. do not output repeated or nonsense words.
– 4. provide some rationales, explanations or answer

• Do you think Response1 is better than Response2? Only answer "yes" or "no":

Table 9: Prompting we designed in the stage of self-filtering. Response1 is generated from M1 while Response2 is
from M0. We filter out the samples which Response1 is obviously worse than Response0.

14


	Introduction
	Related Work
	Our Methodology: Self-Reinforcement
	Step 1: Base Modeling 
	Step 2: Self-Filtering
	Step 3: Reinforcement Learning
	Iterative Self-Reinforcement

	Data Collection for PuzzleBen
	Brainteasers
	Riddles
	Puzzles
	Parajumbles
	Critical Reasoning

	Baseline Performance on PuzzleBen
	Performance on Five Subtasks
	Utility of Human Rationale Collected in PuzzleBen
	Correlation between Model Performance and Human Difficulty Perception 

	Experiments about Self-Reinforcement
	Initialization
	Self-reinforcement Results on PuzzleBen
	Ablation Study

	Conclusions and Future Work
	More Statistics about PuzzleBen
	Detailed Examples in PuzzleBen
	Self-Filtering's Prompt Design

