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Abstract

Recent advancements in video large language models (Video-LLMs) have shown
capabilities of temporally-grounding language queries or retrieving video moments
in videos. However, such capabilities have not been thoroughly verified to be
robust and trustable. In this study, we explore the consistency of Video-LLMs
in grasping temporal moments within videos — a critical indicator for robust
and trustworthy video language comprehension. Specifically, we devise different
probes where Video-LLMs first predict temporal moments based on language
queries, followed by verification questions to assess whether the predicted moments
accurately reflect the queries. Our results show that current Video-LLMs respond
unintuitively to such assessment; they often fail to provide consistent answers
upon re-evaluation and even get near chance-level performance. This reveals the
significant shortcomings in the current capabilities of Video-LLMs for reliable
video temporal understanding, underscoring the need for further research and
development in this field.

Figure 1: Left: An example of inconsistent behavior of Video-LLMs, where their answers contradict
their initial temporal predictions. Right: We assess the accuracy of Video-LLMs in consistency,
focusing on accurate original predictions (IoUě0.5). The results reveal the severe inconsistency in
Video-LLMs; they perform marginally above or even below chance level (50%).

1 Introduction

The capability of video language comprehension requires the models to thoroughly understand and
align a language query with a specific video moment [1, 2]. Recent advances [3–7] in video large lan-
guage models (Video-LLMs) have shown promising results in time-related video understanding tasks,
such as Video Temporal Grounding (VTG) [2, 8], Dense Video Captioning (DVC) [9, 10], Grounded
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Video Question Answering [11], where models are to identify and provide specific moments and
details within video sequences. Despite the increasingly high performance on standard benchmarks, it
is unclear whether their predictions are truly grounded in video language comprehension, or because
of other short-cuts like spurious vision-text correlations [11, 12]. To study this, we conduct a series
of verification experiments to measure if the grounded temporal moments can accurately reflect the
original queries.

Specifically, we consider prediction consistency as a key indicator for faithful video language
comprehension, and design the following probes for consistency checking:

1. Consistent Temporal Grounding: A consistent Video-LLM would predict temporally close times-
tamps when provided with sentences that convey the same meaning. To check this, we generate
rephrased sentences (i.e., aligned sentences) and assess whether the Video-LLM can make consis-
tent temporal predictions by measuring the IoU values between them.

2. Self-Answer Verification: Accurate timestamp prediction is important, but it’s equally crucial to
validate that the model correctly identifies the event in the predicted moment. We prompt the
Video-LLM to localize the temporal moment for a given query and then verify if the query is
truly present in that moment. To prevent the model from achieving perfect consistency by always
answering “yes,” we also use misaligned sentences, which intentionally distort the meaning of the
original query, along with various question templates

3. Compositional Understanding: Since video content is often complex, compositional understanding
is crucial for effective video comprehension. We evaluate the Video-LLM’s ability to accurately
capture the compositional details in a query sentence and apply this understanding for temporal
grounding. Specifically, we break down a holistic query into a series of sub-queries (i.e., composi-
tional information) and check if the temporal predictions of the sub-queries are consistent with the
original holistic query.

A model capable of faithful video language comprehension should achieve high consistency in
the above probes, as illustrated in Figure 2 (Right). With the probes, we examine a series of
Video-LLMs (such as Video-ChatGPT [13], Video-LLaMA [14], TimeChat [3], VTimeLLM [4])
on two popular temporal sentence grounding datasets ActivityNet-Captions [9] and Charades-STA
[2]. Interestingly, we find that Video-LLMs often generates conflicting responses when being asked
to verify their own answers. For instance, Video-LLM answers with “No.” when being asked if
the query presents in its predicted temporal moment, as shown in Figure 1. A further study shows
that TimeChat, one of the state-of-the-art (SOTA) Video-LLMs, behaves below chance-level (50%)
in this answer verification probe, revealing its severe deficiency of video language comprehension.
Moreover, we find that higher grounding performance does not necessarily lead to higher consistency,
indicating a disjoint between performance and trustworthiness in model development and alerting the
urgent need for improved rationality.

Our contributions can be summarized as follows:

• We systematically analyze Video-LLMs’ capabilities of temporal video grounding from a per-
spective of consistency. We construct the temporal comprehension evaluation sets and design
three kinds of probes for consistency checking: Consistent Temporal Grounding, Self-Answer
Verification, and Compositional Understanding.

• Given our results, Video-LLMs often struggle to provide consistent moment predictions even though
their initial predictions are accurate. Also, higher performance does not necessarily guarantee
consistent moment predictions.

• We reveal that most Video-LLMs achieve near chance- or random-level consistency in video
language comprehension. Additionally, Video-LLMs that are specially instruction-tuned for time
understanding do not necessarily behave better than those Video-LLMs that are tuned for naive QA
or conversation.

2 Evaluation

We formally define a video as v, a query sentence as q, and the corresponding temporal moment as m
(m is given by the start and end timestamps). Thus, the process of temporal sentence grounding can
be denoted as m “ TempGpv, qq, and the process of verifying within this moment can be denoted
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Figure 2: Left: An example of aligned and misaligned sentences and compositional information.
Right: The evaluation assesses the Video-LLMs’ consistency and compositional understanding. We
first test whether the model can consistently ground a video moment by giving queries that have the
same meaning but are phrased differently. Next, we evaluate whether the Video-LLMs can confirm
its predictions and accurately understand the predicted moment’s contents and its components.

Datasets Samples Aligned & Misaligned Sentences Compositional Information

Charades-STA [2] 707 2121 (3.0) 2827 (3.9)
ActivityNet-Captions [9] 1422 4266 (3.0) 6222 (4.3)

Table 1: Statistics of evaluation datasets. The number in parenthesis represents the average number
for each sample.

as a “ TempV pv, q,mq P tYes,Nou. With this definition, we consider a series of experiments
for checking video language comprehension: (1) Consistent Temporal Grounding, (2) Self-answer
Verification, and (3) Compositional Understanding.

Consistent Temporal Grounding. We begin by evaluating the consistency of Video-LLMs’ moment
predictions based on their grounding abilities. Our hypothesis is that if the model is consistent, the
predictions from sentences conveying the same meaning should be close. To do this, we generate an
aligned sentence q̃, which has the same meanings as q but is expressed differently. We measure how
close between moment predictions m “ TempGpv, qq and m̃ “ TempGpv, q̃q.

Self-Answer Verification. Based on the model’s moment prediction m “ TempGpv, qq, we then ask
the model whether q occurs in m in the video. However, the model could achieve perfect consistency
by simply answering “Yes” to all questions. To address this, we generate a misaligned sentence
q̄ to evaluate whether the model can correctly respond to contradictory query sentences. The q̃
conveys the same meaning with q, while q̄ either contrasts with q or contains incorrect information.
Consequently, the answers a “ TempV pv, q,mq and ã “ TempV pv, q̃,mq should be the same, but
the answer ā “ TempV pv, q̄,mq should be different. Additionally, we randomly select question
templates requiring varied responses to prevent the model from always defaulting to “Yes.” As
shown in Table 2, while the correct answer to the question template “Does q occur from m in
the video?” is “Yes,” the answer to the question template “Is q missing from m in the
video?” would be “No.” This challenge rigorously tests the model’s reasoning capabilities.

Compositional Understanding. Given the complexity and intricacy of the video’s content, composi-
tional understanding is crucial for accurately predicting timestamps in videos. Hence, it’s important
to verify whether the model predicts moments based on a genuine understanding of the compositional
components within those moments. To achieve this, we decompose query sentences into their key
components and assess whether the model captures this sub-information effectively. For example, if
the model answers “0 to 5 seconds.” to the question “A young girl is outside raking leaves out of the
backyard.”, we verify whether the model correctly identifies and understands key components of the
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Answer Type Examples

Yes

Is the event q present from m in the video?
Is the event q occurring from m in the video?
Does the event q happen from m in the video?
Is the event q included from m in the video?

No

Is the event q absent from m in the video?
Is the event q not present from m in the video?
Does the event q not happen from m in the video?
Is the event q missing from m in the video?

Table 2: Examples of question templates. Given a query sentence q and the model’s predicted
timestamp m, the above question templates can be used for self-answer verification.

scene, such as the presence of the young girl, the outdoor setting, and the action of raking leaves in
its moment predictions. This ensures the model’s prediction is based on genuine comprehension of
the video’s compositional elements, rather than shallow pattern recognition.

2.1 Constructing Evaluation Datasets

We first curate a test set based on existing benchmarks: Charades-STA [2] and ActivityNet Cap-
tions [9]. We sample 500 videos for each dataset and filter out annotations in the dataset where the
timestamp is too long (e.g., over 70% of the total video length), too short, or where the query sentence
is too short, which may cause inaccurate evaluation. This results in 707 and 1,422 query-moment pairs
for Charades-STA and ActivityNet-Captions, respectively. Below, we detail the process of generating
aligned and misaligned sentences, as well as compositional information using a closed-source LLM
(i.e., gpt-4o-mini [15]) for each query-moment pair.

Aligned & Misaligned Sentences. We generate aligned and misaligned sentences using several key
techniques: 1) Replace words: Replace key nouns and verbs. 2) Active to Passive: Convert active
sentences to passive. 3) Word Order Changes: Rearrange the word order in the sentence. Following
the above techniques, we generate three aligned and misaligned sentences for each sentence.

Compositional Information. To extract the compositional information, we break query sentences
down into their key components. Specifically, we extract them based on two key attributes: 1) Subject
Identification: Identifying the main entities involved in the sentence. 2) Actions: Describing what the
subjects are doing or what is happening to them. The number of compositional information may vary
for each sentence.

We give a summary of generated evaluation sets in Table 1. To ensure the quality of evaluation
sets, we conduct a human evaluation to verify that the sentences are appropriately generated as we
intended. The generated sentences exhibit high agreement with human assessments. More details are
specified in Appendix A.

2.2 Evaluating Video-LLMs

Consistency in predictions is important, but if those predictions are based on incorrect or irrelevant
moments, the consistency metric becomes less meaningful and may lead to misleading conclusions.
With this in mind, we want to test the consistency of the Video-LLMs’ accurate predictions—those
with an IoU greater than 0.5 between the ground-truth and predicted moments—in the evaluations.

We utilize four state-of-the-art Video-LLMs: Video-LLaMA [16], Video-ChatGPT [13], TimeChat [3],
and VTimeLLM [4] for our experiments. Video-LLaMA enables video comprehension by cross-
modal training for both vision and audio modalities in the video. Video-ChatGPT designs spa-
tiotemporal video modeling and constructs video instruction tuning upon LLaVA [17]. Unlike these
Video-LLMs, TimeChat and VTimeLLM have been proposed to tackle time-related video under-
standing tasks, such as VTG and DVC. TimeChat introduces TimeIT, a time-aware instruction-tuning
dataset, and develops the video encoder to learn temporal information in the video. VTimeLLM
implements a three-stage temporal-aware training method that requires the model to identify events
in the video and provide their corresponding timestamps. One may note that the performance gap
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Methods Charades-STA ActivityNet-Captions
R@1,0.5 R@1,0.7 Rcon@1,0.5 Rcon@1,0.7 R@1,0.5 R@1,0.7 Rcon@1,0.5 Rcon@1,0.7

Video-LLaMA [16] 10.04 2.55 53.52 48.36 10.62 4.01 56.51 54.53
Video-ChatGPT [13] 14.43 7.64 89.22 87.90 6.68 2.95 64.56 63.86
TimeChat [3] 30.69 13.15 80.49 64.06 4.64 2.04 64.14 58.59
VTimeLLM [4] 27.72 11.88 83.16 80.61 31.43 17.16 83.30 78.82

Table 3: Performance of the Video-LLMs on Charades-STA and ActivityNet-Captions datasets. Rcon

is considered only when the model’s initial prediction has an IoU higher than 0.5, comparing IoU
values for the predictions between original and aligned sentences. Despite the Video-LLMs’ accurate
initial predictions, they often struggle to maintain consistent timestamp predictions.

Methods Charades-STA ActivityNet-Captions
Self-answer Verification Compositional Understanding Self-answer Verification Compositional Understanding

Random 50.0 50.0 50.0 50.0
Video-LLaMA [16] 50.6 49.7 49.4 53.4
Video-ChatGPT [13] 52.0 51.8 51.0 49.4
TimeChat [3] 53.0 55.7 49.9 51.9
VTimeLLM [4] 52.0 51.7 50.8 52.4

Table 4: ROC-AUC scores of the Video-LLMs for the Answer Verification and Compositional
Understanding tasks on datasets. Most Video-LLMs show poor video comprehension, demonstrating
their performances are close to random.

between Video-LLMs may be influenced by the fact that TimeChat includes Charades videos and
VTimeLLM incorporates ActivityNet-Captions as part of their instruction tuning.

In the evaluation, the question and template formats may vary depending on the model. We adhere
as closely as possible to the prompts used in their instruction tuning to reproduce their performance
faithfully. More details on these models and experiment settings can be found in Appendix B.

Consistency and accuracy in temporal grounding are not necessarily proportional. In Table 3,
we use the R@1 metric with IoU thresholds to present the performance of Video-LLMs and their
consistency in temporal grounding (e.g., Rcon@1, 0.5). Note that the consistency is measured only
for initial predictions with an IoU higher than 0.5. While TimeChat and VTimeLLM have been
specifically designed for time-related video understanding tasks, their high overall performance
does not necessarily translate into consistent temporal grounding abilities. For instance, although
TimeChat outperforms Video-ChatGPT on Charades-STA in terms of accuracy, it exhibits weaker
consistent temporal grounding. Similarly, while Video-LLaMA achieves higher performance than
Video-ChatGPT on ActivityNet-Captions, it fails to deliver consistent predictions. Even though Video-
ChatGPT shows the best consistency on Charades-STA, its limited number of accurate predictions
undermines its reliability, making it difficult to draw strong conclusions.

Video-LLMs struggles with self-answer verification and compositional understanding: As
shown in Figure 1, most Video-LLMs show near or below chance level performance. This tendency
persists in Table 4, which shows ROC-AUC scores of the Video-LLMs in both self-answer verification
and compositional understanding. The fact that these scores are generally close to random suggests
poor comprehension of video content. While VTimeLLM demonstrates relatively better grounding
performance compared to other Video-LLMs on ActivityNet-Captions in Table 3, this improvement
does not extend to consistency or compositional understanding. Overall, Video-LLMs demonstrate
significant deficiencies in both self-answer verification and compositional understanding, highlighting
their moment predictions may not be truly grounded in video comprehension.

Inconsistent answers between self-answer verification and compositional understanding: In
Figure 3, we give the responses of Video-LLMs during our evaluation. We can see that TimeChat
provides an answer that contradicts the predicted timestamp in self-answer verification. Also, we
find inconsistencies in the Video-LLMs’ answers when performing self-answer verification and
compositional understanding. For instance, Video-ChatGPT confirms that the event “A small group
of people are seen standing together and speaking” occurs at its predicted moment. However, Video-
ChatGPT also confirms that the misalignment sentence of the given event occurs at the same time,
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Figure 3: Visualization of qualitative examples with four Video-LLMs. We first ask Video-LLMs to
localize the given sentence. We then replace m in the questions with the predicted timestamp for
each model during self-answer verification and compositional understanding. The red text represents
using the misaligned sentence in the question and the Video-LLMs’ inconsistent answer.

which contradicts the earlier answer. These inconsistencies between the tasks highlight significant
gaps in the model’s ability to provide reliable predictions based on actual video comprehension.

3 Disconnection Between Temporal Grounding and True Comprehension

While Video-LLMs have demonstrated promising results in various video understanding tasks, our
findings suggest that their temporal predictions may not be genuinely based on video comprehension.
In this section, we explain why video comprehension is not essential for Video-LLMs to achieve high
temporal grounding performance. First, we show that while Video-LLMs achieve high performance
through instruction tuning on target datasets, they still lack true video comprehension, as evidenced
by self-answer verification. Next, we explore the video instruction tuning in existing Video-LLMs,
and argue that it fails to ensure consistency.

3.1 Video-LLMs with Instruction Tuning

Figure 4: An example of video instruction tuning.

But perhaps consistency may be affected by the sub-
jectivity of the target dataset, and stronger grounding
capabilities in Video-LLMs could potentially lead
to better consistency. To confirm this, we utilize
two Video-LLMs, Video-LLaMA and TimeChat, and
conduct instruction tuning on Charades-STA and
ActivityNet-Captions for the VTG task, respectively.
Specifically, we fine-tune the Video-LLMs using an-
notations from the training splits of each dataset. We
measure the R@1, 0.5 metric for temporal grounding,
as well as ROC-AUC scores for self-answer verifica-
tion, comparing the results before and after conduct-
ing instruction tuning. As shown in Figure 5, instruction tuning with the target datasets improves
the performance of both Video-LLMs, with TimeChat achieving a 4.6-fold improvement in the
R@0.5 metric on ActivityNet-Captions. However, both Video-LLMs still struggle to confirm their
initial predictions accurately. Surprisingly, TimeChat shows declined ROC-AUC scores even after
conducting instruction tuning. In summary, while instruction tuning with target datasets improves the
Video-LLMs’ temporal grounding capabilities, it does not lead to improved consistency.
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Figure 5: Comparison of the results of Video-LLMs in temporal grounding and self-answer verifica-
tion before and after conducting instruction tuning with the target datasets (i.e.w. IT). After instruction
tuning with the target datasets, both Video-LLMs demonstrate enhanced grounding abilities. However,
this improvement does not translate into better consistency, as there are no significant changes in the
self-answer verification scores.

3.2 Limitations of Naive Video Instruction Tuning

As illustrated in Figure 4, most Video-LLMs [3, 5, 4, 16, 18, 19, 13, 20, 21] primarily focus on
constructing a large scale video dataset for instruction tuning to generate answers in a specific format,
often using task-specific templates. Specifically, to perform temporal grounding tasks, templates like
“The given event occurs from start to end seconds.” are pre-defined to facilitate easy
extraction of timestamps from the model’s response. However, this approach emphasizes generating
answers over developing the model’s ability to engage in nuanced reasoning or providing a rationale
based on true understanding. Specifically, Video-LLMs might be overfitted and rely on shortcut
strategies, like identifying certain frames or using common objects as cues, rather than understanding
the temporal or compositional structure of the video. In conclusion, while Video-LLMs might appear
to perform well according to traditional metrics and excel at specific tasks, this does not necessarily
mean their predictions are based on genuine video comprehension.

4 Related Work

Video-LLMs. Recent studies have integrated visual information into Large Language Models
(LLMs) [15, 22–24] to augment their multimodal reasoning capabilities. Beyond considering a
single image input [17, 25, 26], video large language models (Video-LLMs) [18, 16, 19, 13, 20]
have seamlessly connected between visual perception ability in vision encoders (e.g., ViT [27])
and the powerful capabilities of LLMs through instruction tuning with massive video datasets.
This enables Video-LLMs to perform various video understanding tasks, including Video Question
Answering [28, 29], yet they still struggle to perform temporal reasoning and capture details in
specific video moments. As a result, recent Video-LLMs [3–7] have been proposed to address this
limitation. Unlike previous Video-LLMs, they can accurately localize the timestamps of events
within a given video (i.e., Video Temporal Grounding [2]) and also provide video segment-level
details with corresponding timestamps in the video (i.e., Dense Video Captioning [9, 10]). They
develop effective temporal representation and newly construct video instruction tuning datasets for
time-related video understanding tasks. For instance, TimeChat [3] proposes TimeIT, a time-aware
instruction tuning dataset, and encodes video frames with the corresponding timestamp descriptions.
VTimeLLM [4] designs a three-stage training framework to enhance the model’s capabilities to
understand sequential video frames. Momentor [5] designs a temporal perception module to express
precise temporal positions and conducts a grounded event sequence modeling to facilitate multi-event
comprehension in the video.

Benchmarking Video-LLMs. While Video-LLMs have shown remarkable advancements in various
video understanding tasks, several studies [13, 30–32] raised concerns that evaluating existing
benchmarks fail to assess temporal perception ability of Video-LLMs in various aspects. For instance,
MVBench [30] introduces 20 challenging tasks that require a wide range of temporal understanding
skills from perception to cognition. TempCompass [31] constructs a benchmark to comprehensively
evaluate the temporal perception ability of Video LLMs, ensuring they cannot rely on shortcuts,
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such as single-frame bias or language priors, to provide answers. Although these benchmarks
have challenged the capabilities of Video-LLMs, they are primarily limited to multi-choice question-
answering, asking directions or objects in the video. While similar tendencies of inconsistent behavior
in LLMs have been discussed in previous studies, they focused on either the text [33–36] or the image-
text [37, 38] levels. Unlike these benchmarks, our goal is to investigate whether Video-LLMs can
accurately respond to queries requiring timestamps in videos, confirming that their answers are
genuinely grounded in video comprehension.

Video Temporal Grounding. Video temporal grounding (VTG) [2, 8], which is one of the chal-
lenging video understanding tasks, aims to retrieve specific video moments corresponding to a given
query sentence. This task requires sensitivity to temporal dynamics and fine-grained understanding
skills, such as dense video captioning [39, 40], video corpus moment retrieval [41, 42], and highlight
detection [43]. Previous methods [44–47] have been proposed to address VTG, but they are special-
ized and hard to generalize across multiple tasks. Some studies [39, 40, 48] have tackled several
video understanding tasks by pre-training on large video datasets, yet they do not integrate LLM’s
capabilities to perform video understanding tasks. In this work, we delve into analyzing whether
Video-LLMs faithfully perform the VTG task and comprehend videos, rather than proposing new
architectures or training methods to improve performances.

5 Conclusion

In this paper, we investigate whether the temporal predictions of existing Video-LLMs are truly
based on video language comprehension. To achieve this, we construct evaluation sets and design
a series of tasks to assess the consistency of Video-LLMs. Our evaluation reveals that most Video-
LLMs exhibit inconsistent answers, indicating that their predictions are not genuinely grounded
in video comprehension. Furthermore, while Video-LLMs show improved temporal grounding
performance after instruction tuning with target data, they continue to struggle with providing
consistent answers based on their initial predictions. We conjecture that this is due to instruction
tuning in existing Video-LLMs, which drives models to follow specific answer formats rather than
improving consistency. For future work, we will further develop more comprehensive evaluation
probes and analyze more Video-LLMs. Also, we will explore method to improve the inconsistent
behavior of Video-LLMs. We hope this work can spark more future Video-LLMs that focus on
making reliable predictions rooted in faithful video comprehension, and also more related benchmarks
will be developed to support this goal.
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A Proposed Evaluation Sets

In this section, we describe how we construct evaluation sets for our experiments. To construct our evaluation
sets, we follow the steps below:

1. First, we collect videos from two benchmarks: Charades-STA [2] and ActivityNet-Captions [9].
Charades-STA is based on the Charades dataset [49], focusing on indoor human activities. The
average length of the videos is 30 seconds. ActivityNet-Captions features much longer videos than
Charades-STA, averaging 2 minutes. The videos are sourced from YouTube and show outdoor human
activities.

2. However, there are some noisy annotations in datasets that might cause misleading evaluation, as
pointed out in [50]. Therefore, we filter out an annotation if the timestamp is too long (i.e., covering
longer than 70% of the total length of the video), too short (i.e., the length is less than 5 seconds),
or where the query sentence is too short (i.e., the number of words is less than 5). After filtering the
annotations, we curate 500 videos for each dataset and this leads to 707 and 1422 query-moment pairs
for Charades-STA and ActivityNet-Captions, respectively.

3. As shown in Figure 6, we then generate aligned and misaligned sentences and compositional informa-
tion using GPT-4o-mini [15] from the annotations in the test split for each dataset.

4. After generating aligned and misaligned sentences and compositional information, we conduct a
human evaluation on 700 samples (« 30% of the whole dataset) to ensure that they are appropriately
generated for a reliable evaluation. To do this, we ask the annotators to decide whether the generated
sentence is correctly generated from the original sentence. We found that 94% of generated sentences
are well generated as we intended.

B Details of Models and Experiment Settings

In this section, we explain each Video-LLM and experiment setting details.

1. Video-LLaMA [16] is a Video-LLM that understands both visual and audio information in the video.
Video-LLaMA exhibits two branches: Vision-Language and Audio-Language in its modeling and
utilizes cross-modal training from both the frozen pre-trained visual and audio encoder. Video-LLaMA
shows a remarkable zero-shot audio understanding capability and also generates responses in the visual
and audio information presented in the videos. We use the checkpoints released at https://github.
com/DAMO-NLP-SG/Video-LLaMA. Specifically, we select the fine-tuned checkpoints, which are
trained on the instruction tuning data from Mini-GPT-4 [51], LLaVA [17], and VideoChat [18].

2. Video-ChatGPT [13] designs spatiotemporal video modeling and constructs video instruction tuning
upon LLaVA [17]. It introduces a new dataset for video instruction tuning, containing 100,000
high-quality video-instruction pairs. Video-ChatGPT outperforms previous Video-LLMs in Zero-
shot VQA across several benchmarks. Additionally, Video-ChatGPT proposes a video conversation
evaluation framework. We use the checkpoints released at https://github.com/mbzuai-oryx/
Video-ChatGPT.

3. TimeChat [3] is a time-sensitive multimodal LLM, specifically developed to accurately localize
and understand specific video moments from long videos. TimeChat designs two key architec-
tural: (1) A time-aware frame encoder that explicitly encodes video frames along with times-
tamps, (2) A sliding video Q-Former to accommodate sequential information in video frames.
Additionally, TimeChat constructs 125K video instruction tuning datasets to perform time-related
video understanding tasks, such as VTG and DVC. We use the checkpoints released at https:
//github.com/RenShuhuai-Andy/TimeChat.

4. VTimeLLM [4] proposes a three-stage temporal-aware method, including image-text training and un-
derstanding events within the video, enabling more precise video temporal understanding. VTimeLLM
devises two types of QA dialogue templates, including single-turn and multi-turn, to prompt questions
requiring a comprehensive description of all events and their corresponding timestamps. We use the
checkpoints released at https://github.com/huangb23/VTimeLLM.

We employ Vicuna-v1.5 [24] for the language model backbone. When performing the VTG task for Video-
LLaMA and Video-ChatGPT, we use the question template “Please answer when the q occurs in the video. The
output format should be: ’start - end seconds.’ Please return its start time and end time.” For TimeChat and
VTimeLLM, we follow the same question templates, which are used in their instruction tuning, and also use the
official codes to extract the timestamps from their predictions.

12

https://github.com/DAMO-NLP-SG/Video-LLaMA
https://github.com/DAMO-NLP-SG/Video-LLaMA
https://github.com/mbzuai-oryx/Video-ChatGPT
https://github.com/mbzuai-oryx/Video-ChatGPT
https://github.com/RenShuhuai-Andy/TimeChat
https://github.com/RenShuhuai-Andy/TimeChat
https://github.com/huangb23/VTimeLLM


Figure 6: GPT-4o-mini APT prompt to generate aligned and misaligned sentences and compositional
information.

C Fine-tuning Details

To conduct fine-tuning Video-LLaMA and TimeChat on Charades-STA and ActivityNet-Captions, we first
collect the annotations in the train split for each dataset and convert the annotations into a task-specific template
to derive Video-LLMs can predict the timestamps. For example, if the query “The person closes the laptop.” is
grounded in 0 to 5 seconds in the video, we prompt the Video-LLMs “Localize the visual content described by
the given textual query ‘The person closes the laptop.’ in the video, and output the start and end timestamps in
seconds.”. Then the model’s answer should be “The given query happens in 0 - 5 seconds.” We use the official
codes and configurations to conduct instruction tuning upon their official checkpoints using four Quadro RTX
8000 GPUs.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and follow
the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We have clearly addressed our contributions in the introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: Our work does not introduce hypotheses and proofs of theory.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the experiment settings of Video-LLMs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We plan to release our codes upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have mentioned which checkpoints and configurations are used in our experiments
for each Video-LLM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments with five different random seeds and report the mean score.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We have addressed the details of reproducing the Video-LLMs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Cods of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [No]

Justification: Our work does not have those impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [No]

Justification: Our work does not posses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite all references in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

18

paperswithcode.com/datasets


Justification: We have addressed how we construct our evaluation sets in the Evaluation section and
Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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