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Abstract

Off-policy learning and evaluation leverage
logged bandit feedback datasets, which contain
context, action, propensity score, and feedback
for each data point. These scenarios face
significant challenges due to high variance and
poor performance with low-quality propensity
scores and heavy-tailed reward distributions.
We address these issues by introducing a novel
estimator based on the log-sum-exponential
(LSE) operator, which outperforms traditional
inverse propensity score estimators. Our LSE
estimator demonstrates variance reduction
and robustness under heavy-tailed conditions.
For off-policy evaluation, we derive upper
bounds on the estimator’s bias and variance. In
the off-policy learning scenario, we establish
bounds on the regret—the performance gap
between our LSE estimator and the optimal
policy—assuming bounded (1 + ϵ)-th moment
of weighted reward. Notably, we achieve a
convergence rate of O(n−ϵ/(1+ϵ)) for the regret
bounds, where ϵ ∈ [0, 1] and n is the size of
logged bandit feedback dataset. Theoretical
analysis is complemented by comprehensive
empirical evaluations in both off-policy learning
and evaluation scenarios, confirming the practical
advantages of our approach. The code for our es-
timator is available at the following link: https:
//github.com/armin-behnamnia/
lse-offpolicy-learning .
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1. Introduction
Off-policy learning and evaluation from logged data are
important problems in reinforcement learning (RL). The
logged bandit feedback (LBF) dataset represents interaction
logs of a system with its environment, recording context,
action, propensity score (i.e., the probability of action se-
lection for a given context under the logging policy), and
feedback (reward). It is used in many real applications,
e.g., recommendation systems (Aggarwal, 2016; Li et al.,
2011), personalized medical treatments (Kosorok & Laber,
2019; Bertsimas et al., 2017), and personalized advertising
campaigns (Tang et al., 2013; Bottou et al., 2013). The
literature has considered this setting from two perspectives,
off-policy evaluation (OPE) and off-policy learning (OPL).
In off-policy evaluation, we utilize the LBF dataset from a
logging (behavioural) policy and an estimator constructed
via e.g., inverse propensity score (IPS) weighting, to evalu-
ate (or estimate) the performance of a different target policy.
In off-policy learning, we leverage the estimator and LBF
dataset to learn an improved policy with respect to logging
policy.

In both scenarios, OPL and OPE, the IPS estimator is pro-
posed (Thomas et al., 2015; Swaminathan & Joachims,
2015a). However, this estimator suffers from significant
variance in many cases (Rosenbaum & Rubin, 1983). To
address this, some improved IPS estimators have been pro-
posed, such as the IPS estimator with the truncated ratio of
policy and logging policy (Ionides, 2008b), IPS estimator
with truncated propensity score (Strehl et al., 2010), self-
normalizing estimator (Swaminathan & Joachims, 2015b),
exponential smoothing (ES) estimator (Aouali et al., 2023),
implicit exploration (IX) estimator (Gabbianelli et al., 2023)
and power-mean (PM) estimator (Metelli et al., 2021).

In addition to the significant variance issue of IPS estimators,
there are two more challenges in real problems: estimated
propensity scores and heavy-tailed behaviour of weighted
reward due to noise or outliers. Previous works such as
Swaminathan & Joachims (2015a), Metelli et al. (2021), and
Aouali et al. (2023) have made assumptions when dealing
with LBF datasets. Specifically, these works assume that
rewards are not subject to perturbation (noise) and that true
propensity scores are available. However, these assumptions
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may not hold in real-world scenarios.

Noisy or heavy-tailed reward: three primary sources of
noise in reward of LBF datasets can be identified as (Wang
et al., 2020): (1) inherent noise, arising from physical con-
ditions during feedback collection; (2) application noise,
stemming from uncertainty in human feedback; and (3) ad-
versarial noise, resulting from adversarial perturbations in
the feedback process. Furthermore, In addition to noisy
(perturbed) rewards, a heavy-tailed reward can be observed
in many real-life applications, e.g., financial markets (Cont
& Bouchaud, 2000) and web advertising (Park et al., 2013),
the rewards do not behave bounded and follows heavy-tailed
distributions where the variance is not well defined.

Noisy (estimated) propensity scores: The access to the exact
values of the propensity scores may not be possible, for
example, when human agents annotate the LBF dataset. In
this situation, one may settle for training a model to estimate
the propensity scores. Then, the propensity score stored in
the LBF dataset can be considered a noisy version of the
true propensity score.

Therefore, there is a need for an estimator that can effec-
tively manage the heavy-tailed condition and noisy rewards
or propensity scores in the LBF dataset.

1.1. Contributions

In this work, we propose a novel estimator for off-policy
learning and evaluation from the LBF dataset that out-
performs existing estimators when dealing with estimated
propensity scores and heavy-tailed or noisy weighted re-
wards. The contribution of our work is three-fold.

First, we propose a novel non-linear estimator based on the
log-sum-exponential (LSE) operator which can be applied
to both OPE and OPL scenarios. This LSE estimator effec-
tively reduces variance and is applicable to noisy propensity
scores, heavy-tailed reward and noisy reward scenarios.

Second, we provide comprehensive theoretical guarantees
for the LSE estimator’s performance in OPE and OPL setup.
In particular, we first provide bounds on the regret, i.e. the
difference between the LSE estimator performance and the
true average reward, under mild assumptions. Then, we stud-
ied bias and variance of the LSE estimator and its robustness
under noisy and heavy-tailed reward scenarios.

Third, we conducted a set of experiments on different
datasets to show the performance of the LSE in scenar-
ios with true, estimated propensity scores and noisy reward
in comparison with other estimators. We observed an im-
provement in the performance of the learning policy using
LSE in comparison with other state-of-the-art algorithms
under different scenarios.

2. Log-Sum-Exponential Estimator
Notation: We adopt the following convention for random
variables and their distributions in the sequel. A random
variable is denoted by an upper-case letter (e.g., Z), an arbi-
trary value of this variable is denoted with the lower-case
letter (e.g., z), and its space of all possible values with the
corresponding calligraphic letter (e.g., Z). This way, we
can describe generic events like {Z = z} for any z ∈ Z ,
or events like {g(Z) ≤ 5} for functions g : Z → R. PZ

denotes the probability distribution of the random variable
Z. The joint distribution of a pair of random variables
(Z1, Z2) is denoted by PZ1,Z2

. The cardinality of set Z is
denoted by |Z|. We denote the set of integer numbers from
1 to n by [n] ≜ {1, · · · , n}. In this work, we consider the
natural logarithm, i.e., log(x) := loge(x). For two prob-
ability measures P and Q defined on the space Z and a
probability measure P̃ define on the space Y , the total vari-
ation distance between two densities P and Q, is defined
as TV(P,Q) :=

∫
Z |P − Q|(dz). We also define the con-

ditional total variation distance as TVc(PZ|Y , QZ|Y ) :=∫
Y P̃Y=y

∫
Z |PZ=z|Y=y −QZ=z|Y=y|(dz)dy.

Main Idea: Inspired by the log-sum-exponential operator
with applications in multinomial linear regression, naive
Bayes classifiers and tilted empirical risk (Calafiore et al.,
2019; Murphy, 2012; Williams & Barber, 1998; Li et al.,
2023), we define the LSE estimator with parameter λ < 0,

LSEλ(Z) =
1

λ
log
( 1
n

n∑
i=1

eλzi
)
, (1)

where Z = {zi}ni=1 are samples from the positive random
variable Z. The key property of the LSE operator is its
robustness to noisy samples in a limited number of data
samples. Here a noisy sample, by intuition, is a point with
abnormally large positive zi. Such points vanish in the ex-
ponential sum as limzi→+∞ eλzi = 0 for λ < 0. Therefore
the LSE operator ignores terms with large values for neg-
ative λ. The robustness of LSE has also been explored in
the context of supervised learning by Li et al. (2023) from a
practical perspective. Furthermore, in Appendix (App) C,
we discuss the connection between the LSE and entropy
regularization.

Motivating example: We provide a toy example to inves-
tigate the behaviour of LSE as a general estimator and its
difference from the Monte-Carlo estimator (a.k.a. simple
average) for mean estimation. Suppose that Z is distributed
as a Pareto distribution with scale xm and shape ζ. Note
that for Z ∼ Pareto(xm, ζ) as a heavy-tailed distribution,

we have fZ(z) =
ζxζ

m

zζ+1 . Let ζ = 1.5 and xm = 1
3 , then

we have E[Z] = ζxm

ζ−1 = 1. The objective is to estimate
E[Z] with n independent samples drawn from the Pareto
distribution. We set n ∈ {10, 50, 100, 1000, 10000} and
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compute the Monte-Carlo (a.k.a. simple average) and LSE
estimation of the expectation of Z. Table 1 shows that LSE
(with λ = −0.1) effectively keeps the variance and mean-
square error (MSE), low without significant side-effects on
bias. We also observe that the LSE estimator works well
under heavy tail distributions.

Table 1: Bias, variance, and MSE of LSE (with λ = −0.1)
and Monte-Carlo estimators. We run the experiment 10000
times and report the variance, bias, and MSE of the estima-
tions.

Estimator n = 10 n = 50 n = 100 n = 1000 n = 10000

Bias Monte-Carlo 0.0154 0.0155 0.0083 0.0061 0.0044
LSE 0.1576 0.1606 0.1616 0.1624 0.1629

Variance Monte-Carlo 1.5406 1.5289 1.3229 1.0203 0.8384
LSE 0.1038 0.0616 0.0443 0.0335 0.0268

MSE Monte-Carlo 1.5409 1.5292 1.3229 1.0203 0.8384
LSE 0.1287 0.0874 0.0704 0.0598 0.0534

3. Related Works
We categorize the estimators based on their approach to
reward estimation. Estimators that incorporate reward esti-
mation techniques are classified as model-based estimators.
In contrast, those that work without reward estimation are
termed model-free estimators. Below, we review model-
based and model-free estimators. Furthermore, we study
the estimators which are designed for unbounded reward
(heavy-tailed) scenarios in RL.

Model-free Estimators: In model-free estimators, e.g.,
IPS estimators, we have many challenges, including, high
variance and heavy-tailed scenarios. Recently, many model-
free estimators have been proposed for high variance prob-
lems in model-free estimators (Strehl et al., 2010; Ionides,
2008b; Swaminathan & Joachims, 2015b; Aouali et al.,
2023; Metelli et al., 2021; Neu, 2015; Aouali et al., 2023;
Metelli et al., 2021; Sakhi et al., 2024). However, un-
der heavy-tailed or unbounded reward scenario, the per-
formance of these estimators degrade. In this work, our
proposed LSE estimator demonstrates robust performance
even under heavy-tailed assumptions, backed by theoretical
guarantees.

Model-based Estimators: The direct method for off-policy
learning from the LBF datasets is based on the estimation
of the reward function, followed by the application of a
supervised learning algorithm to the problem. However, this
approach does not generalize well, as shown by Beygelzimer
& Langford (2009). A different approach where the direct
method and the IPS estimator are combined, i.e., doubly-
robust, is introduced by Dudík et al. (2014). A different
approach based on policy optimization and boosted base
learner is proposed to improve the performance in direct
methods (London et al., 2023).Furthermore, the optimistic

shrinkage (Su et al., 2020) and Dr-Switch (Wang et al., 2017)
as other model-based estimators. Our approach differs from
this area, as we do not estimate the reward function in the
LSE estimator. A combination of the LSE estimator with
the direct method is presented in App. G.3 . In this work,
we focus on model-free approach.

Unbounded Reward: Unbounded rewards (or returns) have
been observed in various domains, including finance (Lu
& Rong, 2018) and robotics (Bohez et al., 2019). In the
context of multi-arm bandit problems, unbounded rewards
can emerge as a result of adversarial attacks on reward dis-
tributions (Guan et al., 2020). Within the broader field of
RL, researchers have investigated poisoning attacks on re-
wards and the manipulation of observed rewards (Rakhsha
et al., 2020; 2021; Rangi et al., 2022). These studies high-
light the importance of considering unbounded reward sce-
narios in RL and bandits algorithms. In particular, in our
work, we focus on off-policy learning and evaluation under
heavy-tailed (unbounded reward) assumption, employing a
bounded (1+ ϵ)-th moment of weighted-reward assumption
for ϵ ∈ [0, 1].

4. Problem Formulation
Let X be the set of contexts and A the set of actions. We
consider policies as conditional distributions over actions,
given contexts. For each pair of context and action (x, a) ∈
X × A and policy πθ ∈ Πθ, where ΠΘ is defined as the
set of all policies (policy set) which are parameterized by
θ ∈ Θ, where Θ is the set of parameters, e.g., the parameters
of a neural network. Furthermore, the πθ(a|x) is defined
as the conditional probability of choosing an action given
context x under the policy πθ.1

A reward function 2 r : X × A → R+, which is un-
known, defines the expected reward (feedback) of each ob-
served pair of context and action. In particular, r(x, a) =
EPR|X=x,A=a

[R] where R ∈ R+ is random reward and
PR|X=x,A=a is the conditional distribution of reward R
given the pair of context and action, (x, a). Note that, in
the LBF setting, we only observe the reward (feedback) for
the chosen action a in a given context x, under the known
logging policy π0(a|x). We have access to the LBF dataset
S = (xi, ai, pi, ri)

n
i=1 with n i.i.d. data points where each

1In more details, consider an action space A with a σ-algebra
and a σ-finite measure µ. For any policy π and context x, let
π(.|x) be a probability measure on A that is absolutely continuous
with respect to µ, with density π(.|x) = dπc(a|x)

dµ
where πc(a|x)

is absolute continuous with respect to µ.
2The reward can be viewed as the opposite (negative) of the

cost. Consequently, a low cost (equivalent to maximum reward)
signifies user (context) satisfaction with the given action, and
conversely. For the cost function, we have c(x, a) = −r(x, a) as
discussed in (Swaminathan & Joachims, 2015a).
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‘data point’ (xi, ai, pi, ri) contains the context xi which is
sampled from unknown distribution PX , the action ai which
is sampled from the known logging policy π0(·|xi), the
propensity score pi ≜ π0(ai|xi), and the observed feedback
(reward) ri as a sample from distribution PR|X=xi,A=ai

under logging policy π0(ai|xi).

We define the expected reward of a learning policy, πθ ∈ Πθ,
which is called the value function evaluated at the learning
policy, as

V (πθ) = EPX
[Eπθ(A|X)[EPR|X,A

[R]]]

= EPX
[Eπθ(A|X)[r(A,X)|X]].

(2)

We denote the importance weighted reward as wθ(A,X)R,
where wθ(A,X) is the weight,

wθ(A,X) =
πθ(A|X)

π0(A|X)
.

As discussed by Swaminathan & Joachims (2015b), the IPS
estimator is applied over the LBF dataset S (Rosenbaum
& Rubin, 1983) to get an unbiased estimator of the value
function by considering the weighted reward as,

V̂ (πθ, S) =
1

n

n∑
i=1

riwθ(ai, xi), (3)

where wθ(ai, xi) =
πθ(ai|xi)
π0(ai|xi)

.

The IPS estimator as an unbiased estimator has bounded
variance if the πθ(A|X) is absolutely continuous with re-
spect to π0(A|X) (Strehl et al., 2010; Langford et al., 2008).
Otherwise, it suffers from a large variance.

LSE in OPE and OPL scenarios: The LSE estimator is
defined as

V̂λ
LSE(S, πθ) := LSEλ(S) =

1

λ
log
( 1
n

n∑
i=1

eλriwθ(ai,xi)
)
,

where λ < 0 is a tunable parameter which helps us to
recover the IPS estimator for λ → 0. Furthermore, the LSE
estimator is an increasing function with respect to λ.

OPE scenario: One of the evaluation metrics for an estima-
tor in OPE scenarios is the MSE which is decomposed into
squared bias and the variance of the estimator. In particu-
lar, for the LSE estimator, we consider the following MSE
decomposition in terms of bias and variance,

MSE(V̂λ
LSE(S, πθ)) = B(V̂λ

LSE(S, πθ))
2 + V(V̂λ

LSE(S, πθ)),

B(V̂λ
LSE(S, πθ)) = E[wθ(A,X)R]− E[V̂λ

LSE(S, πθ)],

V(V̂λ
LSE(S, πθ)) = E[(V̂λ

LSE(S, πθ)− E[V̂λ
LSE(S, πθ)])

2],

where B(V̂λ
LSE(S, πθ)) and V(V̂λ

LSE(S, πθ)) are bias and
variance of the LSE estimator, respectively.

OPL scenario: Our objective in OPL scenario is to find an
optimal πθ⋆ , one which maximize V (πθ), i.e.,

πθ⋆ = argmax
πθ∈ΠΘ

V (πθ). (4)

We define the estimation error3, as the difference between
the value function and the LSE estimator for a given learning
policy πθ ∈ Πθ, i.e.,

Estλ(πθ) := V (πθ)− V̂λ
LSE(S, πθ). (5)

For the OPL scenario, we also define πθ̂ policy as the maxi-
mizer of the LSE estimator for a given dataset S,

πθ̂(S) = arg max
πθ∈ΠΘ

V̂λ
LSE(S, πθ). (6)

Finally, we define regret, as the difference between the value
function evaluated at πθ∗ and πθ̂,

Rλ(πθ̂, S) := V (πθ∗)− V (πθ̂(S)). (7)

More discussion regarding the LSE properties is provided
in App. C.

5. Theoretical Foundations of the LSE
Estimator

In this section, we study the regret, bias-variance and robust-
ness of the LSE estimator. We compare our LSE estimator
with other model-free estimators in Table 2. All the proof
details are deferred to App.D.

Non-linearity of LSE: The LSE estimator is a non-linear
model-free estimator with respect to the weighted reward or
reward, which is different from linear model-free estimators.
In particular, most estimators can be represented as the
weighted average of reward (feedback),

V̂ (πθ, S) =
1

n

n∑
i=1

g
(
ri, wθ(ai, xi)

)
, (8)

where g : R+ × R+ → R is a transformation of
riwθ(ai, xi) and is defined for each model-free estimator.
For example, we have g(r, y) = ry in the IPS estimator,
g(r, y) = rmin(y,M) in the truncated IPS estimator (Ion-
ides, 2008b), g(r, y) = r((1− λ̂)ys + λ̂)1/s in the PM esti-
mator (Metelli et al., 2021), g(r, y) = ryα for α ∈ (0, 1) in
the ES estimator (Aouali et al., 2023) and g(r, y) = r τy

y2+τ
in the optimistic shrinkage (OS) (Su et al., 2020). For the
IX-estimator with parameter η (Gabbianelli et al., 2023), we

3In statistical learning theory, the difference between the ex-
pected value of a random variable and its empirical estimate is
referred to as the estimation error. When applied to learning
algorithms, this gap—between expected and empirical perfor-
mance—is known as the generalization gap.
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have g(r, y) = r y
1+η/π0

. Furthermore, recently a logarith-

mic smoothing (LS) estimator with parameter λ̃ is proposed
by Sakhi et al. (2024) where g(r, y) = 1

λ̃
log(1 + λ̃ry).

However, the LSE estimator is a non-linear function with
respect to a whole set of weighted reward samples. There-
fore, the previous techniques for regret and bias-variance
analysis under linear estimators are not applicable.

Theoretical comparison with other estimators: The com-
parison of our LSE estimator with other estimators, includ-
ing, IPS, self-normalized IPS (Swaminathan & Joachims,
2015b), truncated IPS with weight truncation parameter M ,
ES-estimator with parameter α (Aouali et al., 2023), IX-
estimator with parameter η, PM-estimator with parameter
λ (Metelli et al., 2021), OS-estimator with parameter τ (Su
et al., 2020) and LS-estimator with parameter λ̃ (Sakhi et al.,
2024) is provided in Table 2.

Note that the truncated IPS (IPS-TR) (Ionides, 2008a) em-
ploys truncation, resulting in a non-differentiable estima-
tor. This non-differentiability complicates the optimization
phase, often necessitating additional care and sometimes
leading to computationally intensive discretizations (Pap-
ini et al., 2019). Furthermore, tuning the threshold M in
IPS-TR is sensitive (Aouali et al., 2023).

In the following sections, we provide more details regarding
heavy-tail assumption and theoretical results for the LSE
estimator.

5.1. Heavy-tail Assumption

In this section, the following heavy-tail assumption is made
in our theoretical results.

Assumption 5.1 (Heavy-tail weighted reward). The reward
distribution PR|X,A and PX ⊗ π0(A|X) are such that for
all learning policy πθ(A|X) ∈ Πθ and some ϵ ∈ [0, 1], the
(1 + ϵ)-th moment of the weighted reward is bounded4,

EPX⊗π0(A|X)⊗PR|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ ν. (9)

We make a few remarks. First, in comparison with the
bounded reward function assumption in literature, (Metelli
et al., 2021; Aouali et al., 2023), in Assumption 5.1, the
reward function can be unbounded. Moreover, our assump-
tions are weaker with respect to the uniform overlap as-
sumption 5. In heavy-tailed bandit learning (Bubeck et al.,
2013; Shao et al., 2018; Lu et al., 2019), a similar assump-
tion to Assumption 5.1 on (1 + ϵ)-th moment of reward for
some ϵ ∈ [0, 1] is assumed. In contrast, in Assumption 5.1,
we consider the weighted reward. Note that, under uniform

4We assume unbounded (1+κ)-th moment of weighted reward
for κ > ϵ.

5In the uniform coverage (overlap) assumption, it is assumed
that sup(a,x)∈A×X wθ(a, x) = Uc < ∞.

coverage (overlap) assumption, Assumption 5.1 can be inter-
preted as a heavy-tailed assumption on reward. Furthermore
under a bounded reward, Assumption 5.1 would be equiv-
alent with the heavy-tailed assumption on the (1 + ϵ)-th
moment of weight function, wθ(a, x). A more detailed theo-
retical comparison is provided in App. D.1. We also provide
a comparison with other estimators under bounded reward
assumption in App. D.1.7 where Assumption 5.1 reduces to
heavy-tailed assumption on weights.

5.2. Regret Bounds

In this section, we provide an upper bound on the regret of
the LSE estimator as discussed in the OPL scenario. The
following novel is a helpful lemma to prove some results.

Lemma 5.2. Consider the random variable Z > 0. For
ϵ ∈ [0, 1], then V

(
eλZ

)
≤ |λ|1+ϵE[Z1+ϵ] holds for λ < 0.

In the following Theorem, we provide an upper bound on
the regret of learning policy under the LSE estimator.

Theorem 5.3 (Regret bounds). For any γ ∈ (0, 1), given
Assumption 5.1, assuming finite policy set |Πθ| < ∞ and

n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))
for λ < 0, with probability at

least (1− δ), the following upper bound holds on the regret
of the LSE estimator,

0 ≤ Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))

− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
,

where πθ̂ is defined in equation 6 .

Sketch of Proof: Using Bernstein’s inequality, Boucheron
et al., 2013 and Lemma 5.2, we provide lower and upper
bounds on estimation error for a fixed learning policy πθ.
Then, we consider the following decomposition of regret,

V (πθ∗)− V (πθ̂) = Estλ(πθ∗) (10)

+ V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂)− Estλ(πθ̂).

Note that, the second is negative. We can provide upper
and lower bounds on estimation error (Theorem D.2 and
Theorem D.3 in App. D.2), respectively.

As the regret bound in Theorem 5.3 depends on λ, we need
to select an appropriate λ to study the convergence rate of
regret bound with respect to n.

Proposition 5.4 (Convergence rate). Given Assumption 5.1,

for any 0 < γ < 1, assuming n ≥ (2ν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2ν1/(1+ϵ))
and

setting λ = −n− 1
1+ϵ , then the overall convergence rate of

the regret upper bound is O(n−ϵ/(1+ϵ)).
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Table 2: Comparison of estimators. We consider the bounded reward function, i.e., Rmax := sup(a,x)∈A×X r(a, x)

for all estimators except LSE. BSN and VSN are the Bias and the Efron-Stein estimate of the variance of self-
normalized IPS. For the ES-estimator, we have TES = BES + (1/n)

(
DKL(πθ∥π0) + log(4/δ)

)
. where DKL(πθ∥π0) =∫

A πθ(a|x) log(πθ(a|x)/π0(a|x))da. We also define power divergence as Pα(πθ∥π0) :=
∫
A πθ(a|x)απ0(a|x)(1−α)da is

the power divergence with order α. For the IX-estimator, Cη(π) is the smoothed policy coverage ratio. We compare the
convergence rate of the concentration (or regret bound) for estimators. B and C are constants. For LS estimator, Sλ̃(πθ) is
the discrepancy between π and π0.

Estimator Concentration Convergence
Rate Heavy-tailed Regret Bound Noisy Reward Differentiability Subgaussian Like Tail

IPS R2
max

√
P2(πθ∥π0)

δn O(n−1/2) × ✓ × ✓ ×

SN-IPS
(Swaminathan & Joachims, 2015b) Rmax(B

SN +
√

V ES log 1
δ ) - × × × ✓ ×

IPS-TR (M > 0)
(Ionides, 2008a) Rmax

√
P2(πθ∥π0) log

1
δ

n O(n−1/2) × ✓ × × ✓

IX (η > 0)
(Gabbianelli et al., 2023) Rmax(2ηCη(πθ) +

log(2/δ)
ηn ) O(n−1/2) × ✓ × ✓ ✓

PM (λ̂ ∈ [0, 1])
(Metelli et al., 2021)

Rmax

√
P2(πθ∥π0) log

1
6

n O(n−1/2) × × × ✓ ✓

ES (α ∈ [0, 1])
(Aouali et al., 2023) Rmax

√
DKL(πθ∥π0)+log(4

√
n/δ)

n + TES O
(
(log(n)/n)1/2

)
× ✓ × ✓ ×

OS (τ > 0)
(Su et al., 2020) maxβ∈{2,3}

β

√
Pβ(πθ∥π0)(log 1

δ )
β−1

nβ−1 O
(
n(1−β)/β

)
× × × ✓ ×

LS (λ̃ ≥ 0)
(Sakhi et al., 2024)

λ̃Sλ̃(πθ) +
log(2/δ)

λ̃n
O
(
n−1/2

)
× ✓ × ✓ ✓

LSE (0 > λ > −∞ and ϵ ∈ [0, 1])
(ours) C

(
2 log(2|Πθ|/δ)

n

)ϵ/(1+ϵ)

O(n−ϵ/(1+ϵ)) ✓ ✓ ✓ ✓ ✓

Discussion: Note that, if Assumption 5.1 holds for ϵ = 1
where the second moment of weighted reward is bounded,
then we have the convergence rate of O(n−1/2). Moreover,
if higher moments of the weighted reward are bounded,
the second moment is also bounded, allowing our results
for a bounded second moment to apply. Note that, our
theoretical results on regret can be applied to unbounded
weighted reward under Assumption 5.1 and other estimators
can not guarantee the convergence rate of O(n−ϵ/(1+ϵ))
under bounded (1 + ϵ)-th moment of weighted reward.

Bounded reward: Our results in Theorem 5.3 also holds
under bounded reward and heavy-tailed weights assumption.
More discussion is provided in App. D.1.7 .

Finite policy set: The results in this section assumed that
the policy set, Πθ, is finite; this is for example the case in
off-policy learning problems with a finite number of policies.
If this assumption is violated, we can apply the growth func-
tion technique which is bounded by VC-dimension (Vapnik,
2013) or Natarajan dimension (Holden & Niranjan, 1995)
as discussed in (Jin et al., 2021). Furthermore, we can ap-
ply PAC-Bayesian analysis (Gabbianelli et al., 2023) for
the LSE estimator. More discussion regarding the PAC-
Bayesian approach is provided in App. D.6.

Subgaussian Concentration: We also study achieving sub-
gaussian concentration for the LSE estimator where the

dependency of regret on δ is subgaussian O
(√

log(1/δ)
n

)
,

in App. D.7.

5.3. Bias and Variance

In this section, we provide an analysis of bias and variance
for the LSE estimator.

Proposition 5.5 (Bias bound). Given Assumption 5.1, the
following lower and upper bounds hold on the bias of the
LSE estimator with λ < 0,

(n− 1)

2n|λ|
V(eλwθ(A,X)R) ≤ B(V̂λ

LSE(S, πθ)) (11)

≤ 1

1 + ϵ
|λ|ϵν +

1

2nλ
V(eλwθ(A,X)R).

Remark 5.6 (Asymptotically Unbiased). By selecting λ
as a function of n, which tends to zero as n → ∞, e.g.
λ(n) = −n−ς for some ς > 0, the bounds in Proposi-
tion 5.5 becomes asymptotically zero. The overall conver-
gence rate for upper bound is O(n−ϵ/(1+ϵ)) by choosing
ς = 1

1+ϵ . For example, if Assumption 5.1 holds for ϵ = 1,
then by choosing ς = 1/2, we have the convergence rate of
O(n−1/2) for the bias of the LSE estimator. Consequently,
the LSE estimator is asymptotically unbiased.

For the variance of the LSE estimator, we provide the fol-
lowing upper bound.

Proposition 5.7 (Variance Bound). Assume that
E[(wθ(A,X)R)2] ≤ ν2

6 holds. Then the variance

6Assumption 5.1 for ϵ = 1.
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of the LSE estimator with λ < 0, satisfies,

V(V̂λ
LSE(S, πθ)) ≤

1

n
V(wθ(A,X)R) ≤ 1

n
ν2. (12)

Variance Reduction: We can observe that the variance of
the LSE is less than the variance of the IPS estimator for all
λ < 0.

Combining the results in Proposition 5.5 and Proposition 5.7,
we can derive an upper bound on MSE of the LSE estimator
using MSE. The bias and variance trade-off for the LSE
estimator and the comparison of different estimators in terms
of bias and variance are provided in App. D.1.1.

5.4. Robustness of the LSE Estimator: Noisy Reward

In this section section, we study the robustness of the LSE
estimator under noisy reward. We also investigate the perfor-
mance of the LSE estimator under noisy (estimated) propen-
sity scores in the App. E. To analyze the robustness of the
LSE estimator, we extend the approach of tilted empirical
risk introduced by Aminian et al. (2025), which provides
generalization error bounds7 under distributional shifts in
supervised learning scenario under tilted empirical risk. Our
analysis leverages these tools to quantify the robustness of
the LSE to noisy rewards.

Suppose that due to an outlier or noise in receiving the
feedback (reward), the underlying distribution of the re-
ward given a pair of actions and contexts, PR|X,A is shifted
via the distribution of noise or outlier, denoted as P̃R|X,A.
We model the distributional shift of reward via distribu-
tion P̃R|X,A due to inspiration by the notion of influence
function (Marceau & Rioux, 2001; Christmann & Steinwart,
2004). Furthermore, we define the noisy reward LBF dataset
as S̃ with n data samples. For our result in this section, the
following assumption is made.

Assumption 5.8 (Heavy-tailed Weighted Noisy Reward).
The PX ⊗ π0(A|X) and noisy reward distribution P̃R|X,A

are such that for all learning policy πθ(A|X) ∈ Πθ and
some ϵ ∈ [0, 1], the (1 + ϵ)-th moment of the weighted
reward is bounded,

EPX⊗π0(A|X)⊗P̃R|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ ν̃. (13)

Under the noisy reward LBF dataset, we derive the following
learning policy,

πθ̂(S̃) = argmax
πθΠθ

V̂λ
LSE(πθ, S̃) . (14)

In the following theorem, we provide an upper bound on
the regret of πθ̂(S̃) as the learning policy under the noisy
reward LBF dataset.

7Generalization error is defined as difference between popula-
tion and empirical risks in supervised learning scenario.

Theorem 5.9. For any γ ∈ (0, 1), given Assumption 5.1,

Assumption 5.8 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))

for λ < 0, with probability at least (1 − δ), the following
upper bound holds on the regret of the LSE estimator under
noisy reward logged data,

0 ≤ Rλ(πθ̂(S̃), S̃) ≤
|λ|ϵ

1 + ϵ
ν + 2A(γ)

√
|λ|ϵν̃C1(λ, n)

+ 2A(γ)C1(λ, n) +
2TV(PR|X,A, P̃R|X,A)

λ2
D(ν̃, ν),

where A(γ) = (2−γ)
(1−γ) , C1(λ, n) =

log
4|Πθ|

δ

n|λ| exp(λν̃1/(1+ϵ))
,

D(ν̃, ν) = exp(|λ|ν̃1/(1+ϵ))−exp(|λ|ν1/(1+ϵ))
ν̃1/(1+ϵ)−ν1/(1+ϵ) , πθ̂(S̃) is de-

fined in equation 14 and TVc(PR|X,A, P̃R|X,A) =

EPX⊗π0(A|X)[TV(PR|X,A, P̃R|X,A)]

Data-driven λ: For large number of samples, n → ∞, the
second and third terms in Theorem 5.9 become negligible.
Thus, under a noisy reward setting, λ can be chosen using
the following objective function.

λND := argmin
λ∈(−∞,0)

|λ|ϵ

1 + ϵ
ν+

2TVc(PR|X,A, P̃R|X,A)

λ2
D(ν̃, ν),

where D(ν̃, ν) is defined in Theorem 5.9 .

Robustness: The term TVc(PR|X,A,P̃R|X,A)

λ2 in the upper
bound on the LSE regret under noisy reward scenario (The-
orem 5.9) can be interpreted as the cost of noise associated
with noisy reward. This cost can be reduced by increasing
|λ|. However, increasing |λ| also amplifies the term |λ|ϵ

1+ϵν
in the upper bound on regret. Therefore, there is a trade-off
between robustness and regret, particularly for λ < 0 in the
LSE estimator. More discussion regarding the robustness of
the LSE is provided in App. D.9 .

6. Experiments
We present our experiments for OPE and OPL. Our aim
is to demonstrate that our proposed estimators not only
possess desirable theoretical properties but also compete
with baseline estimators in practical scenarios. More details
can be found in App.F.

6.1. Off-policy Evaluation

Baselines: For our experiments in OPE setting, we con-
sider truncated IPS estimator (Swaminathan & Joachims,
2015a), PM estimator (Metelli et al., 2021), ES estima-
tor (Aouali et al., 2023), IX estimator (Gabbianelli et al.,
2023), SNIPS (Swaminathan & Joachims, 2015b), LS-LIN
and LS estimators (Sakhi et al., 2024), and OS (shrink-
age) (Su et al., 2020) estimator as baselines.
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Table 3: Comparison of different estimators LSE, PM, ES, IX, BanditNet, LS-LIN and OS accuracy for EMNIST with
different qualities of logging policy (τ ∈ {1, 10}) and true/noisy (estimated) propensity scores with b ∈ {5, 0.01} and noisy
reward with Pf ∈ {0.1, 0.5}. The best-performing result is highlighted in bold text, while the second-best result is colored
in red for each scenario.

Dataset τ b Pf LSE PM ES IX BanditNet LS-LIN OS Logging Policy

EMNIST

1

− − 88.49±0.04 89.19±0.03 88.61±0.06 88.33±0.13 66.58±6.39 88.70±0.02 88.71±0.26 88.08
5 − 89.16±0.03 88.94±0.05 88.48±0.03 88.51±0.23 65.10±0.69 88.38±0.18 88.70±0.15 88.08
0.0 − 86.07±0.01 85.62±0.10 85.71±0.04 81.39±4.02 66.55±3.11 84.64±0.17 84.59±0.09 88.08
− 0.1 89.29±0.04 89.08±0.05 88.45±0.09 88.14±0.14 59.90±3.78 88.30±0.12 88.74±0.09 88.08
− 0.5 88.72±0.08 88.78±0.03 87.27±0.10 87.08±0.14 56.95±3.06 87.20±0.32 88.06±0.09 88.08

10

− − 88.59±0.03 88.61±0.04 88.38±0.08 87.43±0.19 85.48±3.13 88.58±0.08 86.88±0.34 79.43
5 − 88.42±0.07 88.43±0.07 88.39±0.10 88.39±0.06 84.90±3.10 88.23±0.27 86.00±0.37 79.43

0.01 − 82.15±0.21 80.85±0.29 81.07±0.07 77.49±2.77 27.02±1.92 78.43±3.13 21.70±4.11 79.43
− 0.1 88.29±0.06 88.22±0.02 88.19±0.08 87.93±0.35 84.89±3.21 87.50±0.17 87.68±0.16 79.43
− 0.5 88.71±0.16 88.52±0.07 84.42±0.34 83.25±3.45 63.35±13.39 85.75±0.04 89.09±0.05 79.43

Datasets: We conduct synthetic experiments to evaluate our
proposed LSE estimator performance in the OPE setting.
For this purpose, we consider an LBF dataset which has
only a single context (state), denoted as x0. We consider
the learning and logging policies as Gaussian distributions,
πθ(·|x0) ∼ N (µ1, σ

2) and π0(·|x0) ∼ N (µ2, σ
2). The re-

ward function is a positive exponential function eαx
2

which
is unbounded. We also set our parameters to observe differ-
ent tail distributions. We fix µ1 = 0.5, µ2 = 1, σ2 = 0.25
and change the value of α which controls the tail of the
weighted reward variable, α ∈ {1.4, 1.6}. We also examine
different values of α and the effect of a number of samples
for a fixed α in App. G.1. Moreover, we conduct a similar
experiment when logging and learning policies are Lomax
distributions8 in App. G.1.

Metrics: We calculate the bias, variance, and MSE of esti-
mators by running the experiments for 10K times each one
over 1000 samples.

Discussion: The results presented in Table 4 demonstrate
that the LSE estimator has better performance in terms of
both MSE and variance when compared to other baselines.
We also conducted experiments for OPE under some UCI
datasets in App G.12 . More experiments are provided in
App. G.11 for comparison of LSE estimator with LS estima-
tor .

6.2. Off-policy Learning

Baselines: For our experiments in OPL, we compare our
LSE estimator against several non-regularized baseline esti-
mators, including, truncated IPS (Swaminathan & Joachims,
2015a), PM (Metelli et al., 2021), ES (Aouali et al., 2023),
IX (Gabbianelli et al., 2023), BanditNet (Joachims et al.,
2018), LS-LIN (Sakhi et al., 2024) and OS estimator (Su

8The Lomax distribution is a Pareto Type II distribution which
is a heavy-tailed distribution.

Table 4: Bias, variance, and MSE of LSE, ES, PM, IX, and
IPS-TR estimators. The experiment is run 10000 times with
1000 samples. The variance, bias, and MSE of the estima-
tions are reported. The best-performing result is highlighted
in bold text, while the second-best result is colored in red
for each scenario.

α = 1.1 α = 1.4

Estimator Bias Variance MSE Bias Variance MSE

PM 0.004 0.063 0.063 −0.301 164.951 165.041
ES −0.001 0.054 0.054 1.959 0.396 4.232
LSE 0.052 0.006 0.009 0.615 0.292 0.670
IPS-TR 0.020 0.052 0.052 0.053 133.688 133.691
IX 0.237 0.002 0.058 1.340 0.048 1.842
SNIPS −0.005 0.059 0.059 −0.029 133.520 133.521
LS-LIN 0.284 0.001 0.082 2.164 0.005 4.687
LS 0.082 0.007 0.013 0.564 0.458 0.776
OS 0.521 0.020 0.292 0.623 23.589 23.977

et al., 2020).

Datasets: In off-policy learning scenario, we apply the
standard supervised to bandit transformation (Beygelzimer
& Langford, 2009) on a classification dataset: Extended-
MNIST (EMNIST) (Xiao et al., 2017) to generate the LBF
dataset. We also run on FMNIST in App.G.2 . This trans-
formation assumes that each of the classes in the datasets
corresponds to an action. Then, a logging policy stochasti-
cally selects an action for every sample in the dataset. For
each data sample x, action a is sampled by logging policy.
For the selected action, propensity score p is determined
by the softmax value of that action. If the selected action
matches the actual label assigned to the sample, then we
have r = 1, and r = 0 otherwise. So, the 4-tuple (x, a, p, r)
makes up the LBF dataset.

Noisy (Estimated) propensity score: For noisy propensity
score, motivated by Halliwell (2018) and the discussion in

8
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App.E.1, we assume a multiplicative inverse Gamma noise9

on π0 for b ∈ R+, π̂0 = 1
U π0, where π̂(a|x) is the estimated

propensity scores and U ∼ Gamma(b, b).

Noisy reward: Inspired by Metelli et al. (2021), we also
consider noise in reward samples. In particular, we model
noisy reward by a reward-switching probability Pf ∈ [0, 1]
to simulate noise in the reward samples. For example, a re-
ward sample of r = 1 may switch to r = 0 with probability
Pf .

Logging policy: To have logging policies with different
performances, given inverse temperature10 τ ∈ {1, 10},
first, we train a linear softmax logging policy on the fully-
labeled dataset. Then, when we apply standard supervised-
to-bandit transformation on the dataset, the results obtained
from the linear logging policy which are weights of each
action according to the input, will be multiplied by the
inverse temperature τ and then passed to a softmax layer.
Thus, as the inverse temperature τ Increases, we will have
more uniform and less accurate logging policies.

Metric: We evaluate the performance of the different esti-
mators based on the accuracy of the trained model. Inspired
by London & Sandler (2019), we calculate the accuracy
for a deterministic policy where the accuracy of the model
based on the argmax of the softmax layer output for a given
context is computed.

For each value of τ , we apply the LSE estimator and observe
the accuracy over three runs on EMNIST. The deterministic
accuracies of LSE, PM, ES, IX, BanditNet, OS and LS-LIN
for τ ∈ {1, 10} are presented in Table 3.

Discussion: The results presented in Table 3 demonstrate
that the LSE estimator achieves maximum accuracy (with
less variance) in most scenarios compared to all base-
lines. Furthermore, an experiment on a real-world dataset,
KUAIREC (Gao et al., 2022), is provided in App. G.4 .
More discussion and experiments are provided in App. G .

7. Conclusion
In this work, inspired by the log-sum-exponential opera-
tor, we proposed a novel estimator for off-policy learning
and evaluation applications. Subsequently, we conduct a
comprehensive theoretical analysis of the LSE estimator,
including a study of bias and variance, along with an upper
bound on regret under heavy-tailed assumption. Further-
more, we explore the performance of our estimator in sce-

9If Z ∼ Gamma(α, β), then we have fZ(z) =
βα

Γ(α)
zα−1e−βz .

10The inverse temperature τ is defined as π0(ai|x) =
exp(h(x,ai)/τ)∑k

j=1 exp(h(x,aj)/τ)
where h(x, ai) is the i-th input to the soft-

max layer for context x ∈ X and action ai ∈ A.

narios involving estimated propensity scores or heavy-tailed
weighted rewards. Results from our experimental evaluation
demonstrate that our estimator, guided by our theoretical
framework, performs competitively compared to most base-
line estimators in off-policy learning and evaluation.

8. Future Works
In this section, we outline several potential directions for
future work based on our LSE estimator.

LSE and Regularization: Using regularization for off-
policy learning can improve the performance of estimators
(Aminian et al., 2024; Metelli et al., 2021). As future works,
we plan to study the effect of regularization on the LSE
estimator from both theoretical and practical perspectives.

LSE with Positive λ: Inspired by the application of LSE
operator in supervised learning for positive (λ > 0 (Li
et al., 2023), exploring the LSE estimator for positive λ in
scenarios where the logged dataset is imbalance in terms of
rewards or actions, can be an interesting direction. Note that
our current theoretical analysis can be applied to negative λ
and is not applicable for positive λ.

LSE and RL: We envision extending the application of
our estimator to more challenging reinforcement learning
settings, such as those considered by Chen & Jiang (2022);
Zanette et al. (2021); Xie et al. (2019a), where the i.i.d.
assumption does not necessarily hold. In these scenarios,
theoretical guarantees must be adapted to account for depen-
dencies in the data—for example, by extending the analysis
to martingale difference sequences.

LSE and Missing reward: Note that, in our problem for-
mulation, we assumed that we have access to reward for
all logged samples. However, in some applications as dis-
cussed in (Aminian et al., 2024), for some data samples the
reward (feedback) is missed. In future work, we extend the
application of LSE function to these scenarios where the
reward (feedback) is partially missed.
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A. Other Related Works
In this section, we provide other related works.

Other Methods for OPL: A balance-based weighting approach, which outperforms traditional estimators, was proposed by
Kallus (2018). Other extensions of batch learning as a scenario for off-policy learning have been studied, Papini et al. (2019)
consider samples from different policies and Sugiyama et al. (2007) propose Direct Importance Estimation, which estimates
weights directly by sampling from contexts and actions. Chen et al. (2019) introduced a convex surrogate for the regularized
value function based on the entropy of the target policy.

Pessimism Method and Off-policy RL: The pessimism concept originally, introduced in offline RL(Buckman et al., 2020;
Jin et al., 2021), aims to derive an optimal policy within Markov decision processes (MDPs) by utilizing pre-existing datasets
(Rashidinejad et al., 2022; 2021; Yin & Wang, 2021; Yan et al., 2023). This concept has also been adapted to contextual
bandits, viewed as a specific MDP instance. Recently, a ‘design-based’ version of the pessimism principle was proposed by
Jin et al. (2022) who propose a data-dependent and policy-dependent regularization inspired by a lower confidence bound
(LCB) on the estimation uncertainty of the augmented-inverse-propensity-weighted (AIPW)-type estimators which also
includes IPS estimators. Our work differs from that of Jin et al. (2022) as our estimator is non-linear estimator. Note that for
our theoretical analysis, we consider heavy-tailed assumption for (1 + ϵ)-th moment for some ϵ ∈ [0, 1]. However, (Jin
et al., 2022) also considers 3rd and 4th moments of weights bounded.

Action Embedding and Clustering: Due to the extreme bias and variance of IPS and doubly-robust (DR) estimators
in large action spaces, Saito & Joachims (2022) proposed using action embeddings to leverage marginalized importance
weights and address these issues. Subsequent studies, including (Saito et al., 2023; Peng et al., 2023; Sachdeva et al., 2023),
have introduced alternative methods to tackle the challenge of large action spaces. Our work can be integrated with these
approaches to further mitigate the effects associated with large action spaces. We consider this combination as future work.

Individualized Treatment Effects: The individual treatment effect aims to estimate the expected values of the squared
difference between outcomes (reward or feedback) for control and treated contexts (Shalit et al., 2017). In the individ-
ual treatment effect scenario, the actions are limited to two actions (treated/not treated) and the propensity scores are
unknown (Shalit et al., 2017; Johansson et al., 2016; Alaa & van der Schaar, 2017; Athey et al., 2019; Shi et al., 2019;
Kennedy, 2020; Nie & Wager, 2021). Our work differs from this line of works by considering multiple action scenario and
assuming the access to propensity scores in the LBF dataset.

Noisy/Corrupted Rewards: Agnihotri et al. (2024) utilized offline data with noisy preference feedback as a warm-up step
for online bandit learning. In linear bandits, Kveton et al. (2019) estimated a set of pseudo-rewards for each perturbed
reward in the history and used it for reward parameter estimation. Lee & Lim (2022) assumes a heavy-tailed noise variable
on the observed rewards and proposes two exploration strategies that provide minimax regret guarantees for the multi-arm
bandit problem under the heavy-tailed reward noise. In the linear bandits, Kang et al. (2024) Huang et al. (2024) tackles the
issue of heavy-tailed noise on cost function by modifying the reward parameter estimation objective. The former one uses
Huber loss for reward function parameter estimation and the latter one truncates the rewards. Zhong et al. (2021) and Xue
et al. (2024) propose the median of means and truncation to handle the heavy-tailed noise in the observed rewards. In this
work, we study the performance of our proposed estimator, the LSE estimator, under noisy and heavy-tailed reward.

Estimation of Propensity Scores: We can estimate the propensity score using different methods, e.g., logistic regres-
sion (D’Agostino Jr, 1998; Weitzen et al., 2004), generalized boosted models (McCaffrey et al., 2004), neural networks (Se-
toguchi et al., 2008), parametric modeling (Xie et al., 2019b) or classification and regression trees (Lee et al., 2010; 2011).
Note that, as discussed in (Tsiatis, 2006; Shi et al., 2016), under the estimated propensity scores (noisy propensity score),
the variance of the IPS estimator is reduced. In this work, we consider both true and estimated propensity scores, where
the estimated propensity scores are modeled via Gamma noise. Our work differs from the line of works on the estimation
methods of propensity scores.

Bandit and Reinforcement Learning under Heavy-tailed Distributions: Some works discussed the heavy-tailed reward
in bandit learning (Medina & Yang, 2016; Bubeck et al., 2013; Shao et al., 2018; Lu et al., 2019; Zhong et al., 2021).
Furthermore, some works also discussed the heavy-tailed rewards in RL (Zhuang & Sui, 2021; Zhu et al., 2024). However,
off-policy learning with the LBF dataset under a heavy-tailed distribution of weighted reward is overlooked.

Mean-estimation under Heavy-tailed Distributions: In (Lugosi & Mendelson, 2019; LUGOSI & MENDELSON,
2021; Hopkins, 2018), the performance of median-of-means and trimmed mean estimators have been studied and the
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sub-Gaussian behavior of these estimators are studied. However, median-of-means estimator presents practical challenges
in implementation: it requires additional computational resources for data partitioning and mean calculations, while also
introducing discontinuities that can prevent gradient-based optimization methods.

Generalization Error Bound under Heavy-tailed Assumption: There are also some works that studied the generalization
bound – the difference between population risk and empirical risk– of supervised learning under unbounded loss functions,
in particular, under heavy-tailed assumption via the PAC-Bayesian approach. Losses with heavier tails are studied by Alquier
& Guedj (2018) where probability bounds (non-high probability) are developed. Using a different risk than empirical risk,
PAC-Bayes bounds for losses with bounded second and third moments are developed by Holland (2019). Notably, their
bounds include a term that can increase with the number of samples n. Kuzborskij & Szepesvári (2019) and Haddouche &
Guedj (2022) also provide bounds for losses with a bounded second moment. The bounds in (Haddouche & Guedj, 2022)
rely on a parameter that must be selected before the training data is drawn. Information-theoretic bounds based on the
second moment of loss function suph∈H |ℓ(h, Z) − E[ℓ(h, Z̃)]| are also derived in (Lugosi & Neu, 2022). Furthermore,
in (Lugosi & Mendelson, 2019, Section 4), the uniform bound via Rademacher complexity analysis over the L2 bounded
function space is studied for the median-of-means estimator. Furthermore, the generalization error of tilted empirical risk
under heavy-tailed assumption is studied by Aminian et al. (2025). In contrast, we focus on estimation bound and regret
analysis of the LSE estimator as a non-linear estimator in OPL and OPE scenarios. For more detailed comparison between
batch learning and supervised learning see (Swaminathan & Joachims, 2015a, Table 1).

Heavy-tailed Rewards in Bandits: Bandit learning with heavy-tailed reward distributions has been extensively studied.
Bubeck et al. (2013) proposed Robust UCB, and Vakili et al. (2013) introduced DSEE as bandit algorithms with theoretical
regret guarantees. Yu et al. (2018) proposed a bandit algorithm based on pure exploration with heavy-tailed reward
distributions. Heavy-tailed reward distributions are also studied in the context of linear bandits (Shao et al., 2018; Medina &
Yang, 2016). Dubey et al. (2020) proposed a decentralized algorithm for cooperative multi-agent bandits when the reward
distribution is heavy-tailed. Our work differs from this line of works by considering the heavy-tailed assumption on the
weighted reward.

Heavy-tailed Rewards in RL: The challenge of heavy-tailed distributions in decision-making has been studied for more
than two decades (Georgiou et al., 1999; Hamza & Krim, 2001; Huang & Zhang, 2017; Ruotsalainen et al., 2018). There is
a significant amount of study in RL dealing with heavy-tailed reward distribution (Zhu et al., 2023; Zhuang & Sui, 2021;
Huang et al., 2024). Moreover, big sparse rewards are a prominent issue in reinforcement learning (Park et al., 2022;
Agarwal et al., 2021; Dawood et al., 2023). In such scenarios, there is a far-reaching goal, possibly accompanied by sparse
failure states in which the agent attains big positive and negative rewards respectively. For example in safe autonomous
driving, accidents are so costly and, hence are assigned large negative rewards. They are also delayed and sparse, which
means that they are observed after many steps with a lot of exploration in the environment (Kiran et al., 2021; Amini et al.,
2020). This hinders the training and leads to an infeasible slow learning curve. A common approach to tackle this issue
is reward shaping which inserts new engineered reward functions alongside the agent’s trajectory to provide guidelines
for the agent (Kiran et al., 2021). This strategy may fail because it biases the model into the strategy hinted by the new
rewards, which may not be the optimal solution for the original problem. Moreover, the method of reward shaping will not
necessarily avoid the low-probability high-value rewards, because the imputed rewards are mostly small and high-value
rewards still happen with low probability. Therefore, handling low-probability large reward is one of the challenges in this
field, which can be modeled by heavy-tailed distributions as discussed with more details in App. G.13.
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B. Preliminaries
B.1. Notations and Diagram

All notations are summarized in Table 5. An overview of our main theoretical results is provided in Fig. 1.

the LSE
estimator

Off-Policy
Evaluation Robustness

Off-Policy
Learning

Bias Variance Estimation
Bound

RegretNoisy reward Noisy propen-
sity score

Bias Bounds
(Proposition 5.5)

Variance Bound
(Proposition 5.7)

Estimation
Bounds

(Theorem D.3
& Theorem D.2)

Regret Bounds
(Theorem 5.3)

Regret Bound
(Theorem 5.9)

Regret Bound
(Theorem E.7)

Figure 1: Overview of the main results

Table 5: Summary of notations in the paper

Notation Definition Notation Definition

X Context A Action
r(X,A) Reward function R Reward

n The number of logged data samples PX Distribution over context set
S LBF dataset pi Propensity score (π0(ai|xi))
πθ Learning policy wθ(A|X) weight (πθ(A|X)/π0(A|X))

V̂λ
LSE(S, πθ) the LSE estimator V (πθ) Value of learning policy πθ

ν Upper bound on (1 + ϵ)-th moment of weighted reward (Assumption 5.1) π0(a|X) Logging policy
Estλ(πθ) Estimation error of the LSE estimator Rλ(πθ̂, S) Regret of the LSE estimator

B(V̂λ
LSE(S, πθ)) Bias of the LSE estimator V(V̂λ

LSE(S, πθ)) Variance of the LSE estimator
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B.2. Definitions

We define the softmax function

softmax(x1, x2, · · · , xn) = (s1, s2, · · · , sn),

si =
exi∑n

j=1 x
xj
, 1 ≤ i ≤ n.

The diag function, diag(a1, a2, · · · , an) ∈ Rn×n, defines a diagonal matrix with a1, a2, · · · , an as elements on its diagonal.

Definition B.1. (Cardaliaguet et al., 2019) A functional U : P(Rn) → R admits a functional linear derivative if there is a
map δU

δm : P(Rn)× Rn → R which is continuous on P(Rn), such that for all m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mλ, a) (m

′ −m)(da) dλ,

where mλ = m+ λ(m′ −m).

B.3. Theoretical Tools

In this section, we provide the main lemmas which are used in our theoretical proofs.

Lemma B.2 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy & Wu, 2022)). The Kantorovich-
Rubenstein duality (variational representation) of the total variation distance is as follows:

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1
[g(Z)]− EZ∼m2

[g(Z)]} , (15)

where GL = {g : Z → R, ||g||∞ ≤ L}.

Lemma B.3 (Hoeffding Inequality, Boucheron et al., 2013). Suppose that Zi are sub-Gaussian independent random
variables, with means µi and sub-Gaussian parameter σ2

i , then we have:

P

(
n∑

i=1

(Zi − µi) ≥ t

)
≤ exp

(
−t2

2
∑n

i=1 σ
2
i

)
(16)

Lemma B.4 (Bernstein’s Inequality, Boucheron et al., 2013). Suppose that S = {Zi}ni=1 are i.i.d. random variable such
that |Zi − E[Z]| ≤ R almost surely for all i, and V(Z) = σ2. Then the following inequality holds with probability at least
(1− δ) under PS , ∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣ ≤√4σ2 log(2/δ)

n
+

4R log(2/δ)

3n
. (17)

The rest of the lemmas are provided with proofs.

Lemma B.5 (Change of variables). Assume that the following equation holds,

ϵ = exp

{
− Aδ2

B + Cδ

}
,

for some positive parameters A,B,C, ϵ ≥ 0 and 0 ≤ δ ≤ 1. Then, we have,

δ ≤
C log 1

ϵ

A
+

√
B log 1

ϵ

A
.

Also, for some D > 0, if A ≥ B log 1
ϵ+2DC log 1

ϵ

D2 , then we have δ ≤ D.
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Proof. We have,

ϵ = exp

{
− Aδ2

B + Cδ

}
↔ Aδ2 − C log

1

ϵ
δ −B log

1

ϵ
= 0

Given δ > 0 and solving the quadratic equation, we have,

δ =
1

2A

(
C log

1

ϵ
+

√
C2 log2

1

ϵ
+ 4AB log

1

ϵ

)
=

C

2

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
log 1

ϵ

A
+ 4

B

C2


≤ C

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
B

C2


=

C log 1
ϵ

A
+

√
B log 1

ϵ

A
,

where the inequality is derived from
√
a+ b ≤

√
a+

√
b.

For the second part, similar argument works for a =
√
A as the variable ,

C log 1
ϵ

A
+

√
B log 1

ϵ

A
≤ D ↔ Da2 −

√
B log

1

ϵ
a− C log

1

ϵ
≥ 0

which is satisfied if a is greater than the bigger root,

a ≥

√
B log 1

ϵ +
√
B log 1

ϵ + 4DC log 1
ϵ

2D

So,

A ≥
B log 1

ϵ + 2DC log 1
ϵ

D2
≥


√
B log 1

ϵ +
√
B log 1

ϵ + 4DC log 1
ϵ

2D

2

where the last inequality comes from a2+b2

2 ≥
(
a+b
2

)2
. Hence if A ≥ B log 1

ϵ+2DC log 1
ϵ

D2 , a is bigger than the largest root
and the proposed inequality holds.

Lemma B.6. Assume A,B,C ∈ R+. For any x ∈ R+ such that,

x ≤ C2

2AC +B
,

we have,
Ax+

√
Bx ≤ C (18)

Proof. Given Ax ≤ C, equation equation 18 is equivalent to the following quadratic form.

A2x2 − (B + 2AC)x+ C2 ≥ 0

Let 0 < r1 < r2 be the roots of the abovementioned quadratic form. If X < r1, Ax ≤ C holds and the quadratic form is
positive. So we have the following condition on x to satisfy Equation 18,

x ≤
B + 2AC −

√
(B + 2AC)2 − 4A2C2

2A2
=

2C2

B + 2AC +
√
(B + 2AC)2 − 4A2C2

.

Since,
C2

2AC +B
≤ 2C2

B + 2AC +
√
(B + 2AC)2 − 4A2C2

,

the condition in the lemma is sufficient for equation 18 to hold.
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Lemma B.7. Let us consider the functions hb(y) = log(y) + 1
2b2 y

2 and ha(y) = log(y) + 1
2a2 y

2 for a < y < b.
Then hb(y) and ha(y) are concave and convex, respectively.

Proof. Taking the second derivative gives us the result, d2

dy2

(
log(y) + βy2

)
= − 1

y2 + 2β.

Lemma B.8. We have the following inequality for y < 0 and ϵ ∈ [0, 1],

ey ≤ 1 + y +
|y|1+ϵ

1 + ϵ
. (19)

Proof. For y = 0, equality holds. If suffices to prove that the derivative of LHS of equation 19 is more than the derivative of
RHS ∀y < 0, i.e.,

ey − 1 + |y|ϵ ≥ 0.

Note that for y ≤ −1, |y|ϵ ≥ 1 and the inequality trivially holds. For y > −1, |y|ϵ is minimized at ϵ = 1, so it is sufficient
to prove the inequality only for ϵ = 1, which is,

ey − 1− y ≥ 0 ↔ ey ≥ y + 1

and holds ∀y ≤ 0.

Remark B.9. In Lemma 28 in (Lugosi & Neu, 2023), the following upper bound for y < 0 and ϵ ∈ [0, 1] is proposed,

ey ≤ 1 + y + |y|1+ϵ. (20)

In contrast, Lemma B.8 is tighter via using |y|1+ϵ

1+ϵ instead of |y|1+ϵ.

Lemma B.10. For a positive random variable, Z > 0, suppose E[Z1+ϵ] < νz for some ϵ ∈ [0, 1]. Then, the
following inequality holds,

E[Z] ≤ ν1/(1+ϵ)
z

Proof. Due to Jensen’s inequality, we have,

E[Z] = E
[
(Z1+ϵ)1/(1+ϵ)

]
≤ E

[
Z1+ϵ]1/(1+ϵ) ≤ ν1/(1+ϵ)

z .

Lemma B.11. For a positive random variable, Z > 0, suppose E[Z1+ϵ] < ∞ for some ϵ ∈ [0, 1]. Then, following
inequality for λ < 0 holds,

E[Z] ≥ 1

λ
logE[eλZ ] ≥ E[Z]− 1

1 + ϵ
|λ|ϵE[Z1+ϵ].

Proof. The left side inequality follows from Jensen’s inequality on f(z) = log (z). For the right side, we have for z < 0,

1 + z ≤ ez ≤ 1 + z +
1

1 + ϵ
|z|1+ϵ.
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Therefore, we have,

1

λ
logE[eλZ ] ≥ 1

λ
logE[1 + λZ +

1

1 + ϵ
|λ|1+ϵZ1+ϵ]

=
1

λ
log

(
1 + λE[Z] +

1

1 + ϵ
|λ|1+ϵE

[
Z1+ϵ

])
≥ 1

λ

(
λE[Z] +

1

1 + ϵ
|λ|1+ϵE[Z1+ϵ]

)
= E[Z]− 1

1 + ϵ
|λ|ϵE[Z1+ϵ].

C. Other Properties of the LSE estimator

Proposition C.1 (LSE Asymptotic Properties). The following asymptotic properties of LSE with respect to λ holds,

lim
λ→0

V̂λ
LSE(S) =

1

n

(
n∑

i=1

riwθ(ai, xi)

)
,

lim
λ→−∞

V̂λ
LSE(S) = min

i
riwθ(ai, xi),

lim
λ→∞

V̂λ
LSE(S) = max

i
riwθ(ai, xi).

Proof. For the first limit, we use L’Hopital’s rule:

lim
λ→0

V̂λ
LSE(S) = lim

λ→0

log
(∑n

i=1 eλriwθ(ai,xi)

n

)
λ

= lim
λ→0

(∑n
i=1 riwθ(ai,xi)e

λriwθ(ai,xi)∑n
i=1 eλriwθ(ai,xi)

)
1

=

∑n
i=1 riwθ(ai, xi)

n
.

For the second limit for λ → −∞ we have:

min
i

riwθ(ai, xi) =
1

λ
log

(∑n
i=1 e

λmini riwθ(ai,xi)

n

)
≤ 1

λ
log

(∑n
i=1 e

λriwθ(ai,xi)

n

)
≤ 1

λ
log

(
eλmini riwθ(ai,xi)

n

)
= min

i
riwθ(ai, xi)−

1

λ
log n.

As both lower and upper tends to mini riwθ(ai, xi) we conclude that:

lim
λ→−∞

1

λ
log

(∑n
i=1 e

λriwθ(ai,xi)

n

)
= min

i
riwθ(ai, xi).

A similar argument proves the third limit (λ → ∞).

Remark C.2. As shown in (Zhang, 2006, Proposition 1.1), the LSE function is an increasing function with respect to λ.
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Derivative of the LSE estimator: The derivative of the LSE estimator can be represented as,

∇θV̂
λ
LSE(S, πθ) =

1

n

n∑
i=1

rie
λ(riwθ(ai,xi)−V̂λ

LSE(S,πθ))∇θwθ(ai, xi). (21)

Note that, in equation 21, we have a weighted average of the gradient of the weighted reward samples. In contrast to the
linear estimators for which the gradient is a uniform mean of reward samples, in the LSE estimator, the gradient for large
values of riwθ(ai, xi), ∀i ∈ [n] (small absolute value), contributes more to the final gradient. It can be interpreted as the
robustness of the LSE estimator with respect to the very large absolute values of riwθ(ai, xi) (i.e. high wθ(a, x)), ∀i ∈ [n].

It is interesting to study the sensitivity of the LSE estimator with respect to its values.

Lemma C.3. The gradient and hessian of the LSE estimator with respect to its values are as follows,

∇V̂λ
LSE(S, πθ) = softmax(λr1wθ(a1, x1), · · · , λrnwθ(an, xn)), (22)

∇2V̂λ
LSE(S) = λdiag(Sn)− λSnS

T
n , (23)

where Sn = softmax(λr1wθ(a1, x1), · · · , λrnwθ(an, xn)). Also, LSE is convex when λ > 0 and concave other-
wise.

Proof. The two equations can be derived with simple calculations. About the convexity and concavity of V̂λ
LSE, we prove

that for λ ≥ 0 the Hessian matrix is positive semi-definite. The proof for concavity for λ < 0 is similar.

zT∇2V̂λ
LSEz = λ

(
zTdiag(Sn)z− zTSnS

T
n z
)
= λ

 n∑
i=1

Sn(i)z
2
i −

(
n∑

i=1

Sn(i)zi

)2


= λ

( n∑
i=1

Sn(i)z
2
i

)(
n∑

i=1

Sn(i)

)
−

(
n∑

i=1

Sn(i)zi

)2
 ≥ 0.

Where the last inequality is derived from the Cauchy–Schwarz inequality.

Using Lemma C.3, we can show that V̂λ
LSE is convex for λ ≥ 0 and concave for λ < 0. Applying Lemma C.3, we can prove

that the derivative of the LSE estimator is positive and less than one, i.e.,

0 ≤ ∇V̂λ
LSE(S, πθ) ≤ 1. (24)

Furthermore, we prove equation 21 by applying Lemma C.3.

C.1. LSE estimator and KL Regularization

In this section, we will discuss the connection between the LSE estimator,

LSEλ(Z) =
1

λ
log
( 1
n

n∑
i=1

eλzi
)
, (25)

and the KL regularization problem.

Consider the following KL-regularized expected minimization for λ < 0,

min
P∈∆n−1

n∑
i=1

pizi −
1

λ
DKL(P∥Uni(n)), (26)

where ∆n−1 denotes the probability simplex and Uni(n) in the discrete uniform distribution over n mass points. Note that
λ < 0, and the KL divergence is strictly convex with respect to P. Therefore, the objective function in equation 26 is convex.
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Then, the solution of the regularized problem in equation 26, is the Gibbs distribution as follows,

p⋆i =
exp(λzi)∑n
i=1 exp(λzi)

, ∀i ∈ [n], (27)

Using equation 27 in equation 26, we have,

n∑
i=1

exp(λzi)zi∑n
j=1 exp(λzj)

− 1

λ

n∑
i=1

exp(λzi)∑n
j=1 exp(λzj)

(
λzi − log

( 1
n

n∑
i=1

exp(λzi)
))

=
1

λ
log
( 1
n

n∑
i=1

exp(λzi)
)
.

(28)

Therefore, the final value of the KL-regularized minimization problem is the LSE estimator with λ < 0. Therefore, the LSE
estimator with a negative parameter can be interpreted as a KL-regularized expected minimization problem.
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D. Proofs and Details of Section 5
D.1. Details of Theoretical Comparison

In this section, we compare our estimator with PM, ES, IX, LS and OS from a theoretical perspective in more detail.

D.1.1. BIAS AND VARIANCE COMPARISON

In this section, we present the bias and variance comparison of different estimators in Table 6. We define power divergence
as Pα(πθ∥π0) :=

∫
a
πθ(a|x)απ0(a|x)(1−α)da is the power divergence with order α. For a fair comparison, we consider

the bounded reward function, i.e., Rmax := sup(a,x)∈A×X r(a, x). Therefore, we have ν ≤ R1+ϵ
maxP1+ϵ(πθ∥π0) and

ν2 ≤ R2
maxP2(πθ∥π0). We can observe that LSE has the same behavior in comparison with other estimators.

Table 6: Comparison of bias and variance of estimators. BSN and VSN are the Bias and the Efron-Stein estimate of the
variance of self-normalized IPS. For the ES-estimator, we have TES = BES + (1/n)

(
DKL(πθ∥π0) + log(4/δ)

)
. where

DKL(πθ∥π0) =
∫
a
πθ(a|x) log(πθ(a|x)/π0(a|x))da. For the IX-estimator, Cη(π) is the smoothed policy coverage ratio.

We compare the convergence rate of the estimation bounds for estimators. B and C are constants. For LS estimator, Sλ̃(πθ)
is the discrepancy between π and π0.

Estimator Variance Bias

IPS R2
maxP2(πθ∥π0)

n 0

SN-IPS
(Swaminathan & Joachims, 2015b) R2

maxV
SN RmaxB

SN

IPS-TR (M > 0)
(Ionides, 2008a) R2

max
P2(πθ∥π0)

n Rmax
P2(πθ∥π0)

M

IX (η > 0)
(Gabbianelli et al., 2023) RmaxCη(πθ)/n RmaxηCη(πθ)

PM (λ ∈ [0, 1])
(Metelli et al., 2021)

R2
maxP2(πθ∥π0)

n RmaxλP2(πθ∥π0)

ES (α ∈ [0, 1])
(Aouali et al., 2023) R2

max
Eπθ

[πθ·π1−2α
0 ]

n Rmax(1− Eπθ
[π1−α

0 ])

OS (τ > 0)
(Su et al., 2020)

R2
maxP2(πθ∥π0)

n Rmax
P3(πθ∥π0)

τ

LS (λ̃ ≥ 0)
(Sakhi et al., 2024)

Sλ̃(πθ)

n λ̃Sλ̃(πθ)

LSE (0 > λ > −∞ and ϵ ∈ [0, 1])
(ours)

R2
maxP2(πθ∥π0)

n
1

1+ϵ |λ|
ϵR1+ϵ

maxP1+ϵ(πθ∥π0)− B
2n|λ|

LSE Variance: Note that in variance comparison between IPS and LSE, the LSE variance is less than IPS, as shown in
Proposition 5.7. However in Table 6, we use a looser upper bound to compare bounds in terms of the same parameter Rmax.

Bias and Variance Trade-off: Observe that for the bias and variance of the LSE estimator, there is a trade-off with respect
to λ < 0. Specifically, reducing λ increases the bias of the LSE estimator,

B(V̂λ
LSE(S, πθ)) = E[wθ(A,X)R]− E[V̂λ

LSE(S, πθ)]. (29)
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This is a consequence of the increasing property of the LSE with respect to λ (see Remark C.2).

Additionally, for the variance, we have the following bound,

Var(V̂λ
LSE(S, πθ)) ≤ E[(V̂λ

LSE(S, πθ))
2]. (30)

It is important to note that decreasing λ reduces the upper bound on the variance of the LSE estimator.

Therefore, by decreasing λ < 0, the bias increases and the variance decreases.

D.1.2. COMPARISON WITH PM ESTIMATOR

In (Metelli et al., 2018), the authors proposed the following PM estimator for two hyper-parameter (λp, s),

V̂PM(S, πθ) =
1

n

n∑
i=1

((1− λp)wθ(ai, xi)
s + λp)

1
s ri.

An upper bound on estimation error of PM estimator for (λp, s = −1), is provided in (Metelli et al., 2018, Theorem 5.1),

EstPM(S, πθ) ≤ ∥R∥∞(2 +
√
3)

(
2Pα(πθ∥π0)

1
α−1 log 1

δ

3(α− 1)2n

)1− 1
α

, (31)

where EstPM(S, πθ) = V (πθ) − V̂PM(S, πθ) and α ∈ (1, 2]. In contrast to the bound presented in equation 31, which
necessitates a bounded reward, exhibits a dependence on log(1/δ)

ϵ
1+ϵ and two hyper-parameter (s, λp), our work offers

several advancements. We derive both upper and lower bounds on estimation error, as detailed in Theorem D.3 and
Theorem D.2, respectively. These bounds help us for our subsequent derivation of an upper bound on regret. Notably, our
bounds demonstrate a more favorable dependence of log(1/δ)1/2. This improvement not only eliminates the requirement for
bounded rewards but also provides a tighter concentration. Furthermore, we provide theoretical analysis for robustness with
respect to both noisy reward and noisy propensity scores, and we just have one hyperparameter. Note that the assumption on
Pα(πθ∥π0) for α = 1 + ϵ in (Metelli et al., 2018) is similar to bounded (1 + ϵ)-th moment of weight function, wθ(a, x) for
a bounded reward function.

D.1.3. COMPARISON WITH ES ESTIMATOR

The ES estimator (Aouali et al., 2023)is represented as,

V̂ α
ES(πθ) =

1

n

n∑
i=1

ri
πθ(ai|xi)

π0(a|xi)α
, α ∈ [0, 1]. (32)

In (Aouali et al., 2023, Theorem 4.1), an upper bound on concentration is derived via PAC-Bayesian approach for α ∈ [0, 1],

|V (πQ)− V̂ α
ES(πQ)| ≤

√
KL1(πQ)

2n
+Bα

n (πQ) +
KL2(πQ)

nλ

+
λ

2
V̄ α
n (πQ).

where KL1(πQ) = DKL(Q∥P) + ln
4
√
n

δ
, and

KL2(πQ) = DKL(Q∥P) + ln
4

δ
,

Bα
n (πQ) = 1− 1

n

n∑
i=1

Ea∼πQ(·|xi)

[
π1−α
0 (a|xi)

]
,

V̄ α
n (πQ) =

1

n

n∑
i=1

Ea∼π0(·|xi)

[
πQ(a|xi)

π0(a|xi)2α

]
+

πQ(ai|xi)∥R∥2∞
π0(ai|xi)2α

,

(33)
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where Q and P are posterior and prior distributions over the set of hypothesis, R̂α
n(πQ) is ES estimator and R(πQ) is true risk.

The ES estimator’s bound exhibits several limitations. Primarily, it requires a bounded reward. Moreover, the upper bound
on the concentration (estimation error) of the ES estimator converges at a rate of O(log(n)n−1/2), which is suboptimal.
A notable drawback is the presence of the term Bα

n (πQ), which remains constant for α > 1 and does not decrease with
increasing sample size n. In contrast, we derive an upper bound on the Regret with a convergence rate of O(n−1/2) under
the condition of bounded second moment (ϵ = 1) and can be extended for heavy-tailed scenarios under bounded reward.
This improved rate not only eliminates the logarithmic factor but also demonstrates a tighter concentration. Furthermore, we
have a theoretical analysis for robustness with respect to both noisy reward and noisy propensity scores. Finally, the noisy
reward scenario is not studied under the ES estimator.

D.1.4. COMPARISON WITH IX ESTIMATOR

The IX estimator (Gabbianelli et al., 2023) is defined as for η > 0,

V̂ η
ES(S, πθ) :=

1

n

n∑
i=1

πθ(ai|xi)

πθ(ai|xi) + η
ri.

The following upper bound on regret of IX estimator is derived in (Gabbianelli et al., 2023, Theorem 1),

R(πθ∗) ≤
√

log(2|Πθ|/δ)
n

(2ηCη(πθ∗) + 1), (34)

where

Cη(πθ) = E

[∑
a

πθ(a|X)

π0(a|X) + η
· r(X, a)

]
. (35)

In equation 34, it is assumed that reward is bounded. The term Cη(πθ) can be large if η is small. While a small η is desirable
for reducing bias, it can simultaneously increase Cη(πθ), potentially compromising the tightness of the bound. The bounded
reward in [0, 1] is needed for the proof of regret bound as R2 ≤ R for R ∈ [0, 1]. Moreover, the process of tuning η in the
IX estimator is particularly sensitive.

D.1.5. COMPARISON WITH LOGARITHMIC SMOOTHING

We provide a theoretical comparison with the Logarithmic Smoothing (LS) estimator (Sakhi et al., 2024).

The LS estimator is,

V̂ λ̃
n (π) =

1

n

n∑
i=1

1

λ̃
log(1 + λ̃wθ(xi, ai)ri),

for λ̃ > 0. As mentioned in (Sakhi et al., 2024), a Taylor expansion of LS estimator around λ̃ = 0 yields,

V̂ λ̃
n (π) = V̂n(π) +

∞∑
ℓ=2

(−1)ℓλ̃ℓ−1

ℓ

(
1

n

n∑
i=1

(wθ(xi, ai)ri)
ℓ

)
.

Furthermore, the authors introduced,

Sλ̃(π) = E
[

(wθ(X,A)r)2

(1 + λ̃wπ(X,A)r)

]
,

where in (Sakhi et al., 2024, Proposition 7), a bounded second moment is needed to derive the estimation error bound.
Furthermore, for PAC-Bayesian analysis, the author proposed a linearized version,

V̂ λ̃-LIN
n (π) =

1

n

n∑
i=1

π(ai|xi)

λ̃
log

(
1 +

λ̃ri
π0(ai|xi)

)
,

Note that, the linearized version of the LS estimator is bounded by IPS estimator due to log(1 + x) ≤ x inequality. Then,
for the LS-LIN estimator the PAC-Bayesian upper bound on the Regret of the LS-LIN estimator is derived in (Sakhi et al.,
2024, Proposition 11) as follows,
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0 ≤ V (π̂n)− V (π∗
Q) ≤ λ̃SLIN

λ̃
(π∗

Q) +
2(KL(Q||P ) + ln(2/δ))

λ̃n
,

where SLIN
λ̃

(π) = E
[

π(a|x)r2

π0(a|x)+λ̃π0(a|x)r

]
.

Theoretical Comparison: The key distinction between the LS estimator and our LSE estimator is that we explicitly assume
the heavy-tailed weighted reward and can drive a better convergence rate.

In (Sakhi et al., 2024, Proposition 7), the authors demonstrate that under the assumption of a bounded second moment of the
weighted reward, the convergence rate is O(1/

√
n).

However, if the second moment is not bounded, from (Sakhi et al., 2024) we only know that:

Sλ̃(π) = E
[

(w(X,A)r)2

1 + λ̃w(X,A)r

]
≤ min

( 1
λ̃
E [w(X,A)r] ,E

[
(w(X,A)r)2

] )
.

If we replace Sλ̃(π) with 1
λE [w(X,A)r] in (Sakhi et al., 2024, Proposition 7), we get O(1) as convergence rate. In contrast,

our analysis yields a convergence rate of
O(n−ϵ/(1+ϵ)),

for bounded (1 + ϵ)-th moment.

This result demonstrates that our assumption is both precise and necessary to achieve the optimal convergence rate for regret
under the heavy-tailed assumption.

D.1.6. COMPARISON WITH OPTIMISTIC SHRINKAGE

The OS estimator (Su et al., 2020) is represented as for τ ≥ 0.

V̂OS(πθ) =
1

n

n∑
i=1

τwθ(ai, xi)

w2
θ(ai, xi) + τ

ri. (36)

In (Metelli et al., 2021, Theorem E.1), an upper bound for the right tail of the concentration inequality for the OS estimator
is established, which depends on P3(πθ∥π0). Consequently, this estimator fails to ensure reliable performance under
heavy-tailed assumptions, even when the reward is bounded. Furthermore, due to applying the Bernstein inequality in the
proof, theoretical results can not be extended to unbounded reward.

D.1.7. COMPARISON UNDER BOUNDED REWARD ASSUMPTION

In this section, we compare different estimators by assuming bounded reward. Note that, under bounded reward assumption,
R ∈ [0, Rmax], our Assumption 5.1, would be simplified as follows,

Assumption D.1. The PX ⊗π0(A|X) are such that for all learning policy πθ(A|X) ∈ Πθ and some ϵ ∈ [0, 1], the (1+ϵ)-th
moment of the weight function is bounded,

EPX⊗π0(A|X)

[(
wθ(A,X)

)1+ϵ] ≤ νw. (37)

Note that, under Assumption D.1, our theoretical results hold by replacing ν with νwR
1+ϵ
max. In the following, we compare

main estimators, PM, ES, IX, LS and OS with LSE under Assumption D.1,

• The PM estimator provides an upper bound on concentration inequality under Assumption D.1. However, a lower
bound on estimation error (concentration inequality) is not provided. Furthermore, for ϵ = 0, we can have a bounded
upper bound on estimation error. However, (Metelli et al., 2021, Theorem 5.1) is infinite for ϵ = 0.11

11Note that in (Metelli et al., 2021), the authors consider α ∈ (1, 2] where α = ϵ+ 1 and ϵ ∈ (0, 1].
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• The ES estimator, does not support Assumption D.1 and an assumption on bounded πθ

π2α
0

for α ∈ (0, 1) is needed.
Furthermore, the convergence rate of the estimation bound on the ES estimator is worse than ours in ϵ = 1.

• For the OS estimator, the bounded assumption on the third moment of the weight function is needed. Therefore, it does
not support Assumption D.1.

• The theoretical results for LS estimator do not need bounded (1 + ϵ)-th moment of weight function, Assumption D.1.
However, under Assumption D.1, we can not derive the optimal rate of regret, O(n

−ϵ
1+ϵ ) for ϵ ∈ [0, 1] under LS

estimator.

• For IX estimator, using the upper bound on regret in (Gabbianelli et al., 2023, Theorem 7), requires bounded C0(πθ∗),
which can impose a stronger condition than Assumption D.1.

D.1.8. COMPARISON WITH THE ASSUMPTION 1 IN SWITCH ESTIMATOR

The switch estimator introduced in (Wang et al., 2017) adaptively chooses between model-free estimation and an estimated
reward function based on importance weights. While (Wang et al., 2017) requires the existence of finite (2 + ϵ̃)-th moments
(for ϵ > 0) in their Assumption 1, our work operates under a weaker condition. We only require bounded (1+ ϵ)-th moments
for some ϵ ∈ [0, 1]. This distinction is significant—our assumption (Assumption 5.1) encompasses cases where the second
moment and (2 + ϵ̃)-th moment for ϵ̃ > 0 do not exist. In contrast, (Wang et al., 2017, Assumption 1), which requires the
finiteness of the (2 + ϵ̃)-th moments, imposes a strictly stronger condition on the underlying distribution. Therefore, we can
not apply the approach in (Wang et al., 2017) in our case.

D.2. Proofs and Details of Regret Bounds

Lemma 5.2 (Restated). Consider the random variable Z > 0. For ϵ ∈ [0, 1], the following upper bound holds on
the variance of eλZ for λ < 0,

V
(
eλZ

)
≤ |λ|1+ϵE[Z1+ϵ]. (38)

Proof. We have,

|eλZ − eλC1 | =

∣∣∣∣∣
∫ λz

λC1

eydy

∣∣∣∣∣ ≤ |λ(z − C1)|emax(λz,λC1) ≤ |λ||z − C1|.

Then it holds that

V(eλZ) = min
C1∈R+

E
[
(eλZ − eλC1)2

]
= min

C1∈R+
E
[
|eλZ − eλC1 |1−ϵ|eλZ − eλC1 |1+ϵ

]
= min

C1∈R+
E
[
|eλZ − eλC1 |1−ϵ|λ|1+ϵ|Z − C1|1+ϵ

]
≤ min

C1∈R+
E
[
|λ|1+ϵ|Z − C1|1+ϵ

]
≤ |λ|1+ϵE[Z1+ϵ],

where the last inequality holds due to the fact that |eλZ − eλC1 |1−ϵ ≤ 1.

Furthermore, we are interested in providing high probability upper and lower bounds on Estλ(πθ),

P (Estλ(πθ) > gu(δ, n, λ)) ≤ δ, and, P (Estλ(πθ) < gl(δ, n, λ)) ≤ δ.

where 0 < δ < 1 and n is the number of samples in LBF dataset. We first provide an upper bound on estimation error.

Theorem D.2. Given Assumption 5.1, with probability at least 1− δ, then the following upper bound holds on the
estimation error of the LSE for a learning policy πθ ∈ Πθ

Estλ(πθ) ≤
1

1 + ϵ
|λ|ϵν − 1

λ

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3λ exp(λν1/(1+ϵ))n
.
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Proof. To ease the notation, we consider Yθ(A,X) = wθ(A,X)R. Using Bernstein’s inequality (Lemma B.4), with
probability (1− δ), we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≥ −
√

4V(exp(λYθ(A,X))) log(2/δ)

n
− 4 log(2/δ)

3n
.

Using Lemma 5.2, V(exp(λYθ(A,X))) ≤ |λ|1+ϵν, we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≥ −
√

4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n
.

As the log function is an increasing function, the following holds with probability at least (1− δ),

V̂λ
LSE(S, πθ) ≥

1

λ
log

(
E[eλYθ(A,X)] +

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n

)
.

where recall that V̂λ
LSE(S, πθ) =

1
λ log

(
1
n

∑n
i=1 exp(λyθ(ai, xi))

)
. With probability at least (1− δ), using the inequality

log(x+ y) ≤ log(x) + y/x for x > 0,

V̂λ
LSE(S, πθ) ≥

1

λ
log

(
E[eλYθ(A,X)] +

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n

)

≥ 1

λ
log
(
E[eλYθ(A,X)])

)
+

1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n
.

Using Lemma B.11, we have with probability at least (1− δ),

V̂λ
LSE(S, πθ) ≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[Yθ(A,X)1+ϵ]

+
1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n

≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[Yθ(A,X)1+ϵ]

+
1

λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3λE[eλYθ(A,X)]n

≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵν +

1

λ

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
+

4 log(2/δ)

3λ exp(λν1/(1+ϵ))n
.

The final result holds by by applying Lemma B.10 to E[eλYθ(A,X)] ≥ exp(λν1/(1+ϵ)).

Next, we provide a lower bound on estimation error.

Theorem D.3. Given Assumption 5.1, and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

1
δ

γ2 exp(2λν1/(1+ϵ))
, then there exists γ ∈ (0, 1) such

that with probability at least 1− δ, the following lower bound on estimation error of the LSE for a learning policy
πθ ∈ Πθ holds

Estλ(πθ) ≥
1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
+

4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n
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Proof. To ease the notation, we consider Yθ(A,X) = Rwθ(A,X). Using Bernstein’s inequality (Lemma B.4), with
probability (1− δ), we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≤
√

4V(exp(λYθ(A,X))) log(2/δ)

n
+

4 log(2/δ)

3n
.

Using Lemma 5.2, V(exp(λYθ(A,X))) ≤ |λ|1+ϵν, we have,

E[exp(λYθ(A,X))]− 1

n

n∑
i=1

exp(λYθ(ai, xi)) ≤
√

4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n
.

As the log function is an increasing function, the following holds with probability at least (1− δ),

V̂λ
LSE(S, πθ) ≤

1

λ
log

(
E[eλYθ(A,X)]−

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n

)
.

where recall that V̂λ
LSE(S, πθ) =

1
λ log

(
1
n

∑n
i=1 exp(λyθ(ai, xi))

)
. Without loss of generality, we can assume that,

√
4|λ|1+ϵν log(2/δ)

n
+

4 log(2/δ)

3n
≤ γE[eλYθ(A,X)] (39)

for some γ ∈ (0, 1). Using the inequality log(z − y) ≥ log(z)− y
z−y for z > y > 0, and assuming z = E[eλYθ(A,X)] and

y =
√

4|λ|1+ϵν log(2/δ)
n + 4 log(2/δ)

3n and combining with equation 39, then with probability (1− δ), we have,

V̂λ
LSE(S, πθ) ≤

1

λ
log

(
E[eλYθ(A,X)]−

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3n

)

≤ 1

λ
log
(
E[eλYθ(A,X)]

)
− 1

λ(1− γ)E[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n

− 4 log(2/δ)

(1− γ)λ3E[eλYθ(A,X)]n
.

Equation 39 can be considered as quadratic equation in terms of 1√
n

. Then, using lemma B.6, we have,(
2|λ|1+ϵν + 4

3γ
)
log(2/δ)

γ2 exp(2λν1/(1+ϵ))
≤ n. (40)

Using Lemma B.11, with probability at least (1− δ) we have

V̂λ
LSE(S, πθ) ≤ E[Yθ(A,X)]− 1

λ(1− γ)E[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3(1− γ)λE[eλYθ(A,X)]n

≤ E[Yθ(A,X)]− 1

(1− γ)λE[eλYθ(A,X)]

√
4|λ|1+ϵν log(2/δ)

n
− 4 log(2/δ)

3(1− γ)λE[eλYθ(A,X)]n

≤ E[Yθ(A,X)]− 1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n
.

The final result holds by applying Lemma B.10 to E[eλYθ(A,X)] ≥ exp(λν1/(1+ϵ)).
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Using the previous upper and lower bounds on estimation error, we can provide an upper bound on the regret of the LSE
estimator.

Theorem 5.3 (Restated). For any γ ∈ (0, 1), given Assumption 5.1, assuming finite policy set |Πθ| < ∞ and

n ≥ (2|λ|1+ϵν+ 4
3γ) log

1
δ

γ2 exp(2λν1/(1+ϵ))
, with probability at least (1− δ), the following upper bound holds on the regret of the LSE

estimator,

0 ≤ Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
.

Proof. We have,

V (πθ∗)− V (πθ̂) = V (πθ∗)− V̂λ
LSE(S, πθ∗)︸ ︷︷ ︸

I1

+V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂)︸ ︷︷ ︸
I2

+V̂λ
LSE(S, πθ̂)− V (πθ̂)︸ ︷︷ ︸

I3

. (41)

Using upper bound on estimation error, Theorem D.2, and union bound (Shalev-Shwartz & Ben-David, 2014), with
probability at least 1− δ, the following upper bound holds on term I1,

V (πθ∗)− V̂λ
LSE(S, πθ∗) ≤ sup

πθ∈Πθ

V (πθ)− V̂λ
LSE(S, πθ)

≤ 1

1 + ϵ
|λ|ϵν − 1

λ

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3λ exp(λν1/(1+ϵ))n

.

(42)

Using lower bound on estimation error, Theorem D.3, and union bound (Shalev-Shwartz & Ben-David, 2014), with
probability at least 1− δ, the following upper bound holds on term I3,

V̂λ
LSE(S, πθ̂)− V (πθ̂) ≤ sup

πθ∈Πθ

V̂λ
LSE(S, πθ)− V (πθ)

≤ −1

λ(1− γ)

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3(1− γ)λ exp(λν1/(1+ϵ))n

.

(43)

Note that the term I2 is negative as the πθ̂ is the maximizer of the LSE estimator over Πθ. Combining equation 42 and
equation 43 with equation 41, and applying the union bound, completes the proof.

In the following, we provide a full version of Proposition 5.4.

Proposition 5.4 (Full Version). Given Assumption 5.1, for any 0 < γ < 1, assuming n ≥ (2ν+ 4
3γ) log

1
δ

γ2 exp(2ν1/(1+ϵ))

and setting λ = −n−ζ for ζ ∈ R+, then the overall convergence rate of the regret upper bound is
max(O(n−1+ζ), O(n−ϵζ), O(n(−ζϵ−1)/2)) for finite policy set.

Proof. Without loss of generality, we can assume that λ ≥ −1. Therefore, we have |λ|1+ϵ ≤ 1 and ν1/(1+ϵ) ≥ 0, which

results in n ≥ (2ν+ 4
3γ) log

1
δ

γ2 exp(−2ν1/(1+ϵ))
≥ (2|λ|1+ϵν+ 4

3γ) log
1
δ

γ2 exp(2λν1/(1+ϵ))
. Using Theorem 5.3, with probability at least (1− δ), we have

Rλ(πθ̂, S)

≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
(44)

≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
+

(2− γ)

(1− γ) exp(λν1/(1+ϵ))

√
4|λ|ϵν log 4|Πθ|

δ

n
. (45)
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Since λ ≥ −1, we have exp(λν1/(1+ϵ)) ≥ exp(−ν1/(1+ϵ)) (note that ν1/(1+ϵ) ≥ 0 and −1 < λ < 0). Replac-
ing λ with λ⋆ = −n−ζ and exp (λν1/(1+ϵ)) with exp (−ν1/(1+ϵ)), then we have the overall convergence rate of
max(O(n−ϵζ), O(n−1+ζ), O(n(−ζϵ−1)/2)).

D.3. Proofs and Details of Bias and Variance

Proposition 5.5 (Restated). Given Assumption 5.1, the following lower and upper bounds hold on the bias of the
LSE estimator,

(n− 1)

2n|λ|
V(eλwθ(A,X)R) ≤ B(V̂λ

LSE(S, πθ)) ≤
1

1 + ϵ
|λ|ϵν +

1

2nλ
V(eλwθ(A,X)R).

Proof. In the proof, for the sake of simplicity of notation, we consider Yθ(A,X) = wθ(A,X)R. For the lower bound we
need to prove the following,

V (πθ)− E
[
V̂λ

LSE(S, πθ)
]
≥ n− 1

n|λ|
V
(
eλwθ(A,X)R

)
.

Setting yθ(ai, xi) = riwθ(ai, xi), according to Lemma B.7 for b = 1, f(x) = log (x) + 1
2x

2 is concave. So we have,

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

≥ 1

n

(
n∑

i=1

log
(
eλyθ(ai,xi)

)
+

1

2
e2λyθ(ai,xi)

)

=
λ

n

n∑
i=1

yθ(ai, xi) +
1

2n

n∑
i=1

e2λyθ(ai,xi).

Hence,

E
[
1

λ
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
≤ E

[
1

n

n∑
i=1

yθ(ai, xi) +
1

2nλ

n∑
i=1

e2λyθ(ai,xi) − 1

2λ

(∑n
i=1 e

λyθ(ai,xi)

n

)2
]

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− E

[(∑n
i=1 e

λyθ(ai,xi)

n

)2
])

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− V

(∑n
i=1 e

λyθ(ai,xi)

n

)
− E

[∑n
i=1 e

λyθ(ai,xi)

n

]2)

= E [Yθ(A,X)] +
1

2λ

(
E
[
e2λYθ(A,X)

]
− 1

n
V
(
eλYθ(A,X)

)
− E

[
eλYθ(A,X)

]2)
= E[Yθ(A,X)] +

n− 1

2nλ
V
(
eλYθ(A,X)

)
.

Note that E[Yθ(A,X)] = V (πθ). It completes the proof for the lower bound.

For the upper bound, we need to prove the following

1

2nλ
V(eλwθ(A,X)R) ≥ 1

λ
log
(
E
[
eλYθ(A,X)

])
− E

[
V̂λ

LSE(S, πθ)
]
. (46)
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Note that, an upper bound 1 on
∑n

i=1 eλriwθ(ai,xi)

n holds. Now, we have,

E[V̂λ
LSE(S, πθ)] =

1

λ
E
[
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
=

1

λ
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log
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i=1 e

λyθ(ai,xi)

n

)2

− 1

2

(∑n
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(
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n
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1
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n
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− 1

2
E
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i=1 e

λyθ(ai,xi)

n

)2
])

=
1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2λ
V
(∑n

i=1 e
λyθ(ai,xi)

n

)
=

1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2nλ
V
(
eλYθ(A,X)

)
,

where the first inequality is derived by applying Jensen inequality on function

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

,

which is concave based on Lemma B.7 for b = 1. Then, we have,

1

λ
log
(
E
[
eλYθ(A,X)

])
− E[V̂λ

LSE(S, πθ)] ≤
1

2nλ
V
(
eλYθ(A,X)

)
.

Finally, we combine the upper bound in equation 46 .

E[V̂λ
LSE(S, πθ)]−

1

λ
log
(
E
[
eλYθ(A,X)

])
≥ − 1

2nλ
V
(
eλYθ(A,X)

)
,

and the upper bound in Lemma B.11,

1

λ
log
(
E
[
eλYθ(A,X)

])
≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[|Yθ(A,X)|1+ϵ].

Therefore, we have,

E[V̂λ
LSE(S, πθ)] ≥ E[Yθ(A,X)]− 1

1 + ϵ
|λ|ϵE[|Yθ(A,X)|1+ϵ]

− 1

2nλ
V
(
eλwθ(A,X)R

)
.

(47)

It completes the proof.

Proposition 5.7. Assume that E[(wθ(A,X)R)2] ≤ ν2 (Assumption 5.1 for ϵ = 1) holds. Then the variance of the
LSE estimator with λ < 0, satisfies,

V(V̂λ
LSE(S, πθ)) ≤

1

n
V(wθ(A,X)R) ≤ 1

n
ν2. (48)

Proof. Let Yθ(A,X) = wθ(A,X)R and Y
(c)
θ = Yθ(A,X)− E[Yθ(A,X)] be the centered Yθ(A,X). We have,

V̂λ
LSE(S, πθ) =

1

λ
ln

(∑n
i=1 e

λyi,θ

n

)
=

1

λ
ln

(∑n
i=1 e

λ(y
(c)
i,θ−mθ)

n

)
=

1

λ
ln

(∑n
i=1 e

λy
(c)
i,θ

n

)
+mθ

where mθ = E[Yθ(A,X)]. Note that, we also have V(Y (c)
θ ) = V(Yθ).
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Now, setting Z =
∑n

i=1 e
λy

(c)
i,θ

n , we have,

V(V̂λ
LSE(S, πθ)) = V

(
1

λ
logZ

)
Furthermore, using Jensen’s inequality for λ < 0, we have,

1

λ
logZ ≤

∑n
i=1 y

(c)
i,θ

n
.

Hence we have,

V(V̂λ
LSE(S, πθ)) = E

[
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log2 Z

]
−
(
E
[
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])2

≤ E
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(c)
θ
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(∑n
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(c)
i,θ
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)
+ 0

=
1

n
V(Y (c)

θ ) =
1

n
V(Yθ).

It completes the proof.

For the moment of the LSE estimator, we provide the following upper bound.

Proposition D.4 (Moment bound). Given Assumption 5.1, the following upper bound hold on the moment of the
LSE estimator,

E
[∣∣∣ 1
λ
log
(∑n

i=1 e
λwθ(ai,xi)ri

n

)∣∣∣1+ϵ
]
≤ ν. (49)

Proof. Suppose that Z =
∑n

i=1 eλriwθ(ai,xi)

n . Also set yi,θ(ai, xi) = ri(ai, xi)wθ(ai, xi). For negative λ < 0 and Z > 0,
we have,

V̂λ
LSE(S, πθ) =

1

λ
log(Z)

≤
∑n

i=1 riwθ(ai, xi)

n
.

Since logZ < 0 for 0 < Z < 1, we have,

E
[∣∣∣ 1
λ
logZ

∣∣∣1+ϵ
]
≤ E

[∣∣∣ 1
n

n∑
i=1

wθ(ai, xi)ri

∣∣∣1+ϵ
]

≤ E[|wθ(A,X)R|1+ϵ]

≤ ν,

where the second inequality holds due to Jensen inequality.
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D.4. Proof and Details of Robustness of the LSE estimator: Noisy Reward

Using the functional derivative (Cardaliaguet et al., 2019), we can provide the following results.

Proposition D.5. Given Assumption 5.1, then the following holds,

1

λ
log(EP1 [exp(λwθ(A,X)R)])− 1

λ
log(EP2 [exp(λwθ(A,X)R)])

≤
TVc(PR|X,A, P̃R|X,A)

λ2

(
exp(|λ|ν̃1/(1+ϵ))− exp(|λ|ν1/(1+ϵ))

)
ν̃1/(1+ϵ) − ν1/(1+ϵ)

,

(50)

where P1 = PX ⊗ π0(A|X)⊗ PR|X,A and P2 = PX ⊗ π0(A|X)⊗ P̃R|X,A.

Proof. We have that

1

λ
log(EP1

[exp(λwθ(A,X)R)])− 1

λ
log(EP2

[exp(λwθ(A,X)R)])

(a)
=

∫ 1

0

∫
R×X×A

exp(λwθ(A,X)R)

|λ|EPγ
[exp(λwθ(A,X)R)]

PX ⊗ π0(A|X)(PR|X,A − P̃R|X,A)(dadxdr)dγ

(b)

≤
TVc(PR|X,A, P̃R|X,A)

|λ|

∫ 1

0

1

EPγ [exp(λwθ(A,X)R)]
dγ

(c)

≤
TVc(PR|X,A, P̃R|X,A)

λ2

(
exp(|λ|ν̃1/(1+ϵ))− exp(|λ|ν1/(1+ϵ))

)
ν̃1/(1+ϵ) − ν1/(1+ϵ)

.

(51)

where Pγ = PX ⊗ π0(A|X)⊗
(
P̃R|X,A + γ(PR|X,A − P̃R|X,A)

)
, (a), (b) and (c) follow from the functional derivative and

Lemma B.2 and Jensen-inequality.

Combining Proposition D.5 with estimation error bounds, Theorem D.3 and Theorem D.2, we derive the upper bound on the
regret under noisy reward scenario.

Theorem 5.9. Given Assumption 5.1, Assumption 5.8 and assuming n ≥ (2|λ|1+ϵν+ 4
3γ) log

|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))
, with probability

at least (1 − δ), then there exists γ ∈ (0, 1) such that the following upper bound holds on the regret of the LSE
estimator under noisy reward logged data,

0 ≤ Rλ(πθ̂(S̃), S̃) ≤
|λ|ϵ

1 + ϵ
ν

− 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν̃1/(1+ϵ))
− (2− γ)
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√
4|λ|1+ϵν̃ log 4|Πθ|

δ

n exp(2λν̃1/(1+ϵ))

+
2TVc(PR|X,A, P̃R|X,A)

λ2

(
exp(|λ|ν̃1/(1+ϵ))− exp(|λ|ν1/(1+ϵ))

)
ν̃1/(1+ϵ) − ν1/(1+ϵ)

,

where πθ̂(S̃) = argmaxπθΠθ
V̂λ

LSE(πθ, S̃).

Proof. We have,

V (πθ∗)− V (πθ̂(S̃)) = V (πθ∗)− V̂λ
LSE(S̃, πθ∗)︸ ︷︷ ︸

I1

+V̂λ
LSE(S̃, πθ∗)− V̂λ

LSE(S̃, πθ̂(S̃))︸ ︷︷ ︸
I2

+ V̂λ
LSE(S̃, πθ̂(S̃))− V

(
πθ̂(S̃)

)︸ ︷︷ ︸
I3

.
(52)
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Using upper bound on estimation error, Theorem D.2, and union bound (Shalev-Shwartz & Ben-David, 2014), with
probability at least 1− δ, the following upper bound holds on term I1,

V (πθ∗)− V̂λ
LSE(S̃, πθ∗)

= V (πθ∗)− 1

λ
log(EP1

[exp(λwθ(A,X)R)])

+
1

λ
log(EP1
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λ
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3λ exp(λν1/(1+ϵ))n

.

(53)

Using lower bound on estimation error, Theorem D.3, and union bound (Shalev-Shwartz & Ben-David, 2014), with
probability at least 1− δ, the following upper bound holds on term I3,

V̂λ
LSE(S̃, πθ̂(S̃))− V (πθ̂(S̃))

= V̂λ
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1
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λ
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√
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(
exp(|λ|ν̃1/(1+ϵ))− exp(|λ|ν1/(1+ϵ))
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.

(54)

Note that the term I2 is negative as the πθ̂(S̃) is the maximizer of the LSE estimator over Πθ. Combining equation 53 and
equation 54 with equation 52, and applying the union bound, completes the proof.

D.5. Data-driven selection of λ

In Theorem 5.3, we assume a fixed value of λ. However, it is often important in practical applications to have a method for
adjusting λ dynamically based on the data.

Recall the following regret bound proposed by Theorem 5.3,

Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν +

4(2− γ)

3(1− γ)

log 4|Πθ|
δ exp(|λ|ν1/(1+ϵ))

n|λ|

+
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(1− γ)|λ|

√
4|λ|1+ϵν log 4|Πθ|

δ exp(2|λ|ν1/(1+ϵ))

n

which is true for any γ. If γ tends to zero, we have,

Rλ(πθ̂, S) ≤
|λ|ϵ

1 + ϵ
ν +

8

3

exp(|λ|ν1/(1+ϵ)) log 4|Πθ|
δ

n|λ|
+

2

|λ|

√
4|λ|1+ϵν log 4|Πθ|

δ exp(2|λ|ν1/(1+ϵ))

n
.
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Let the upper bound be UR and x =
√
ν|λ|1+ϵ. We have,

UR =
x

2ϵ
1+ϵ

(1 + ϵ)ν
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1+ϵ
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1+ϵ exp(x
2
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= ν
1

1+ϵ
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3
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1+ϵ

 .

(55)

Finally, we assume that |λ| ≤ 1 and bound and replace the exponential exp(x
2

1+ϵ ) by e. Minimizing the upper bound in
equation 55, we derive the following optimum λ for the optimization of the upper bound in Theorem 5.3,

λD = max

−f(ϵ) ·

(
ln
(
1
δ

)
vn

) 1
1+ϵ

,−1

 , (56)

where f(ϵ) =
(

e(1+ϵ)
ϵ

(
1− ϵ+

√
(1− ϵ)2 + 8ϵ

3e(1+ϵ)

)) 2
1+ϵ

. Note that, we can compute the empirical value of ν based on
the available LBF dataset,

ν̂ =
1

n

n∑
i=1

(
wθ(ai, xi)ri

)1+ϵ
. (57)

Using empirical ν̂ in equation 56, we derive the value for data driven λ. Note that, in our experiments, we consider ϵ = 1.

Data-driven λ under noisy reward: As discussed in Section 5.4, we can also derive a data-driven under noisy reward for
asymptotic regime, where n → ∞. For this purpose, we need to solve the following objective function,

argmin
λ∈(−∞,0)

|λ|ϵ

1 + ϵ
ν +

2TVc(PR|X,A, P̃R|X,A)

λ2

exp(|λ|ν̃1/(1+ϵ))− exp(|λ|ν1/(1+ϵ))

ν̃1/(1+ϵ) − ν1/(1+ϵ)
,

To solve this objective, we use the following estimation,

ex − ey

x− y
≈ ex

which is true when x and y are close. Using this estimation, we replace the term exp(|λ|ν̃1/(1+ϵ))−exp(|λ|ν1/(1+ϵ))
ν̃1/(1+ϵ)−ν1/(1+ϵ) with

|λ| exp(|λ|ν̃1/(1+ϵ)), and estimate ν with ν̃, which is observed from the data and we get a simplified objective function as,

λND := argmin
λ∈(−∞,0)

|λ|ϵ

1 + ϵ
ν̃ +

2TVc(PR|X,A, P̃R|X,A)

|λ|
exp(|λ|ν̃1/(1+ϵ)), (58)

We further studied the performance of data-driven λ selection in App. G.7.

D.6. PAC-Bayesian Discussion

In this section, we explore the PAC-Bayesian approach and its application in extending our previous results. Given that the
methodology for deriving these results closely resembles our earlier approach, we will outline the key steps in the derivation
process rather than providing a full detailed analysis.

For this purpose, we introduce several additional definitions inspired by Gabbianelli et al. (2023). For the PAC-Bayesian
approach, we focus on randomized algorithms that output a distribution Q̂n ∈ P(Πθ) over policies. Our interest lies in
performance guarantees that satisfy two conditions: (1) they hold in expectation with respect to the random selection of
π̂n ∼ Q̂n, and (2) they maintain high probability with respect to the realization of the LBF dataset. For this purpose, we
define the following integral forms of our previous formulation,
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V (Q) =

∫
V (πθ)dQ(πθ),

V̂λ
LSE(S,Q) =

∫
V̂λ

LSE(S, π)dQ(π),

R(Q,S) =

∫
R(π, S)dQ(π).

(59)

These expressions capture relevant quantities evaluated in expectation under the distribution Q ∈ P(Πθ) where P(Πθ) is
the set of distributions over policy set. Let P ∈ P(Πθ) a prior distribution over policy class.

We can relax the uniform assumption on (1 + ϵ)-th moment Assumption 5.1, as follows,

Assumption D.6. The reward distribution PR|X,A and PX ⊗ π0(A|X) are such that for a posterior distribution Q over the
set of policies Πθ and some ϵ ∈ (0, 1], the (1 + ϵ)-th moment of the weighted reward is bounded,

Eπθ∼QEPX⊗π0(A|X)⊗PR|X,A

[(
wθ(A,X)R

)1+ϵ] ≤ νq. (60)

In order to derive the upper bound on regret, we need to derive the upper and lower PAC-Bayesian bound on estimation
error. For this purpose, we can apply the following bound from (Tolstikhin & Seldin, 2013, Theorem 2) which holds with
probability 1− δ and for a fixed c1 > 1,∣∣∣ ∫

πθ∼Q
E[exp(λYθ(A,X))]−

∫
πθ∼Q

1

n

n∑
i=1

exp(λYθ(ai, xi))
∣∣∣

≤ (1 + c1)

√
(e− 2)EQ[V(exp(λYθ(A,X)))]

(
KL(Q∥P) + ln ν1

δ

)
n

,

(61)

where Yθ(ai, xi) = wθ(ai, xi)ri and

ν1 =

⌈
1

ln c1
ln

(√
(e− 2)n

4 ln(1/δ)

)⌉
+ 1. (62)

Similar to Theorem D.3 and Theorem D.2, we can replace EQ[V(exp(λYθ(A,X)))] with |λ|1+ϵE[Yθ(A,X)1+ϵ]. Given
Assumption D.6, the following upper bounds holds on estimation error,

Eπθ∼Q[Estλ(πθ)] ≤
1

1 + ϵ
|λ|ϵνq −

(1 + c1)

λ

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (63)

For lower bound, given Assumption D.6, there exists n0 such that for n ≥ n0 and γq ∈ (0, 1) the following holds with
probability (1− δ),

Eπθ∼Q[Estλ(πθ)] ≥
(1 + c1)

λ(1− γq)

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (64)

Combining equation 64 and equation 63, we can derive an upper bound on R(Q̂, S) in a similar approach to Theorem 5.3
under Assumption D.6 and assuming Q̂n := argmaxQ∈P(Πθ) V̂

λ
LSE(S,Q).

R(Q̂n, S) ≤
1

1 + ϵ
|λ|ϵνq −

(1 + c1)(2− γq)

(1− γq)λ

√
(e− 2)|λ|1+ϵνq

(
KL(Q∥P) + ln 2ν1

δ

)
exp(2λν

1/(1+ϵ)
q )n

. (65)

Note that, the PAC-Bayesian approach in (London & Sandler, 2019; Sakhi et al., 2023; 2024; Aouali et al., 2023) is different.
However, their PAC-Bayesian model can also be applied to our LSE estimator.
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D.7. Sub-Gaussian Discussion

In this section, we investigate the sub-Gaussianity concentration inequality (estimation error) under LSE estimator.

We first present the following general result.

Proposition D.7. Given Assumption 5.1, for any 0 < γ < 1, assuming n ≥ max

(
(2ν+ 4

3γ) log
1
δ

γ2 exp(2ν1/(1+ϵ))
,
log 2

δ

ν

)
and setting

λ = −
(
log 2

δ

νn

) 1
1+ϵ

,

then with a probability at least (1− δ) for δ ∈ (0, 1), the absolute of estimation error of the LSE estimator satisfies for a
fixed πθ ∈ Πθ, ∣∣Estλ(πθ)

∣∣ ≤ ( 1

1 + ϵ
+

4

(1− γ) exp(ν1/(1+ϵ))

)
ν

1
1+ϵ

(
log 2

δ

n

) ϵ
1+ϵ

.

Proof. Choosing n ≥ 2 log 2
δ

ν , we have λ ≥ −1, |λ|1+ϵ ≤ 1 and ν ≥ 0, which results in n ≥ (2ν+ 4
3γ) log

1
δ

γ2 exp(2ν1+ϵ) ≥
(2|λ|1+ϵν+ 4

3γ) log
1
δ

γ2 exp(2λν1+ϵ) . Using Theorem D.2 and Theorem D.3, we have with probability at least (1− δ),∣∣Estλ(πθ)
∣∣

≤ 1

1 + ϵ
|λ|ϵν − 1

λ(1− γ)

√
4|λ|1+ϵν log(2/δ)

n exp(2λν1/(1+ϵ))
− 4 log(2/δ)

3(1− γ)λ exp(λν1/(1+ϵ))n
(66)

Since λ ≥ −1, we have exp(λν1+ϵ) ≥ exp(−ν1+ϵ) (note that ν ≥ 0). Replacing λ with λ⋆ = −
(

log 2
δ

νn

) 1
1+ϵ

and

exp (λν1+ϵ) with exp (ν1+ϵ), we have,

∣∣Estλ(πθ)
∣∣ ≤ ν

1
1+ϵ

1 + ϵ

(
log 2

δ

n

) ϵ
1+ϵ

+
4ν

1
1+ϵ

3(1− γ) exp(ν1/(1+ϵ))

(
log 2

δ

n

) ϵ
1+ϵ

+
2ν

1
1+ϵ

(1− γ) exp(ν1/(1+ϵ))

(
log 2

δ

n

) ϵ
1+ϵ

≤
(

1

1 + ϵ
+

4

(1− γ) exp(ν1/(1+ϵ))

)
ν

1
1+ϵ

(
log 2

δ

n

) ϵ
1+ϵ

with a probability at least (1− δ). As the upper bound on absolute value of the estimation error holds.

Remark D.8. Suppose that the second moment of weighted reward is bounded which is equal to Assumption 5.1 with ϵ = 1.
As a result, using Proposition D.7 for ϵ = 1, we can establish a concentration inequality (estimation bound) for the LSE
even in cases where the rewards are unbounded.

D.8. Implicit Shrinkage

Su et al. (2020) proposed the optimistic shrinkage where the weights are less than the main weights of the IPS estimator.
Other transformations of weights in other estimators are also lower bound to the main weights of IPS estimators. For
example, in TR-IPS, we have min(M,wθ(a, x)) which is a lower bound to wθ(a, x). Our LSE estimator is also a lower
bound to the IPS estimator,

1

λ
log(

1

n

n∑
i=1

exp(λwθ(ai, xi)ri)) ≤
1

n

n∑
i=1

wθ(ai, xi)ri, (67)

which can be interpreted as implicit shrinkage. Furthermore, note that the LSE is not separable with respect to the samples,
so instead of per-sample shrinkage, we investigate LSE’s shrinkage effect on the entire output, which is the estimated
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average reward. It can be derived by simple calculation that for λ < 0,

1

n

n∑
i=1

yi −
1

λ
log

(∑n
i=1 e

λyi

n

)
=

1

|λ|
DKL

(
1

n
1n, softmax(λyi)

)
,

where 1n is all-one vector with size n. Hereby we see that LSE shrinks the Monte-Carlo average by the KL-divergence
between the uniform vector and softmax of the samples (with temperature 1/λ). This way, when outlier values or large
values are out of the normal range of the data are observed, the amount of shrinkage increases. Also when the variance is
high or we have heavy-tailed distributions, the softmax of λyi goes further from the uniform vector and more shrinkage is
applied.

D.9. Robustness Discussion

In this section, we study the convergence rate LSE estimator under m outlier samples. Without loss of generality, assume
that P̃R|X,A = n

n+mPR|X,A + m
n+mPRO, where PRO is the distribution of outlier samples. Then, we have

TVc(PR|X,A, P̃R|X,A) =

∫
R
|PR|X,A(r)− P̃R|X,A(r)|dr (68)

=
m

n+m

∫
R
|PR|X,A(r)− PRO(r)|dr (69)

≤ m

n+m
TVc(PR|X,A, PRO) (70)

≤ 2m

n+m
. (71)

Note that D(ν̃, ν) = exp(|λ|ν̃1/(1+ϵ))−exp(|λ|ν1/(1+ϵ))
ν̃1/(1+ϵ)−ν1/(1+ϵ) ∼ O(|λ|). Therefore, we have,

2TVc(PR|X,A, P̃R|X,A)

λ2
D(ν̃, ν) ∼ O

( 2m

|λ|(n+m)

)
. (72)

Choosing λ = O(n−1/(1+ϵ)), we have the overall convergence rate of max
(
O(n−ϵ/(1+ϵ)), O( 2mn1/(1+ϵ)

n+m )
)

. Note that, for

m = 1 and large enough n, we have the convergence rate of O(n−ϵ/(1+ϵ)).

D.10. Relaxing the lower bound on n in the regret bound

We can relax the lower bound on n, by selecting γ appropriately. The lower bound on n, given γ > 0, becomes equivalent
to the following inequality of γ,

γ ≥ B +
√
B2 + 4An

2n

, where A =
2|λ|1+ϵν log

|Πθ|
δ

exp(2λν1/(1+ϵ))
and B =

4
3 log

|Πθ|
δ

exp(2λν1/(1+ϵ))
. If,

1 ≥ B +
√
B2 + 4An

2n

existence of such a γ is guaranteed. This is equivalent to,

n ≥
(
2|λ|1+ϵν + 4

3

)
log |Πθ|

δ

exp(2λν1/(1+ϵ))

Hence, setting γ = B+
√
B2+4An
2n which is O

(
1√
n

)
, results in a lower bound on n which is independent of γ and is weaker

than the original lower bound for any γ. This only changes the regret bound at most by a constant factor since 2− γ ≤ 2

and 1
1−γ = O

(
1

1− 1√
n

)
= O

( √
n√

n−1

)
= O(1), and remove the dependence of the bound on the extra parameter γ.
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E. Robustness of the LSE estimator: Estimated Propensity Scores
In this section, we study the robustness of the LSE estimator with respect to estimated (noisy) propensity scores.

To model the estimated propensity scores, we consider π̂0(a|x) as the noisy version of the logging policy π0(a|x). Similarly,
we define V̂λ

LSE(Ŝ, πθ) for the LSE estimator on the noisy data samples Ŝ, with estimated propensity scores. In this section,
we made the following definitions.

Definition E.1 (Discrepancy metric). We define the general discrepancy metric between ŵθ(A,X)R and wθ(A,X)R with
bounded 1 + ϵ-th moment as,

dπ0
(ŵθ(A,X)R,wθ(A,X)R) := E

[(
ŵθ(A,X)− wθ(A,X)

)
R
]
. (73)

Definition E.2. The log-sum error of the noisy (or estimated) propensity score π̂0(a|x) is defined as

∆πθ
(π̂0, π0) =

1

λ
logEP1 [exp(λŵθ(A,X)R)]− 1

λ
logEP1 [exp(λwθ(A,X)R)]. (74)

where ŵθ(A,X) = πθ(A|X)
π̂0(A|X) and where P1 = PX ⊗ π0(A|X)⊗ PR|X,A.

Definition E.2 captures a notion of bias in the noise that is applied to the propensity score. It indicates the change in the
population form of the LSE estimator. Similarly, for the Monte Carlo estimator, the change in the expected value shows the
bias of the noise, and for additive noise, the zero-mean assumption ensures that in expectation, the noisy value is the same
as the original value. For the LSE estimator instead, we require the exponential forms to be close to each other. It is also
inspired by influence function definition and robust statistic (Ronchetti & Huber, 2009; Christmann & Steinwart, 2004).

We made the following assumption on estimated propensity scores.

Assumption E.3 (Bounded moment under noise). The reward function r(A,X) and PX are such that for all learn-
ing policy πθ(A|X) ∈ Πθ, the moment of weighted reward is bounded under estimated propensity score scenario,
EPX⊗π0(A|X)⊗PR|X,A

[(ŵθ(A,X)R)1+ϵ] ≤ ν̂.

Remark E.4. Under Assumption E.3 and Assumption 5.1 and using Lemma B.10, it can be shown that the discrepancy
metric in Definition E.1 is bounded,

−ν1/(1+ϵ) ≤ dπ0(ŵθ(A,X)R,wθ(A,X)R) ≤ ν̂1/(1+ϵ). (75)

We define the achieved policy under the estimated propensity scores as

πθ̃(S) := arg max
πθ∈ΠΘ

V̂λ
LSE(Ŝ, πθ).

In order to derive an upper bound on the regret under the noisy propensity score, the following results are needed.

Proposition E.5. Given Assumption 5.1 and Assumption E.3, the following upper and lower bound hold on
∆πθ

(π̂0, π0),

dπ0
(wθ(A,X)R, ŵθ(A,X)R)− |λ|ϵν̂

1 + ϵ
≤ ∆πθ

(π̂0, π0),

and,

∆πθ
(π̂0, π0) ≤

|λ|ϵν
1 + ϵ

+ dπ0
(ŵθ(A,X)R,wθ(A,X)R).

Proof. It follows directly from applying Lemma B.11 to 1
λ logEP1 [exp(λŵθ(A,X)R)] and 1

λ logEP1 [exp(λwθ(A,X)R)]
and combining the lower and upper bounds. Then, we have,

E
[(
wθ(A,X)− ŵθ(A,X)

)
R
]
− |λ|ϵν̂

1 + ϵ
≤ ∆πθ

(π̂0, π0) ≤
|λ|ϵν
1 + ϵ

+ E
[(
ŵθ(A,X)− wθ(A,X)

)
R
]
.
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Proposition E.6. Given Assumption E.3, and assuming n >
4
3µmin+4

µ2
min

log 4
δ where µmin =

min
(
eλν

1/(1+ϵ)

, eλν̂
1/(1+ϵ)

)
, then with probability at least (1− δ) for a fixed πθ ∈ Πθ, we have,

∣∣V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)−∆πθ
(π̂0, π0)

∣∣ ≤ 2υ(δ)

λ

( 1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
,

where, υ(δ) = log 4
δ

3n +

√
log 4

δ

n .

Proof. Set Yθ(A,X) = wθ(A,X)R, Ŷθ(A,X) = ŵθ(A,X)r(A,X), ui = 1
λ

(
eŷi − eλ∆πθ

(π̂0,π0)µ
)

and vi =
1
λ (e

yθ(ai,xi) − µ), where µ = E[eλYθ(A,X)]. We have −µ
λ ≤ vi ≤ 1

λ − µ
λ and − e

λ∆πθ
(π̂0,π0)

µ
λ ≤ ui ≤ 1

λ − e
λ∆πθ

(π̂0,π0)
µ

λ .
Then, using the one-sided Bernstein’s inequality (Lemma B.4), and changing variables (Lemma B.5), we have:

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] >
(1− µ) log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] < −
µ log 1

δ

3n
−

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)] >

(1− eλ∆πθ
(π̂0,π0)µ) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)] < −

eλ∆πθ
(π̂0,π0)µ log 1

δ

3n
−

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ.

Therefore, with probability at least 1− 2δ, for υ2 < 1
2E[e

λYθ(A,X)], we have,

V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)

=
1

λ
log

( ∑n
i=1 e

λŷi∑n
i=1 e

λyθ(ai,xi)

)
≤ 1

λ
log

(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)] + υ1
E[eλYθ(A,X)]− υ2

)

=
1

λ

(
log
(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)] + υ1

)
− log

(
E[eλYθ(A,X)]− υ2

))
≤ 1

λ

(
log
(
eλ∆πθ

(π̂0,π0)E[eλYθ(A,X)]
)
+

υ1

eλ∆πθ
(π̂0,π0)E[eλYθ(A,X)]

−
(
log
(
E[eλYθ(A,X)]

)
− υ2

E[eλYθ(A,X)]− υ2

))

≤ ∆πθ
(π̂0, π0) +

1

λ

(
υ1

E[eλŶθ(A,X)]
+

2υ2
E[eλYθ(A,X)]

)

≤ ∆πθ
(π̂0, π0) +

2

λ

(
υ1

E[eλŶθ(A,X)]
+

υ2
E[eλYθ(A,X)]

)
.
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where

υ1 =
(1− E[eλŶθ(A,X)]) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

υ2 =
E[eλYθ(A,X)] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Similarly, with probability at least 1− 2δ we have, given υ3 < 1
2E[e

λŶθ(A,X)],

V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ) ≥ ∆πθ
(π̂0, π0)−

2

λ

(
υ3

E[eλŶθ(A,X)]
+

υ4
E[eλYθ(A,X)]

)
,

where,

υ3 =
E[eλŶθ(A,X)] log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

υ4 =
(1− E[eλYθ(A,X))] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Therefore, with probability at least 1− 4δ we have,

∆πθ
(π̂0, π0)−

2

λ

(
υ3

E[eλŶθ(A,X)]
+

υ4
E[eλYθ(A,X)]

)
≤ V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ)

≤ ∆πθ
(π̂0, π0) +

2

λ

(
υ1

E[eλŶθ(A,X)]
+

υ2
E[eλYθ(A,X)]

)
.

We have for i ∈ [4],

υi ≤
log 1

δ

3n
+

√
log 1

δ

n
.

So, replacing δ with δ/4, we have with probability at least (1− δ),∣∣∣V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)−∆πθ
(π̂0, π0)

∣∣∣
≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

( 1

E[eλŶθ(A,X)]
+

1

E[eλYθ(A,X)]

)

≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

 2ϵ

λ

( 1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
,

which is true given log 4
δ

3n +

√
log 4

δ

n < 1
2 min

(
E[eλYθ(A,X)],E[eλŶθ(A,X)]

)
. According to Lemma B.6, this is satisfied by

n >
4
3µmin + 4

µ2
min

log
4

δ
.

In the following theorem, we study the regret of the LSE estimator under πθ̃(S) policy.

45



Log-Sum-Exponential Estimator for Off-Policy Evaluation and Learning

Theorem E.7. Suppose that,
πθ̃(Ŝ) = arg max

πθ∈ΠΘ

V̂λ
LSE(Ŝ, πθ),

where Ŝ is the data with noisy propensity scores. For any γ ∈ (0, 1), given Assumption 5.1, and E.3, and

assuming that n ≥ max

(
4
3µmin+4

µ2
min

log 4|Πθ|
δ ,

(2|λ|1+ϵν+ 4
3γ) log

4|Πθ|
δ

γ2 exp(2λν1/(1+ϵ))

)
where µmin = min

(
eλν

1/(1+ϵ)

, eλν̂
1/(1+ϵ)

)
,

the following upper bound holds on the regret of the LSE estimator under πθ̃(S) with probability at least (1− δ) for
δ ∈ (0, 1),

Rλ(πθ̃, S) ≤
2|λ|ϵ

1 + ϵ
ν +

|λ|ϵ

1 + ϵ
ν̂

− 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))

+ dπ0
(ŵθ̂(A,X)R,wθ̂(A,X)R) + dπ0

(ŵθ̃(A,X)R,wθ̃(A,X)R)

+
4υ( δ

4|Πθ| )

λ

( 1

eλν1/(1+ϵ)
+

1

eλν̂1/(1+ϵ)

)
,

(76)

where, υ(δ) = log 4
δ

3n +

√
log 4

δ

n .

Proof. Let θ̂ be,
πθ̂(S) = arg max

πθ∈ΠΘ

V̂λ
LSE(S, πθ).

We decompose the regret as follows,

Rλ(πθ̃, S)

= V (πθ∗)− V (πθ̃)

= V̂λ
LSE(S, πθ̃)− V (πθ̃)

− V̂λ
LSE(S, πθ̃) + V̂λ

LSE(Ŝ, πθ̃)

− V̂λ
LSE(Ŝ, πθ̃) + V̂λ

LSE(Ŝ, πθ̂)

− V̂λ
LSE(Ŝ, πθ̂) + V̂λ

LSE(S, πθ̂)

− V̂λ
LSE(S, πθ̂) + V̂λ

LSE(S, πθ∗)

− V̂λ
LSE(S, πθ∗) + V (πθ∗).

Using the estimation error bounds at Theorem D.3 and Theorem D.2 and using the union bound, with probability (1− δ) we
have,

V̂λ
LSE(S, πθ̃)− V (πθ̃) ≤ − 1

λ(1− γ)

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3(1− γ)λ exp(λν1/(1+ϵ))n

, (77)

V (πθ∗)− V̂λ
LSE(S, πθ∗) ≤ 1

1 + ϵ
|λ|ϵν − 1

λ

√
4|λ|1+ϵν log(2|Πθ|/δ)
n exp(2λν1/(1+ϵ))

− 4 log(2|Πθ|/δ)
3λ exp(λν1/(1+ϵ))n

. (78)

In addition, using Proposition E.6, we have,

V̂λ
LSE(Ŝ, πθ̃)− V̂λ

LSE(S, πθ̃) ≤ ∆π
θ̃
(π̂0, π0) +

2υ(δ/|Πθ|)
λ

(
1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
, (79)

V̂λ
LSE(S, πθ̂)− V̂λ

LSE(Ŝ, πθ̂) ≤ ∆π
θ̂
(π̂0, π0) +

2υ(δ/|Πθ|)
λ

(
1

eλν̂1/(1+ϵ)
+

1

eλν1/(1+ϵ)

)
. (80)
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As πθ̃ is the maximizer of V̂λ
LSE(Ŝ, πθ), we have,

V̂λ
LSE(Ŝ, πθ̂)− V̂λ

LSE(Ŝ, πθ̃) ≤ 0, (81)

and as πθ̂ is the maximizer of V̂λ
LSE(S, πθ) we have,

V̂λ
LSE(S, πθ∗)− V̂λ

LSE(S, πθ̂) ≤ 0. (82)

So putting all together, using the union bound we have with probability at least 1− δ,

V (πθ̃)− V (πθ∗) ≤ |λ|ϵ

1 + ϵ
ν − 4(2− γ)

3(1− γ)

log 4|Πθ|
δ

nλ exp(λν1/(1+ϵ))
− (2− γ)

(1− γ)λ

√
4|λ|1+ϵν log 4|Πθ|

δ

n exp(2λν1/(1+ϵ))
.

+∆π
θ̂
(π̂0, π0)−∆π

θ̃
(π̂0, π0)

+
2υ( δ

4|Πθ| )

λ

( 1

eλν1/(1+ϵ)
+

1

eλν̂1/(1+ϵ)

)
,

where υ
(

δ
4|Πθ|

)
=

log
(

16Πθ
δ

)
3n +

√
log
(

16Πθ
δ

)
n . The final result holds by applying Proposition E.5 to ∆π

θ̂
(π̂0, π0) −

∆π
θ̃
(π̂0, π0).

Discussion: The term dπ0(ŵθ̂(A,X)R,wθ̂(A,X)R) + dπ0(ŵθ̃(A,X)R,wθ̃(A,X)R) in equation 76 can be interpreted
as the cost of estimated propensity scores which is independent from n. Note that, we have the convergence rate of
O(n−ϵ/(1+ϵ)) for all remaining terms in equation 76.

In the following Corollary, we discuss that the small range of variation of the noise gives an upper bound on the variance of
the LSE estimator under estimated propensity score.

Corollary E.8. Under the same assumptions in Proposition E.6, then the following upper bound holds on the
variance of the LSE estimator underestimated propensity scores with probability at least (1− δ),

V(V̂λ
LSE(Ŝ, πθ)) ≤ 2V(V̂λ

LSE(S, πθ)) + 2B2ε2,

where ε = 2
λ

(
log 1

δ

3n +

√
log 1

δ

n

)
, and B =

(
1

eλν̂1/(1+ϵ) + 1

eλν1/(1+ϵ)

)
.

Proof. As ∆πθ
(π̂0, π0) is a constant with respect to V̂λ

LSE(Ŝ, πθ) and V̂λ
LSE(S, πθ), then we have,

V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) ≤
(
2Bε

2

)2

= B2ϵ2.

Therefore,

V(V̂λ
LSE(Ŝ, πθ)) = V(V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ) + V̂λ

LSE(S, πθ))

= V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) + V(V̂λ
LSE(S, πθ))

+ 2Cov(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ), V̂
λ
LSE(S, πθ))

≤ V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)) + V(V̂λ
LSE(S, πθ))

+ 2

√
V(V̂λ

LSE(S, πθ))V(V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ))

=

(√
V(V̂λ

LSE(S, πθ)) +

√
V(V̂λ

LSE(Ŝ, πθ)− V̂λ
LSE(S, πθ))

)2

≤
(√

V(V̂λ
LSE(S, πθ)) +Bε

)2

≤ 2V(V̂λ
LSE(S, πθ)) + 2B2ε2.
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From Corollary E.8, we have an upper bound on the variance of the LSE estimator underestimated propensity scores, in
terms of the variance of the LSE estimator under true propensity scores. Therefore, if V(V̂λ

LSE(S, πθ)) is bounded, then we
expect bounded V(V̂λ

LSE(Ŝ, πθ)).

E.1. Gamma Noise Discussion

For statistical modeling of the estimated propensity scores, as discussed in (Zhang et al., 2023b), suppose that the logging
policy is a softmax policy with respect to a.

π0(A|X) = softmax(fθ∗(X,A)), (83)

where fθ is a function parameterized by θ that indicates the policy’s function output before softmax operation and θ∗ is the
parameter of this function for the true logging policy.

We have an estimation of the function fθ∗(X,A), as fθ̂(X,A) and we model the error in the estimation of fθ∗(X,A) as a
random variable Z which is a function of X and A,

fθ̂(X,A) = fθ∗(X,A) + Z(X,A).

Then we have,

π̂0 = softmax(fθ̂(X,A))

= softmax(fθ∗ + Z)

∝ eZπ0.

Motivated by Halliwell (2018), we use a negative log-gamma distribution for Z, which results in an inverse Gamma
multiplicative noise on the propensity scores. Negative log-gamma distribution is skewed towards negative values, resulting
in inverse gamma noise on the logging policy which is skewed towards values less than one. This pushes the propensity
scores πθ

π0
towards the higher variance, i.e., the logging policy is near zero and the importance weight becomes large.

In particular, we consider a model-based setting in which the noise is modelled with an inverse Gamma distribution. We use
inverse gamma distribution 1/U as a multiplicative noise, so we have,

π̂0 =
1

U
π0 → ŵθ(A,X) = Uwθ(A,X).

which results in a multiplicative gamma noise on the importance-weighted reward. We choose U ∼ Gamma(b, b), so
E[U ] = 1. Hence, the expected value of the noisy version is the same as the original noiseless variable.

E[Uwθ(A,X)R] = E[U ]E[wθ(A,X)R] = E[wθ(A,X)R].

Note that we have

E
[
eλwθ(A,X)RU

]
= E

[(
1

1− λwθ(A,X)R/b

)b
]
,

Therefore, E[eλUwθ(A,X)R] converges to E[eλwθ(A,X)R] for b → ∞. Furthermore, we assume that for a large value b,
∆πθ

(π̂0, π0) ≈ 0 and using Proposition E.6, with a probability at least (1− δ), we have,∣∣∣V̂λ
LSE(Ŝ, πθ)− V̂λ

LSE(S, πθ)
∣∣∣ ≤ ϵ

( 1

E[eλŵθ(A,X)R]
+

1

E[eλwθ(A,X)R]

)
. (84)

The impact of inverse Gamma noise on the LSE estimator is constrained when the noise’s domain is sufficiently small.
This property ensures that the LSE remains relatively stable under certain noise conditions. Furthermore, we can reduce
the deviation from the original noiseless LSE by increasing the size of the Logged Bandit Feedback (LBF) dataset. This
relationship demonstrates the estimator’s robustness and scalability in practical applications.
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Table 7: Statistics of the datasets used in our experiments. For image datasets the 2048-dimensional features from pretrained
ResNet-50 are used.

DATA SET IPS-TRAINING SAMPLES TEST SAMPLES NUMBER OF ACTIONS DIMENSION

FMNIST 60, 000 10000 10 2048
EMNIST 60, 000 10000 10 2048
KUAIREC 12,530,806 4,676,570 10,728 1555

F. Experiment Details
Datasets: In addition to dataset EMNIST, we also run our estimator over Fashion-MNIST (FMNIST) (Xiao et al., 2017).

Setup Details: We use mini-batch SGD as an optimizer for all experiments. The learning rate used for EMNIST and
FMNIST datasets is 0.001. Furthermore, we use early stopping in our training phase and the maximum number of epochs is
300. For the image datasets, EMNIST and FMNIST, we use the last layer features from ResNet-50 model pretrained on the
ImageNet dataset (Deng et al., 2009).

F.1. Hyper-parameter Tuning

All experiments can be categorised into 4 classes,

• Supervised2Bandit OPL

• Synthetic OPE

• Supervised2Bandit OPE

• Real-world OPL

From different aspects, experiments have different setups.

1. Evaluation: For OPE experiments, multiple instances of the experiment are conducted and the empirical average
squared error of the estimator is calculated as the estimation of MSE. For OPL, a separate test set is used to evaluate
the estimator’s performance.

2. Hyper-parameter tuning: Each estimator may have one or no hyper-parameter. For all experiments except Super-
vised2Bandit OPE, and the ones that the selection of hyperparameter is explicitly specified, the selection of this
hyperparameter is conducted by grid-search. Other Table 8 indicates the search grid for each estimator. For super-
vised2Bandit OPE, for the estimators that provided a selection method (PM, LS, IX, OS, TR) we used their suggested
value. For other estimators we used grid-search. For ES and LSE we used the following grids {0.0, 0.3, 0.5, 0.7, 1.0},
and {0.0, 0.001, 0.01, 0.1, 1.0}, respectively.

In order to find the value for each hyper-parameter, we put aside a part of the training dataset as a validation set and find the
parameter that results in the highest accuracy on the validation set, and then we report the method’s performance on the test
set. In order to tune λ we use grid search over the values in {0.01, 0.1, 1, 10, 100}.

Hyper-Parameter Tuning for PM, ES, and IX Estimators: For the PM, ES, and IX estimators, grid search will be used
for hyper-parameter tuning. To tune the PM parameter λ, we will use data-driven approach proposed in (Metelli et al., 2021).
For the ES estimator, the parameter α will be varied across α ∈ {0.1, 0.4, 0.7, 1}. For the IX estimator, the γ parameter will
be tested with values in the set γ ∈ {0.01, 0.1, 1, 10, 100}.

F.2. Code

The code for this study is written in Python. We use Pytorch for the training of our model. The supplementary material
includes a zip file named rl_without_reward.zip with the following files:

49



Log-Sum-Exponential Estimator for Off-Policy Evaluation and Learning

Table 8: Hyperparameter of Different Estimators

Estimator Grid

ES α ∈ {0.0, 0.1, 0.4, 0.7, 1.0}
IX η ∈ {0.01, 0.1, 1.0, 10.0, 100.0}

PM λ̂ ∈ {0.0, 0.1, 0.3, 0.5, 0.8}
OS τ ∈ {0.01, 0.1, 1.0, 10.0, 100.0}
IPS-TR M ∈ {2.0, 5.0, 10.0, 50.0}

LS λ̃ ∈ {0.01, 0.1, 1.0, 10.0, 100.0}
LSE λ ∈ {−0.01,−0.1,−1.0,−10.0,−100.0}

• preprocess_raw_dataset_from_model.py: The code to generate the base pre-processed version of the datasets with
raw input values.

• The data folder consists of any potentially generated bandit dataset (which can be generated by running the scripts in
code).

• The code folder contains the scripts and codes written for the experiments.

– requirements.txt contains the Python libraries required to reproduce our results.
– readme.md includes the syntax of different commands in the code.
– accs: A folder containing the result reports of different experiments.
– data.py code to load data for image datasets.
– eval.py code to evaluate estimators for image datasets and open bandit dataset.
– config: Contains different configuration files for different setups.
– runs: Folder containing different batch running scripts.
– loss.py: Script of our loss functions including LSE.
– train_logging_policy.py: Script to train the logging policy.
– train_reward_estimator.py: Script to train the reward estimator for DM and DR methods.
– create_bandit_dataset.py: Code for the generation of the bandit dataset using the logging policy.
– main_semi_ot.py: Main training code which implements different methods proposed by our paper.
– synthetic_experiment_v3.py: Code for synthetic experiments.
– motivation.ipynb: Code for motivating example.
– OPE_classification: The codes for the OPE experiments on real-world datasets from UCI repository.

* train_on_uci.ipynb: Main code running experiments on UCI datasets.

* faulty_policy.py: The code for the faulty policy model for the logging and training polices.

* UCI: The folder containing UCI datasets used in the experiments.

• The real_world folder contains the scripts and codes written for Kuai-Rec dataset.

– preprocess_data.ipynb: The code that preprocess the KuaiRec dataset and makes it ready for training.
– run_kuairec_experiments.py: The main code for real dataset experiments. It contains the training of the logging

policy as well as the learning policy
– eval.py: Code containing the implementation of the evaluation metrics.

To use this code, the user needs to download and store the dataset using preprocess_raw_dataset_from_model.py script. All
downloaded data will be stored in data directory. Then, to train the logging policy, the code/train_logging_policy.py
should be run. Then, by using code/create_bandit_dataset.py, the LBF dataset corresponding to the experiment
setup, will be created. Finally, to train the desired estimator, the user should use code/main_semi_ot.py script.
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For OPE synthetic experiments, the code synthetic_experiment_v3.py should be run. For real-world OPL experi-
ments, the Kuairec (version 2) dataset should be downloaded and put in real_world/KuaiRec 2.0/ folder and first
real_world/preprocess_data.ipynb notebook should be run and then real_world/run_kuairec_experiments.py code will
train the estimators on Kuairec dataset. The code itself trains and stores a logging policy before the main training phase.
For OPE real-world experiments, the notebook OPE_classification/train_on_uci.ipynb would train the estimators on
the UCI datasets in the folder OPE_classification/UCI. The final version of the code is available at the following link:
https://github.com/armin-behnamnia/lse-offpolicy-learning.

Computational resources: We have taken all our experiments using 3 servers, one with a nvidia 1080 Ti and one with
two nvidia GTX 4090, and one with three nvidia 2070-Super GPUs.
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G. Additional Experiments
This section presents supplementary experiments to further validate our LSE approach in off-policy learning and evaluation.
We extend our experiments as follows:

1. Comparison with the Model-based estimators: We conduct a series of experiments to assess the performance of
model-based estimators in comparison with our LSE estimator.

2. Combined method: We investigate the efficacy of combining the LSE estimator with the Doubly Robust (DR) estimator,
exploring potential synergies between these methods.

3. Real-world application: To demonstrate the practical relevance of our approach, we apply our methods to a real-world
dataset, providing insights into their performance under real world datasets in off-policy learning scenarios.

4. λ Effect: We study the effect of λ in different scenarios.

5. Sample number effect: We study the performance of the LSE estimator with different number of samples n.

6. Off-policy evaluation: We conduct more off-policy evaluation using Lomax distribution.

7. Off-policy learning: We run more experiments for off-policy learning scenarios under FMNIST dataset.

8. Selection of λ: Different methods of the selection of λ, data-driven selection of λ and sensitivity of λ are explored.

9. Distributional properties: In the OPE scenario under heavy-tailed assumption, the distributional properties of LSE are
studied.

10. Comparison with LS estimator: More Comparison with the LS estimator in the OPE setting based on choosing λ is
provided.

These additional experiments aim to provide a comprehensive evaluation of our proposed LSE estimator.

G.1. Off-policy evaluation experiment

We conduct synthetic experiments to test our model’s performance and behavior compared to other models and the
effectiveness of our approach in the case of heavy-tailed rewards. We have two different settings. Gaussian setting in which
the distributions are Gaussian random variables, having exponential tails, and Lomax setting in which the distributions are
Lomax random variables, with polynomial tails. In all experiments we run 10K trials to estimate the bias, variance and
MSE of each method, given MSE as the main criteria to compare the performance of different approaches. We conduct
experiments on our method (LSE), power-mean estimator (PM) (Metelli et al., 2021), exponential smoothing (ES) (Aouali
et al., 2023), IX estimator (Gabbianelli et al., 2023), truncated IPS (IPS-TR) (Ionides, 2008b), self-normalized IPS (SNIPS)
(Swaminathan & Joachims, 2015b), OS estimator (Su et al., 2020) and LS estimator (Sakhi et al., 2024). The number of
samples changes in different settings. In each setting, we grid search the hyperparameter of each method with 5 different
values and select the one that leads to the least estimated MSE value. Note that the hyperparameter for each method is
selected independently in each setting, but the candidate values are fixed throughout all settings.

Gaussian: In this setting, as explained in section 6, we have πθ(·|x0) ∼ N (µ1, σ
2), π0(·|x0) ∼ N (µ2, σ

2) and r(x0, u) =

−eαu
2

. Given 2ασ2 < 1, with simple calculations we have,

Eπθ
[r] = − 1√

1− 2ασ2
exp

(
αµ2

1

1− 2ασ2

)
(85)

Eπ0

[∣∣∣∣πθ

π0
r

∣∣∣∣1+ϵ
]
= |Eπθ

[r]| exp
(
ϵ(µ1 − µ2)((1 + ϵ+ 2ασ2)µ1 − (1 + ϵ− 2ασ2)µ2)

2σ2(1− 2ασ2)

)
(86)

We fix µ1 = 0.5, µ2 = 1, σ2 = 0.25, but we change α as it increases the 1 + ϵ-moment of the weighted reward variable
as it tends to 1

2σ2 and (given µ1 > 0, ϵ ≤ µ1

|µ1−µ2| or µ1 > µ2) leads to unbounded 1 + ϵ-moment for α = 1
2σ2 . We report

the experiment results in Tables 9 and 10 As we can observe LSE effectively keeps the variance low without significant
side-effects on bias, leading to an overall low MSE, making it a viable choice with general unbounded reward functions.
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We also try different values for the number of samples, and observe the estimator’s capability to work well on small number
of samples and their performance growth with the number of samples. For α = 1.4, the results of different methods for
n = 100, 1K, 10K, 100K are illustrated in Table 11.

Discussion: We observe that either in small sample size or large sample size, LSE beats other methods with a significant
gap. Inspecting the bias of LSE through different sample sizes, the bias becomes fixed and doesn’t decrease as the number
of samples in the LBF dataset goes beyond 1K. This is due to the fixed candidate set for the parameter λ in LSE and the
presence of λ in our derived bias upper bound in Proposition 5.5. This shows that the dependence of the bias on λ that
appears in the bias upper bound is tight and with a fixed λ, the bias doesn’t vanish, no matter how much data we have and
for a large number of samples it is critical to select λ as a function of n. Furthermore, we can see that the variance of LSE
effectively decreases as the number of samples increases. Here we can observe the decrease rate of 1/n in the variance, as it
is proved in Proposition 5.7 under bounded second-moment assumption. We also observe that as α increases and the reward
function’s growth becomes bigger PM, IPS-TR, SNIPS, and OS suffer from a very large variance, while ES, LSE, IX, and
LS-LIN manage to keep the variance relatively low. Among these low-variance methods, LSE achieves the lowest bias,
indicating a better bias-variance trade-off. We hypothesize that this is due to the fact that LS-LIN, along LSE, is the only
method that is not linear with respect to reward and compresses the reward besides the importance weight.

Lomax: In the Lomax setting, we use Lomax distributions with scale 1 for the learning and logging policies, πθ(u|x0) ∼
α

(u+1)α+1 , π0(u|x0) ∼ α
(u+1)α′+1 , α, α

′ > 0. We use a polynomial function for the reward, r(u) = (1 + u)β , β > 0. The
main difference in this setting compared to the Gaussian setting is that here the tails of the distributions are polynomial, in
contrast to the Gaussian setting in which the tails are exponential. In this setting, for α > β, we have,

Eπθ
[r] =

α

α− β
,

Eπ0

[∣∣∣∣πθ

π0
r

∣∣∣∣1+ϵ
]
=

(
α

α− β

)1+ϵ

k−ϵ(1 + ϵ(1− k))−1,

where k = α′

α−β and for the second inequality to hold we should have 1 + ϵ(1− k) > 0. The condition α > β is sufficient
for the weighted reward function to be ϵ-heavy-tailed for some ϵ > 0 (either k < 1 or ϵ < 1

|1−k| . We change the value of β
to 0.5, 1, 2. We also fix α− β = 0.5, to keep the value function in an appropriate range. We change k to get different values
for α′ = k(α− β) which determines the tail of the weighted reward variable. We set k = 2, 3, 4. The results are shown in
Tables 13 and 14. We observe the superior performance of LSE compared to other methods.

Discussion: In Lomax experiments the LSE estimator has the best performance in most of the settings. In two settings, i.e.,
β = 0.5 and α′ ∈ {1.5, 2.0}, IPS-TR does better than LSE with a very small margin, yet LSE is the second-best model in
these two settings. Similar to the Gaussian setting, we also run the experiments for different numbers of samples to inspect
the effect of the number of samples on the performance of the models. We fix α = 2.5, β = 2 and α′ = 1.5 in this scenario.
Table 15 reports the performance of LSE across different number of samples. The same conclusions as the Gaussian setting
are also observable in the Lomax setting. We can observe that LSE has better performance for n = 100, 10K, 100K.

In order to have an overall picture of our estimator’s performance in OPE, for each estimator we report the number of
experiments in which it becomes the first and second best-performing estimator. This is illustrated in Table 12.

We observe that in 13 out of 25 experiments, the LSE estimator outperforms other estimators. Additionally, it ranks second
in 11 of the remaining 12 experiments. The overall report shows that LSE and LS dominate other methods in OPE, and both
perform well with LSE winning with a small margin.

G.1.1. HEAVY-TAILED DISTRIBUTION FAMILIES

To confirm our method’s superior performance in heavy-tailed scenarios, we conduct experiments on different families
of heavy-tailed reward distributions. Other than Lomax, we test on Generalized Extreme Value (GEV), Frechet, and
Student’s t distributions. For GEV, we set c = −0.9, for Student’s t distribution, we set df = 1.2, for Frechet (inv-weibull)
we set c = 1.2, and for Lomax we set α = 1.2. To keep the values positive, we consider the absolute value of the reward
values. Note that this does not change the tail behavior of the distribution. Table 16 shows compare the performance of LSE
compared to other methods in OPE on these heavy-tailed reward distributions.
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Table 9: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Gaussian
distributions for α = 1.0, 1.1, 1.2, 1.3. The experiment was run 10000 times and the variance, bias, and MSE of the
estimations are reported. The best-performing result is highlighted in bold text, while the second-best result is colored in
red for each scenario.

α Estimator Bias Variance MSE

1.0

PM 0.037 0.004 0.006
ES −0.001 0.006 0.006
LSE 0.021 0.003 0.003
IPS-TR 0.019 0.004 0.004
IX 0.168 0.001 0.029
SNIPS −0.003 0.008 0.008
LS-LIN 0.151 0.001 0.024
LS 0.006 0.005 0.005
OS 0.505 0.005 0.260

1.1

PM 0.004 0.063 0.063
ES −0.001 0.054 0.054
LSE 0.052 0.006 0.009
IPS-TR 0.020 0.052 0.052
IX 0.237 0.002 0.058
SNIPS −0.005 0.059 0.059
LS-LIN 0.284 0.001 0.082
LS 0.082 0.007 0.0135
OS 0.521 0.020 0.292

1.2

PM −0.043 0.435 0.437
ES 0.000 0.357 0.357
LSE 0.152 0.014 0.037
IPS-TR 0.024 0.353 0.354
IX 0.373 0.005 0.144
SNIPS −0.003 0.366 0.366
LS-LIN 0.545 0.002 0.299
LS 0.183 0.016 0.050
OS 0.541 0.116 0.409

1.3

PM −0.121 1.731 1.746
ES 1.162 0.026 1.377
LSE 0.158 0.124 0.148
IPS-TR 0.030 1.404 1.405
IX 0.662 0.016 0.453
SNIPS −0.000 1.491 1.491
LS-LIN 1.069 0.003 1.145
LS 0.155 0164 0.188
OS 0.463 56.581 56.796
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Table 10: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Gaussian
distributions for α = 1.4, 1.5, 1.6, 1.7. The experiment was run 10000 times and the variance, bias, and MSE of the
estimations are reported. The best-performing result is highlighted in bold text, while the second-best result is colored in
red for each scenario.

α Estimator Bias Variance MSE

1.4

PM −0.301 164.951 165.041
ES 1.959 0.396 4.232
LSE 0.615 0.292 0.670
IPS-TR 0.053 133.688 133.691
IX 1.340 0.048 1.842
SNIPS −0.029 133.520 133.521
LS-LIN 2.164 0.005 4.687
LS 0.564 0.458 0.776
OS 0.623 23.589 23.977

1.5

PM −0.205 222.003 222.045
ES 3.850 1.505 16.324
LSE 2.132 0.645 5.190
IPS-TR 0.349 179.990 180.112
IX 3.116 0.153 9.865
SNIPS 0.315 194.830 194.929
LS-LIN 4.682 0.009 21.927
LS 1.968 1.156 5.028
OS 1.096 504.001 505.205

1.6

PM 0.726 5095.725 5096.252
ES 9.420 22.685 111.416
LSE 7.541 1.233 58.105
IPS-TR 1.903 4131.016 4134.636
IX 8.665 0.502 75.589
SNIPS 1.860 4426.166 4429.625
LS-LIN 11.547 0.015 133.349
LS 7.148 2.595 53.689
OS 3.669 1303.684 1317.146

1.7

PM 9.943 125126.550 125225.418
ES 38.531 0.301 1484.959
LSE 32.107 2.244 1033.093
IPS-TR 12.880 101427.776 101593.680
IX 32.923 1.802 1085.753
SNIPS 12.704 102027.853 102189.250
LS-LIN 38.112 0.024 1452.556
LS 31.227 5.267 980.41
OS 29.171 17767.954 18618.899
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Table 11: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Gaus-
sian distributions setup. The experiment was run 10000 times fixing α = 1.4 and different number of samples
n ∈ {100, 1000, 10000, 100000}. The variance, bias, and MSE of the estimations are reported. The best-performing
result is highlighted in bold text, while the second-best result is colored in red for each scenario.

n Estimator Bias Variance MSE

100

PM −0.1288 203.5015 203.5181
ES 1.9769 1.7696 5.6775
LSE 1.2210 0.5015 1.9925
IPS-TR 0.1617 164.9972 165.0234
IX 1.3459 0.4783 2.2897
SNIPS 0.0074 196.8881 196.8881
LS-LIN 2.1683 0.0568 4.7585
LS 1.1817 0.8115 2.2079
OS 0.7661 10.2588 10.8458

1000

PM −0.1963 18.3363 18.3749
ES 1.9587 0.1694 4.0058
LSE 0.6030 0.2999 0.6635
IPS-TR 0.1007 14.8696 14.8798
IX 1.3375 0.0486 1.8376
SNIPS 0.0594 15.0741 15.0776
LS-LIN 2.1646 0.0056 4.6910
LS 0.5640 0.4580 0.7761
OS 0.6432 8.7698 9.1835

10000

PM −0.2282 10.4458 10.4979
ES 1.9625 0.0285 3.8800
LSE 0.6159 0.0296 0.4089
IPS-TR 0.0464 8.4660 8.4681
IX 1.3410 0.0048 1.8031
SNIPS 0.0435 8.5986 8.6005
LS-LIN 2.1644 0.0005 4.6852
LS 0.5606 0.0466 0.3609
OS 0.5564 4.8936 5.2032

100000

PM −0.2505 1.8148 1.8775
ES 0.0246 1.4707 1.4713
LSE 0.6160 0.0029 0.3823
IPS-TR 0.0250 1.4706 1.4712
IX 1.3408 0.0005 1.7982
SNIPS 0.0246 1.4757 1.4763
LS-LIN 2.1629 5.6014 4.6783
LS 0.5584 0.0049 0.3167
OS 0.5823 0.8251 1.1643
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Table 12: Comparison of different estimators in terms of the number of best|second rank performances of all Lomax and
Gaussian experiment setups in OPE scenario.

Estimator Gaussian Lomax Total

LSE 7|5 6|6 13|11

OS 0|0 0|0 0|0
PM 0|0 0|0 0|0
ES 0|0 0|0 0|0
LS 5|7 6|6 11|13

IPS-TR 0|0 1|1 1|1
IX 0|0 0|0 0|0

G.2. Off-policy learning experiment

We present the results of our experiments for EMNIST and FMNIST in Table 18.

As we can observe in the results for different scenarios and datasets, our estimator shows dominant performance among
other baselines. The details of the number of best-performing and second-rank estimators are provided in Table 17. We
observe that in 21 out of 30 experiments, the LSE estimator outperforms other estimators. Additionally, it ranks second in 7
of the remaining 9 experiments.

In the noisy scenario, where noise robustness is critical, increasing the noise on the propensity scores by reducing the b
value results in a marked decrease in the performance of all estimators, with the notable exception of LSE, which exhibits
superior noise robustness.

In all two datasets, without noise, increasing τ has a negligible impact on the estimators. However, in noisy scenarios, a
higher τ leads to decreased performance. This happens because as τ increases, the logging policy distribution approaches a
uniform distribution, making it easier for noise to affect the argmax value, thereby reducing the estimators’ performance.
Notably, the LSE estimator demonstrates better robustness compared to other estimators, consistently showing superior
performance in all noisy setups when b = 0.01.
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Table 13: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Lomax
distributions setup for β = 0.5, 1.5. The experiment was run 10000 times with different values of α, α′ and β. The variance,
bias, and MSE of the estimations are reported. The best-performing result is highlighted in bold text, while the second-best
result is colored in red for each scenario.

β α α′ Method Bias Variance MSE

0.5 1.0

1.0

PM −0.0004 0.0197 0.0197
ES −0.0004 0.0197 0.0197
LSE 0.0361 0.0047 0.0060
IPS-TR −0.0004 0.0197 0.0197
IX 0.6958 0.0001 0.4842
SNIPS −0.0004 0.0197 0.0197
LS-LIN 0.4475 0.0002 0.2005
LS 0.0266 0.0046 0.0053
OS 0.3332 0.0094 0.1204

1.5

PM 0.2191 0.0154 0.0634
ES 0.0145 0.2011 0.2013
LSE 0.1702 0.0117 0.0407
IPS-TR 0.1341 0.0146 0.0326
IX 0.7815 0.0003 0.6111
SNIPS 0.0181 0.1668 0.1671
LS-LIN 0.5303 0.0011 0.2822
LS 0.0697 0.0346 0.0395
OS 0.7636 0.0007 0.5838

2.0

PM 0.4784 0.0084 0.2372
ES 0.9554 0.0020 0.9147
LSE 0.1586 0.0801 0.1052
IPS-TR 0.2965 0.0171 0.1050
IX 0.8641 0.0006 0.7472
SNIPS 0.0580 1.1500 1.1533
LS-LIN 0.6106 0.0023 0.3751
LS 0.3086 0.0238 0.1190
OS 1.0176 0.0003 1.0358

1

1.5

1.0

PM −0.0823 0.0440 0.0508
ES 0.0006 0.0357 0.0357
LSE 0.0731 0.0092 0.0146
IPS-TR 0.0006 0.0357 0.0357
IX 1.0438 0.0002 1.0897
SNIPS −0.0003 0.0418 0.0418
LS-LIN 0.8513 0.0004 0.7252
LS 0.0429 0.0104 0.0122
OS 0.3566 0.0364 0.1635

1.5

PM 0.0167 0.7885 0.7888
ES 0.0167 0.7885 0.7888
LSE 0.1122 0.0820 0.0946
IPS-TR 0.0167 0.7885 0.7888
IX 1.1723 0.0006 1.3749
SNIPS 0.0167 0.7885 0.7888
LS-LIN 0.9551 0.0014 0.9136
LS 0.1183 0.0717 0.0857
OS 0.5122 0.6815 0.9439

2.0

PM 0.3839 0.3198 0.4672
ES 1.4337 0.0035 2.0589
LSE 0.2731 0.1353 0.2099
IPS-TR 0.2280 0.2424 0.2944
IX 1.2957 0.0013 1.6801
SNIPS 0.0614 2.3202 2.3239
LS-LIN 1.0580 0.0030 1.1223
LS 0.2548 0.1785 0.2434
OS 1.2544 0.0059 1.5793
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Table 14: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Lomax
distributions setup for β = 2. The experiment was run 10000 times with different values of α, α′ and β. The variance, bias,
and MSE of the estimations are reported. The best-performing result is highlighted in bold text, while the second-best result
is colored in red for each scenario.

β α α′ Method Bias Variance MSE

2

2.5

1.0

PM −0.2267 0.1913 0.2427
ES −0.0049 0.1540 0.1540
LSE 0.0304 0.0461 0.0471
IPS-TR −0.0049 0.1540 0.1540
IX 1.7392 0.0007 3.0256
SNIPS −0.0100 0.1858 0.1859
LS-LIN 1.9231 0.0011 3.6995
LS 0.0819 0.0281 0.0348
OS 0.5571 0.0849 0.3953

1.5

PM −0.2510 17.7398 17.8028
ES 2.2891 0.0024 5.2425
LSE 0.2266 0.1688 0.2201
IPS-TR −0.0042 14.3693 14.3694
IX 1.9546 0.0018 3.8224
SNIPS −0.0062 14.4548 14.4549
LS-LIN 2.0374 0.0016 4.1529
LS 0.2330 0.1699 0.2242
OS 0.3995 13.5957 13.7553

2.0

PM −0.2114 27.6307 27.6754
ES 2.3886 0.0113 5.7167
LSE 0.5334 0.2729 0.5574
IPS-TR −0.0086 22.5415 22.5416
IX 2.1606 0.0035 4.6717
SNIPS −0.0107 22.6954 22.6955
LS-LIN 2.1601 0.0034 4.6694
LS 0.4946 0.3696 0.61424
OS 0.5158 7.4515 7.7175
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Table 15: Bias, variance, and MSE of LSE, ES, PM, IX, IPS-TR, SNIPS, LS-LIN, and OS estimators with Lomax distribu-
tions setup. The experiment is conducted for 10000 times and different number of samples n ∈ {100, 1000, 10000, 100000}.
The variance, bias, and MSE of the estimations are reported. The best-performing result is highlighted in bold text, while
the second-best result is colored in red for each scenario.

n Estimator Bias Variance MSE

100

PM −0.2486 75.480 75.542
ES 2.2895 0.0244 5.2663
LSE 0.6217 0.4035 0.7900
IPS-TR 0.0021 61.140 61.140
IX 1.9546 0.0182 3.8388
SNIPS −0.0331 67.583 67.583
LS-LIN 2.0369 0.0168 4.1660
LS 0.6339 0.5402 0.9421
OS 0.4287 61.159 61.343

1000

PM −0.2421 10.960 11.019
ES 2.2889 0.0024 5.2415
LSE 0.2245 0.1702 0.2206
IPS-TR 0.0037 8.8781 8.8780
IX 1.9540 0.0018 3.8198
SNIPS 0.0010 9.0742 9.0742
LS-LIN 2.0375 0.0016 4.1531
LS 0.2330 0.1699 0.2242
OS 0.4345 8.8799 9.0687

10000

PM −0.2317 0.6596 0.7132
ES 0.0131 0.5343 0.5345
LSE 0.2253 0.0171 0.0679
IPS-TR 0.0131 0.5342 0.5345
IX 1.9539 0.0002 3.8180
SNIPS 0.0133 0.5364 0.5366
LS-LIN 2.0375 0.0002 4.1517
LS 0.2338 0.0171 0.0717
OS 0.4438 0.5345 0.7315

100000

PM −0.2619 0.6546 0.7232
ES −0.0140 0.5302 0.5304
LSE 0.2267 0.0019 0.0533
IPS-TR −0.0140 0.5302 0.5304
IX 1.9538 1.6977 3.8175
SNIPS −0.0137 0.5284 0.5286
LS-LIN 2.0374 1.6805 4.1509
LS 0.2351 0.0019 0.0572
OS 0.4166 0.5302 0.7038
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Table 16: Bias, Variance, and MSE for different methods under heavy-tailed reward distributions.

Distribution Metric LSE LS IX ES PM OS SNIPS IPS-TR

Lomax
Bias 1.511 1.617 4.671 2.584 0.5677 4.778 0.1058 0.9616
Variance 0.4641 0.5156 0.6819 84.07 187.6 0.3136 190.4 171.5
MSE 2.746 3.132 22.50 90.75 187.9 23.15 190.4 172.4

GEV
Bias 0.1204 0.2105 0.7073 −2.861 0.2103 0.7220 −6.751 −5.4139
Variance 0.0004 0.0004 0.0657 722.1 43.68 0.0054 2209 1604
MSE 0.0149 0.0447 0.5660 730.2 43.72 0.5268 2255 1633

Frechet
Bias 1.474 1.598 3.965 2.993 1.1863 5.309 0.2678 1.235
Variance 0.4842 0.5161 10.31 29.80 92.08 0.1344 132.8 80.58
MSE 2.656 3.068 26.03 38.75 93.49 28.31 132.9 82.10

Student’s t
Bias 0.9914 1.072 3.688 2.086 0.7545 3.766 0.0029 0.7982
Variance 0.3270 0.3647 0.1986 24.69 79.09 0.2374 205.6 61.42
MSE 1.310 1.513 13.80 29.04 79.66 14.42 205.6 62.06

Table 17: Comparison of different estimators in terms of the number of best|second rank performances of all true propensity
score/ reward, estimated (noisy) propensity scores and noisy reward experiment setups in OPL scenario.

Estimator True PS & Reward Noisy PS Noisy Reward Total

LSE 3|2 10|1 8|4 21|7
OS 1|2 1|0 3|3 5|5
PM 2|1 1|7 1|5 4|13

ES 0|0 0|3 0|0 0|4
LS-LIN 0|1 0|0 0|0 0|1

IX 0|0 0|1 0|0 0|1
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Table 18: Comparison of different estimators LSE, PM, ES, IX, BanditNet, LS-LIN and OS accuracy for EMNIST and
FMNIST with different qualities of logging policy (τ ∈ {1, 10, 20}) and true / estimated propensity scores with b ∈ {5, 0.01}
and noisy reward with Pf ∈ {0.1, 0.5}. The best-performing result is highlighted in bold text, while the second-best result
is colored in red for each scenario.

Dataset τ b Pf LSE PM ES IX BanditNet LS-LIN OS Logging Policy

EMNIST

1

− − 88.49± 0.04 89.19± 0.03 88.61± 0.06 88.33± 0.13 66.58± 6.39 88.70± 0.02 88.71± 0.26 88.08
5 − 89.16± 0.03 88.94± 0.05 88.48± 0.03 88.51± 0.23 65.10± 0.69 88.38± 0.18 88.70± 0.15 88.08

0.01 − 86.07± 0.01 85.62± 0.10 85.71± 0.04 81.39± 4.02 66.55± 3.11 84.64± 0.17 84.59± 0.09 88.08
− 0.1 89.29± 0.04 89.08± 0.05 88.45± 0.09 88.14± 0.14 59.90± 3.78 88.30± 0.12 88.74± 0.09 88.08
− 0.5 88.72± 0.08 88.78± 0.03 87.27± 0.10 87.08± 0.14 56.95± 3.06 87.20± 0.32 88.06± 0.09 88.08

10

− − 88.59± 0.03 88.61± 0.04 88.38± 0.08 87.43± 0.19 85.48± 3.13 88.58± 0.08 86.88± 0.34 79.43
5 − 88.42± 0.07 88.43± 0.07 88.39± 0.10 88.39± 0.06 84.90± 3.10 88.23± 0.27 86.00± 0.37 79.43

0.01 − 82.15± 0.21 80.85± 0.29 81.07± 0.07 77.49± 2.77 27.02± 1.92 78.43± 3.13 21.70± 4.11 79.43
− 0.1 88.29± 0.06 88.22± 0.02 88.19± 0.08 87.93± 0.35 84.89± 3.21 87.50± 0.17 87.68± 0.16 79.43
− 0.5 88.71± 0.16 88.52± 0.07 84.42± 0.34 83.25± 3.45 63.35± 13.39 85.75± 0.04 89.09± 0.05 79.43

20

− − 88.28± 0.05 88.20± 0.08 87.96± 0.34 86.82± 1.30 83.69± 3.32 88.21± 0.06 80.64± 0.25 14.86
5 − 88.42± 0.12 87.98± 0.05 88.27± 0.33 88.27± 0.07 86.82± 0.17 88.19± 0.11 79.31± 0.61 14.86

0.01 − 81.36± 0.14 75.53± 2.61 73.45± 2.78 72.31± 1.46 26.92± 2.51 72.33± 0.35 11.12± 0.39 14.86
− 0.1 88.10± 0.05 87.93± 0.16 87.69± 0.22 87.67± 0.18 81.73± 3.09 87.08± 0.14 82.95± 0.31 14.86
− 0.5 86.83± 0.10 86.67± 0.19 84.01± 0.32 80.79± 3.06 75.20± 3.01 83.05± 0.75 86.03± 0.48 14.86

FMNIST

1

− − 76.45± 0.12 73.33± 2.67 72.90± 2.35 69.12± 0.26 60.66± 2.16 69.29± 0.19 77.77± 0.09 78.38
5 − 73.20± 2.43 75.07± 0.27 70.38± 2.59 70.80± 2.38 22.41± 4.50 69.33± 0.20 77.57± 0.10 78.38

0.01 − 74.08± 1.64 70.35± 0.12 57.93± 2.66 63.34± 3.64 30.20± 8.17 63.86± 3.40 37.57± 3.16 78.38
− 0.1 76.07± 0.02 74.54± 0.02 70.42± 2.53 70.58± 2.47 50.37± 5.43 70.41± 2.20 77.71± 0.22 78.38
− 0.5 76.96± 0.23 74.03± 0.30 66.32± 0.44 66.66± 1.41 54.53± 1.32 66.57± 2.76 77.46± 0.11 78.38

10

− − 76.14± 0.11 74.42± 0.17 69.25± 0.10 70.69± 2.39 65.70± 3.78 69.31± 0.24 74.89± 0.96 21.43
5 − 75.42± 0.16 74.79± 0.15 71.42± 2.53 69.21± 0.25 69.53± 0.29 70.15± 2.53 72.87± 0.47 21.43

0.01 − 74.04± 0.15 60.77± 0.09 53.69± 1.37 63.57± 3.91 26.96± 1.87 60.65± 3.83 13.22± 0.91 21.43
− 0.1 76.78± 0.23 73.91± 0.13 68.58± 0.09 68.07± 0.18 64.05± 2.34 68.10± 0.58 76.24± 0.29 21.43
− 0.5 77.66± 0.17 74.02± 0.05 61.46± 4.72 62.60± 0.16 43.33± 2.83 61.35± 1.83 77.52± 0.26 21.43

20

− − 75.12± 0.03 74.32± 0.12 69.26± 0.09 72.46± 2.14 64.92± 3.82 72.86± 2.32 65.78± 1.10 14.84
5 − 75.13± 0.09 74.17± 0.15 69.23± 0.46 68.72± 0.30 62.41± 4.24 69.06± 0.11 63.53± 1.70 14.84

0.01 − 69.16± 0.22 55.20± 1.14 60.91± 2.75 61.11± 4.92 28.23± 2.18 61.46± 1.96 13.04± 4.76 14.84
− 0.1 75.48± 0.09 71.84± 2.47 65.41± 4.23 67.91± 0.16 65.21± 2.93 68.03± 0.46 70.90± 0.26 14.84
− 0.5 75.96± 0.05 73.12± 0.25 61.79± 3.13 60.19± 3.13 55.13± 0.15 60.51± 3.28 73.32± 0.81 14.84
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Table 19: Comparison of different model-based estimators DR, DR-OS, MRDR, SWITCH-DR, SWITCH-DR-LSE, DM
and DR-LSE with LSE for EMNIST and FMNIST under a logging policy with τ = 10, true / estimated propensity scores
with b ∈ {5, 0.01} and noisy reward with Pf ∈ {0.1, 0.5}. The best-performing result is highlighted in bold text, while the
second-best result is colored in red for each scenario.

Dataset τ b Pf DR-LSE DR DR-OS MRDR DR-Switch DR-Switch-LSE LSE DM Logging Policy

EMNIST 10

− − 88.79± 0.03 88.71± 0.07 87.79± 0.36 80.57± 4.00 79.40± 5.21 87.73± 0.31 88.59± 0.03 76.52± 2.68 79.43
5 − 88.67± 0.04 88.49± 0.13 87.83± 0.17 80.08± 4.62 79.28± 0.65 85.80± 3.40 88.42± 0.07 76.73± 4.95 79.43

0.01 − 83.30± 3.13 78.24± 0.57 80.53± 0.32 10.00± 0.01 74.81± 0.57 41.11± 2.87 82.15± 0.21 75.65± 0.29 79.43
− 0.1 88.51± 0.02 88.32± 0.16 87.50± 0.28 45.49± 9.14 75.28± 0.09 79.86± 0.64 88.29± 0.06 78.85± 2.69 79.43
− 0.5 85.88± 0.13 83.53± 0.54 85.46± 0.73 7.04± 4.18 72.76± 0.56 81.73± 0.23 88.71± 0.16 75.26± 2.39 79.43

FMNIST 10

− − 80.15± 0.09 68.70± 5.12 63.66± 0.39 58.61± 3.89 54.20± 6.27 34.47± 0.02 76.14± 0.11 51.24± 4.16 79.43
5 − 79.64± 0.05 66.67± 3.50 64.80± 2.36 56.62± 1.52 56.61± 7.37 29.59± 3.83 75.42± 0.16 59.65± 3.13 79.43

0.01 − 55.10± 0.25 52.19± 3.84 60.92± 1.81 10.00± 0.01 63.35± 1.62 41.13± 2.84 74.04± 0.15 58.94± 4.18 79.43
− 0.1 79.91± 0.11 68.94± 0.35 63.19± 1.69 10.00± 0.01 57.54± 3.05 52.79± 4.04 76.78± 0.23 56.33± 7.70 79.43
− 0.5 79.14± 0.04 56.47± 7.08 56.72± 7.19 22.05± 4.50 59.54± 2.95 75.31± 0.55 77.66± 0.17 53.70± 7.19 79.43

G.3. Model-based estimators

There are some approaches that utilise the estimation of reward. For example, in the direct method (DM), the reward is
estimated from logged data via regression. In particular, an estimation of the reward function, r̂(x, a), is learning from the
LBF dataset S using a regression. The objective function for DM can be represented as,

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi). (87)

In the doubly-robust (DR) approach (Dudík et al., 2014) DM is combined with the IPS estimator and has a promising
performance in the off-policy learning scenarios. The object function for doubly robust can be represented,

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi) +
1

n

n∑
i=1

πθ(ai|xi)

π0(ai|xi)
(ri − r̂(a, xi)). (88)

There are also some improvements regarding the DR, including DR based on optimistic Shrinkage (DR-OS) (Su et al.,
2020), DR-Switch (Wang et al., 2017) and MRDR (Farajtabar et al., 2018).

As these methods are based on the estimation of reward, we consider them as model-based methods. Inspired by the DR
method, we combine the LSE estimator with the DM method (DR-LSE)

1

n

n∑
i=1

∑
a

πθ(a|xi)r̂(a, xi) +
1

λ
log
( 1
n

n∑
i=1

exp
(
λ
πθ(ai|xi)

π0(ai|xi)
(ri − r̂(a, xi))

))
. (89)

We also combine, LSE with DR-Switch as (DR-Switch-LSE) where the IPS estimator in DR-Switch is replaced with LSE
estimator.

In this section, we aim to show that the combination of our LSE estimator with the DR method as a model-based method
can improve the performance of these methods. For our experiments, we use the same experiment setup as described in
App. F. We compare model-based methods, DM, DR and DR-LSE, DR-Switch, DR-OS, and DR-Switch-LSE with our LSE
estimator. The results are shown in Table 19. We observed that DR-LSE outperforms the standard DR in many scenarios.
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G.4. Real-World dataset

We applied our method to two real-world scenarios: one in recommendation systems and the other in Natural Language
Processing.

G.4.1. RECOMMANDATION SYSTEMS

We applied our method to the Kuairec, a public real-world recommendation system dataset ((Gao et al., 2022)). This dataset
is gathered from the recommendation logs of the video-sharing mobile app Kuaishou. In each instance, a user watches an
item (video) and the watch duration divided by the entire duration of the video is reported. We use the same procedure
as (Zhang et al., 2023a) to prepare the logged bandit dataset. We also use the same architecture for the logging policy
and the learning policy, with some modifications in the hidden size and number of layers of the deep models. We use
separate models for the logging and learning policies. We first train the logging policy using cross-entropy loss and fix it
to use as the propensity score estimator for the training of the OPL models. We report Precision@K, and NDCG@K for
K=1, 3, 5, 10. Recall@K is very low for small K values because the number of positive items for each use of much more
than K. For each method, we use grid search to find the hyperparameter that maximizes the Precision@1 in the validation
dataset. The comparison of different estimators is presented in Table 20. We can observe that in Precision@1, Precision@3,
Precision@10, NDCG@1, NDCG@3 and NDCG@10, we have the best performance.

Table 20: Comparison of different estimators LSE, PM, ES, IX, LS-LIN, OS and SNIPS in different metrics. The
best-performing result is highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset Estimator Precision@1 Precision@3 Precision@5 Precision@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

KuaiRec

PM 0.8885 0.5723 0.5201 0.4275 0.8585 0.6551 0.5932 0.4988
SNIPS 0.0289 0.6177 0.5995 0.6462 0.0289 0.4981 0.5226 0.5830

IX 0.8794 0.5824 0.6355 0.6586 0.8794 0.6164 0.6410 0.6548
ES 0.8951 0.7495 0.7187 0.6644 0.8951 0.7787 0.7483 0.7006
OS 0.8993 0.3215 0.2015 0.1403 0.8993 0.4381 0.3227 0.2378

LS-LIN 0.8836 0.6680 0.7159 0.6904 0.8836 0.7159 0.7368 0.7108
LSE 0.9257 0.7534 0.6999 0.7206 0.9257 0.7917 0.7441 0.7431

G.4.2. NLP

We run experiments on PubMed 200K RCT dataset, which is a collection of 200,000 abstracts of medical articles. Parts of
each abstract are classified into one of the classes of BACKGROUND, OBJECTIVE, METHOD, RESULT, CONCLUSION.
This is a short text classification that can be viewed as a bandit problem. We apply the same conversion method as we did on
image classification datasets in OPL experiments. In Table 21 we can observe the result of our method compared to other
state-of-the-art methods.

Table 21: Comparison of different methods LSE, IX, LS, OS, ES, and PM under logging policies with τ = 1, 10 on the
PubMed RCT dataset. The best-performing result is highlighted in bold text, while the second-best result is colored in red
for each scenario.

Dataset τ LSE LS IX ES PM OS

RCT 1 67.16 58.57 58.58 58.48 67.06 62.29
10 70.17 58.59 58.56 58.60 70.32 66.15
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(a) τ = 1 (b) τ = 10

Figure 2: Accuracy of the LSE estimator over different values of λ for true propensity score and reward. (a) τ = 1. (b)
τ = 10.

(a) τ = 1 (b) τ = 10

Figure 3: Plots of Accuracy of the LSE estimator over different values of λ for true propensity score and noisy reward with
Pf = 0.5. (a) τ = 1. (b) τ = 10.

G.5. Sample number effect

We also conduct experiments on our LSE estimator and PM estimator to examine the effect of limited training samples in
the OPL scenario. For this purpose, we considered different ratios of training LBF dataset, Rn ∈ {1, 0.5, 0.2, 0.05}. The
results are shown in Table 22. We observed that reducing Rn decreased the accuracy for both estimators. However, our LSE
estimator demonstrated robust performance under different ratios of training LBF dataset, Rn. Therefore, for small-size
LBF datasets, we can apply the LSE estimator for off-policy learning.

G.6. λ Effect

G.6.1. OPL

The impact of λ across various scenarios and τ values was investigated using the experimental setup described in Appendix
F for the EMNIST dataset. Figure 2 illustrates the accuracy of the LSE estimator for τ ∈ {1, 10}. For τ = 1, corresponding
to a logging policy with higher accuracy, an optimal λ value of approximately −1.5 was observed. In contrast, for τ = 10,
representing a logging policy with lower accuracy, the optimal λ approached zero. Additionally, in scenarios with noisy
rewards Fig.3, both τ = 1 and τ = 10, we observed an optimal λ values larger −2. As for τ = 1, the logging policy has
higher accuracy, the effect of noisy reward should be canceled by larger |λ|. However, for τ = 10, we need a smaller |λ|.
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Figure 4: The effect of λ on different families of distributions: GEV, Student’s t, Frechet, and Lomax

G.6.2. OPE

We also conduct experiments to investigate the effect of λ in OPE through the synthetic setup. In order to analyze the
sensitivity w.r.t. λ in OPE, we test on different heavy-tailed distributions and keep the same setting as Section G.1.1. Here
we change |λ| exponentially from 10−4 to 102 and observe the MSE of LSE with the selected value for λ. Figure 4 illustrates
the MSE value over the different values of λ for different families of distributions. As we can see, the trend of MSE value is
different for GEV, and MSE monotonically decreases as λ increases. However, in other distributions, higher values of λ
result in relatively worse performance, and there is an intermediate value (10−3) for which the lowest MSE is achieved.
Nevertheless, 10−2 is an acceptable choice of λ for all distribution families.

G.7. Data-independent Selection of λ

Although we use grid search to tune the λ in our algorithm, inspired by Proposition 5.4, we can select the following value,

λ∗ =
1

n1/(ϵ+1)
, (90)

where n is the number of samples. This selection is independent of the data values and ensures only asymptotical guarantees.
With such a selection we have a regret rate of O(n−ϵ/(1+ϵ)). We test and evaluate our selection in OPL and OPE. We also
examine a data-driven approach for selecting λ in Section D.5.

G.7.1. λ SELECTION FOR OPL

We have tested λ∗ on EMNIST dataset. In OPL experiments we have truncated the propensity score to 0.001 in order
to avoid numerical overflow. Hence, our distributions are effectively heavy-tailed with ϵ = 1, leading to λ∗ = 1√

n
. We
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change n = 512, 256, 128, 64, 16 with corresponding values λ∗ ∈ {0.044, 0.0625, 0.088, 0.125, 0.25} which its results are
presented in the Table 23. Note that because we use stochastic gradient descent in training, here n is the batch size. We can
observe that the suggested value of λ∗ = 1√

n
does not only have a theoretical estimation bound of O( 1√

n
) (according to

Proposition 5.4), but also achieves reasonable performance in experiments.

G.7.2. λ SELECTION FOR OPE

We tested our λ selection in the OPE setting with Lomax distributions. We changed the number of samples and set
n = 100, 500, 1K, 5K, 10K, 50K, 500K and tested all estimators as we as LSE with selected λ = λ⋆. The results are
illustrated at Tables 24, and 25. The first observation is that in all settings, the selected λ⋆ outperforms all other estimators,
except LS which loses in n ≤ 5000 experiments with a very small margin and is not significantly worse than the λ found by
grid search.

Another critical observation is that as the number of samples increases, the selected λ works better than compared to other
methods, even LSE with λ found by grid-search. In n = 100K, not only λ⋆ perform the best, but also the λ found by
grid-search falls behind IPS-TR and ES. This shows the significance of selective λ when the number of samples is large.

The third observation is the lower performance of λ⋆ when we have a very small number of samples, e.g. n = 100. This
also conforms to our theoretical results, as upper and lower bounds on estimation and regret bounds in Theorem D.2,
Theorem D.3 and Theorem 5.3 requires a minimum number of samples as an assumption.
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Table 22: Comparison of LSE and PM accuracy for EMNIST dataset with different ratio of training LBF dataset (Rn ∈
{1, 0.5, 0.2, 0.05}) and true / estimated propensity scores with b ∈ {5, 0.01} and noisy reward with Pf ∈ {0.1, 0.5}. The
best-performing result is highlighted in bold text.

Dataset τ Rn b Pf LSE PM Logging Policy

EMNIST

1

1
− − 88.49± 0.04 89.19± 0.03 88.08
0.01 − 86.07± 0.01 85.62± 0.10 88.08
− 0.5 88.72± 0.08 88.78± 0.03 88.08

0.5
− − 87.79± 0.08 86.42± 0.11 88.08
0.01 − 81.13± 0.08 48.70± 15.46 88.08
− 0.5 86.24± 0.07 85.17± 0.36 88.08

0.2
− − 83.76± 0.25 74.57± 1.01 88.08
0.01 − 67.64± 3.89 23.18± 5.02 88.08
− 0.5 80.39± 0.19 69.54± 0.65 88.08

0.05
− − 70.16± 2.44 53.51± 2.77 88.08
0.01 − 36.06± 0.62 15.56± 3.21 88.08
− 0.5 50.06± 2.10 47.57± 5.19 88.08

10

1
− − 88.59± 0.03 88.61± 0.04 79.43
0.01 − 82.15± 0.21 80.85± 0.29 79.43
− 0.5 88.71± 0.16 88.52± 0.07 79.43

0.5
− − 86.30± 0.04 86.02± 0.06 79.43
0.01 − 75.02± 2.67 28.12± 1.94 79.43
− 0.5 86.61± 0.08 83.21± 0.10 79.43

0.2
− − 80.67± 0.35 80.83± 0.22 79.43
0.01 − 53.32± 1.47 17.03± 0.30 79.43
− 0.5 80.89± 0.19 73.42± 1.14 79.43

0.05
− − 48.51± 0.81 42.27± 1.48 79.43
0.01 − 34.15± 0.61 14.70± 2.20 79.43
− 0.5 56.64± 2.40 41.75± 1.95 79.43

Table 23: Comparison of accuracy (%) for different λ values and sample sizes n

λ\n 16 64 128 256 512

0.01 92.83± 0.10 91.52± 0.01 90.26± 0.02 88.71± 0.26 85.43± 0.44
0.1 92.83± 0.01 91.45± 0.01 90.37± 0.02 88.93± 0.10 85.50± 0.58
1 92.66± 0.01 91.66± 0.02 90.76± 0.02 89.54± 0.01 87.79± 0.01

10 91.33± 0.01 89.48± 0.09 88.86± 0.05 88.03± 0.03 86.73± 0.03
λ∗ 92.78± 0.01 91.52± 0.05 90.38± 0.05 88.83± 0.02 85.09± 0.51
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Table 24: Summary of Bias, Variance, and MSE for Different Estimators for Lomax OPE experiments. We change the
number of samples n = 100, 500, 1K, 10K and report the metrics for PM, ES, LSE, LSE(λ∗), LS, LS-LIN, OS, IPS-TR,
IX, SNIPS

n Estimator Bias Var MSE

100

PM −0.2623 30.6419 30.7106
ES 2.2894 0.0247 5.2662

LSE 0.6194 0.3967 0.7803
LSE(λ∗) 0.9144 0.1952 1.0314

LS 0.6386 0.5336 0.9414
LS-LIN 2.0377 0.0167 4.1689

OS 0.4485 22.7449 22.9461
IPS-TR −0.0144 24.8212 24.8214

IX 1.9517 0.0171 3.8264
SNIPS −0.0483 25.8348 25.8371

500

PM −0.2002 3.1605 3.2006
ES 0.0415 2.5603 2.5620

LSE 0.2221 0.3375 0.3869
LSE(λ∗) 0.5542 0.0984 0.4055

LS 0.2309 0.3449 0.3983
LS-LIN 2.0377 0.0033 4.1557

OS 0.42724 7.6075 7.7901
IPS-TR 0.0415 2.5603 2.5620

IX 1.9536 0.0035 3.8200
SNIPS 0.0347 2.6865 2.6877

1000

PM −0.2379 4.8325 4.8891
ES 0.0076 3.9145 3.9145

LSE 0.2262 0.1720 0.2231
LSE(λ∗) 0.4335 0.0712 0.2591

LS 0.2270 0.1751 0.2266
LS-LIN 2.0368 0.0016 4.1502

OS 0.4178 4.0558 4.2303
IPS-TR 0.0076 3.9145 3.9145

IX 1.9536 0.0018 3.8186
SNIPS 0.0040 4.0054 4.0054

5000

PM −0.2428 3.7591 3.8180
ES 0.0032 3.0449 3.0449

LSE 0.2277 0.0343 0.0862
LSE(λ∗) 0.2448 0.0319 0.0919

LS 0.2334 0.0342 0.0887
LS-LIN 2.0374 0.0003 4.1513

OS 0.4626 0.4477 0.6617
IPS-TR 0.0032 3.0449 3.0449

IX 1.9535 0.0004 3.8166
SNIPS 0.0025 2.9976 2.9976

10000

PM −0.2318 0.4702 0.5239
ES 0.0131 0.3809 0.3811

LSE 0.2254 0.0171 0.0679
LSE(λ∗) 0.1867 0.0212 0.0560

LS 0.2341 0.0173 0.0721
LS-LIN 2.0376 0.0002 4.1518

OS 0.4336 0.5004 0.6884
IPS-TR 0.0131 0.3809 0.3811

IX 1.9536 0.0002 3.8168
SNIPS 0.0123 0.3830 0.3832
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Table 25: Summary of Bias, Variance, and MSE for Different Estimators for Lomax OPE experiments. We change the
number of samples n = 50K, 100K and report the metrics for PM, ES, LSE, LSE(λ∗), LS, LS-LIN, OS, IPS-TR, IX,
SNIPS

n Estimator Bias Var MSE

50000

PM −0.2418 0.2152 0.2736
ES 0.0040 0.1743 0.1743

LSE 0.2261 0.0033 0.0544
LSE(λ∗) 0.1020 0.0085 0.0189

LS 0.2324 0.0035 0.0574
LS-LIN 2.0374 0.0000 4.1512

OS 0.3872 5.0487 5.1987
IPS-TR 0.0040 0.1743 0.1743

IX 1.9538 0.0000 3.8172
SNIPS 0.0040 0.1745 0.1746

100000

PM −0.2347 0.0633 0.1184
ES 0.0105 0.0513 0.0514

LSE 0.2267 0.0017 0.0531
LSE(λ∗) 0.0790 0.0056 0.0119

LS 0.2338 0.0017 0.0564
LS-LIN 2.0375 0.0000 4.1516

OS 0.4294 0.2179 0.4021
IPS-TR 0.0105 0.0513 0.0514

IX 1.9538 0.0000 3.8172
SNIPS 0.0105 0.0515 0.0516
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G.8. Data-driven λ Selection

In this section, we evaluate the effectiveness of our data-driven λ approach (presented in Appendix D.5) under both clean
and noisy reward conditions and provide a strategy to select λ based on data. Our approach automatically determines a
data-driven λ parameter directly from the data, eliminating the need for manual hyperparameter tuning.

G.8.1. DATA-DRIVEN λ FOR OPL

Data-driven λ on normal setting: when the reward is observed without any error, we use the derived λD suggested in
App.D.5. We experimented with the EMNIST and FMNIST datasets for τ = 1, 10. Table 26 compares the result of data
driven λD with optimal λ found by grid-search.

Table 26: Accuracy of LSE and LSE-λD on EMNIST and FMNIST datasets for τ = 1, 10

Dataset τ LSE LSE-λD

EMNIST 1.0 88.49± 0.04 89.17± 0.03
10 88.59± 0.03 88.56± 0.04

FMNIST 1.0 76.45± 0.12 75.81± 0.08
10 76.14± 0.11 74.96± 0.12

Data-driven λ on noisy setting: When the observed reward has errors, we use suggested λND in Equation 58 at App.D.5.
We experimented with the EMNIST dataset and τ = 1 and different probabilities of noise Pf = 0.2, 0.5, 0.8. Table 27
compares the result of data-driven λND with optimal λ found by grid-search.

Table 27: Accuracy of LSE and LSE-λND on EMNIST for Pf = 0.2, 0.5, 0.8

Dataset Pf LSE LSE-λND

EMNIST
0.2 88.82± 0.05 88.85± 0.09
0.5 87.65± 0.10 87.5± 0.06
0.8 91.86± 0.05 83.96± 0.22

As we can observe, the data-driven selection for λ, keeps up with the good performance of grid-search, making it a reliable
strategy to choose the hyperparameter of our method, without the requirement of any additional experiments or search. The
only exception is for the setting with Pf = 0.8, in which we observe that the data-driven falls behind by a significant value.
This is due to the high noise in the reward, which makes the estimations in the simplified objective for λND less accurate.

G.8.2. λ SELECTION STRATEGY

In this section, we provide a general strategy for the selection of λ based on experiments on OPE. Since an accurate and
robust estimation of the average reward is necessary for appropriate training of the target policy, methods that can perform
well in OPE and provide robust estimators in extreme and heavy-tailed scenarios are more reliable for OPL. We compare
three different methods for the selection of λ. First, λ is found by grid search which provides the best MSE. Second,
λ∗ is found by the data-driven suggestion in App.D.5. In the third method, we select λ uniformly randomly from [0, 1],
λ̃ ∼ Uniform(0, 1). This method shows the performance of LSE by choosing random λ as a hyperparameter. We test these
methods on the Lomax scenario where we have the more challenging heavy-tailed (for ϵ ̸= 1) condition. The MSE of each
method for the same setting of parameters as in the original OPE experiments and for n = 1K, 10K, 100K is reported in
table 28.

Our experimental results demonstrate that LSE with grid-searched λ consistently achieves the lowest MSE across all
experimental configurations. The data-driven λ selection approach exhibits strong performance, ranking second in scenarios
with larger sample sizes (n = 10K, 100K). For smaller samples (n = 1K), random λ selection occasionally outperforms
the data-driven approach. Notably, LSE maintains robust variance control under heavy-tailed distributions even with
randomly selected λ values. The performance gap between data-driven and random λ selection widens significantly as the
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Table 28: MSE of LSE with fine-tuned, data-driven and random λ for β = 1.0, 1.5, 2.0. The experiment was run 100000
times with different values of α, α′, and β.

β α α′ Estimator n = 1K n = 10K n = 100K

0.5 1.0

1.0
LSE 0.006 0.0009 0.0001
LSE-λ∗ 0.049 0.0076 0.0009

LSE-λ̃ 0.131 0.131 0.131

1.5
LSE 0.041 0.0.008 0.0039
LSE-λ∗ 0.463 0.138 0.03

LSE-λ̃ 0.449 0.449 0.449

2.0
LSE 0.105 0.033 0.026
LSE-λ∗ 1.044 0.450 0.148

LSE-λ̃ 0.764 0.762 0.760

1.0 1.5

1.0
LSE 0.014 0.002 0.0003
LSE-λ∗ 0.110 0.018 0.002

LSE-λ̃ 0.398 0.398 0.394

1.5
LSE 0.093 0.020 0.012
LSE-λ∗ 1.042 0.311 0.067
LSE-λr 1.227 1.226 1.223

2.0
LSE 0.211 0.088 0.0754
LSE-λ∗ 3.05 1.013 0.333

LSE-λ̃ 1.991 1.99 1.985

2.0 2.5

1.0
LSE 0.0463 0.005 0.0014
LSE-λ∗ 0.3071 0.048 0.0054

LSE-λ̃ 1.550 1.548 1.552

1.5
LSE 0.222 0.058 0.052
LSE-λ∗ 2.894 0.864 0.187

LSE-λ̃ 4.242 4.236 4.246

2.0
LSE 0.548 0.313 0.289
LSE-λ∗ 6.530 2.817 0.928

LSE-λ̃ 6.534 6.531 6.535
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(a) PM, TR-IPS, SNIPS, OS (b) LSE, LS-LIN, IX, ES

Figure 5: MSE of the PM, TR-IPS, SNIPS, OS, LS-LIN, IX, OS, ES, and LSE estimators over different values of log σ

sample size increases, suggesting a clear strategy for parameter selection: while the estimator remains robust to arbitrary λ
choices, the data-driven approach becomes increasingly reliable with larger sample sizes.

• If n is small (e.g. n ≈ 1000), we have fewer computational concerns, and a grid search based on the performance on a
validation set can find an appropriate λ for our problem.

• For larger values of n, we can hold to the data-driven proposal of λ which gives a comparable performance with the
grid-search method.

Another hint about the selection of λ is that for problems where the variance of the importance weights of the unbounded
behaviour of the reward function is not an issue, a very small λ (e.g. λ = 0.01) can be a better option because as λ → 0,
LSE tends to vanilla IPS. For heavy-tailed problems, selecting bigger λ values around 1 can lead to better performance.

G.9. OPE with noise

Here we discuss the performance of estimators in OPE when reward noise is available. In all experiments, the number of
samples is 1000 and the number of trials is 100K.

G.9.1. GAUSSIAN SETTING

We run the same experiments as mentioned in Section 6.1 by adding noise to the observed reward. We add a positive
Gaussian noise,

R̃(S,A) = R(S,A) + |W | : W ∼ N (0, σ2).

where R̃(S,A) is noisy reward function. We increase σ from 1 to 100 and observe the behaviour of different estimators
under the noise. We report the MSE of different estimators. There is a discrepancy between the performance of different
estimators. LSE, LS, LSE-LIN, IX, and ES demonstrated robust performance under high noise conditions, while PM,
TR-IPS, SNIPS, and OS exhibited substantially higher MSE values, often differing by several orders of magnitude from the
better-performing estimators. We draw the MSE of these two groups against log σ in Figure 5. We observe that ES, LSE,
IX, and LS-LIN are better suited for the noisy scenario. Also, we observe that ES is more sensitive to the increase of the
variance of the noise. We also investigate the distributional form of the estimators with the same levels of noise. Estimators
other than LSE, LS-LIN, and IX keep proposing outlier estimations. But these three estimators stay stable in this setting and
are compared in Figure 6 for two levels of noise. Among these three estimators, LSE can keep a low bias with almost the
same variance in comparison to IX and LS-LIN, hence leading to the lowest MSE.

G.9.2. LOMAX SETTING

When we examine the Lomax setting, the estimators’ performance deteriorates as we introduce heavier-tailed noise
distributions. To test this, we add Pareto-distributed (with parameter α) noise to the reward, varying the parameter α from
1.05 to 2.0. The parameter α controls the tail weight of the distribution, with values closer to 1 producing heavier tails. Our
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(a) small noise, σ2 ≈ 1.82 (b) large noise, σ2 = 20

Figure 6: The error distribution of the LS-LIN, LSE, and IX estimators

(a) PM, TR-IPS, SNIPS, OS, ES (b) LSE, LS-LIN, IX

Figure 7: MSE of the PM, TR-IPS, SNIPS, OS, LS-LIN, IX, OS, ES, and LSE estimators over different values of α

results, shown in Figure 7, reveal a clear split in estimator performance. The estimators - PM, ES, TR-IPS, OS, and SNIPS -
struggle significantly with the heavy-tailed noise and show poor performance based on their MSE. In contrast, the more
robust estimators - LSE, LS-LIN, and IX - maintain better performance across different noise levels, similar to what we
observed in the Gaussian scenario.

Note that the IX estimator, despite having significantly less error than the poorly performing estimators, compared to LSE
and LS-LIN is much worse in the tail of the noise.

For the distributional behavior of the estimators, we observe that except for LSE and LS-LIN, the estimators produce
extreme outlier values. Error distribution is the distribution of the difference between the estimated value and the true value.
Hence, we plot the error distribution of the LSE and LS-LIN with respect to noise in Figure 8. Here we see that in the small
noise scenario LSE despite having more variance, is significantly less biased. Under large noise, LSE keeps the variance
lower than LS-LIN, while showing the same bias. Hence, in both cases LSE achieves less MSE than LS-LIN and performs
better in both small and large noise scenarios.

G.10. Distributional properties in OPE

In this section, we investigate the error distribution of different estimators. In both Gaussian and Lomax settings, SNIPS,
TR-IPS, OS, ES, and PM show extreme outlier values, but LS-LIN, LSE, and IX avoid outliers. In Figure 9, we show the
error distribution of these estimators. We can see the competitive performance of IX and LSE in the Gaussian scenario,
while LS-LIN induces a relatively large bias in this setting. In the Lomax setting, LSE has a bigger variance than IX and
LS-LIN, while having significantly less bias. LSE has the property that it keeps bias significantly low while trading it for
some small variance, leading to less MSE and better performance.
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(a) Small noise, α = 2.0 (b) Large noise, α = 1.05

Figure 8: The error distribution of the LS-LIN and LSE estimators

(a) Gaussian Scenario (b) Lomax Scenario

Figure 9: The error distribution of the LS-LIN, IX, and LSE estimators
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G.11. More Comparison with LS Estimator

We conduct experiments to measure and compare the sensitivity of LSE and LS with respect to the selection of λ. To
measure the sensitivity, we choose grid search method where we test the following set of λ ∈ {0.001, 0.01, 0.1, 1.0, 5.0} in
Table 29, adaptive method where λn := 1√

n
is chosen, Table 30, and random method where λ̂ chosen uniformly random

from [0, 1], Table 31. Then we compare these two estimators among these different methods of selecting λ. The results are
reported below for Lomax setup.

Table 29: MSE of LSE and LS estimators with grid-searched for λ ∈ 0.001, 0.01, 0.1, 1.0, 5.0 and β = 1.0, 1.5, 2.0. The
experiment was run 100000 times with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSE 0.0362 0.0047 0.0060
LS 0.0266 0.0047 0.0054

1.5
LSE 0.1693 0.0118 0.0404
LS 0.0697 0.0346 0.0395

2.0
LSE 0.1590 0.0813 0.1066
LS 0.3086 0.0238 0.1190

1.0 1.5

1.0
LSE 0.0728 0.0091 0.0144
LS 0.0429 0.0104 0.0122

1.5
LSE 0.1065 0.0829 0.0942
LS 0.1183 0.0717 0.0857

2.0
LSE 0.2726 0.1367 0.2111
LS 0.2548 0.1785 0.2434

2.0 2.5

1.0
LSE 0.0302 0.0452 0.0461
LS 0.0819 0.0281 0.0348

1.5
LSE 0.2245 0.1702 0.2206
LS 0.2330 0.1699 0.2242

2.0
LSE 0.5345 0.2645 0.5502
LS 0.4946 0.3696 0.6142

We can observe that in a close competitions, using the grid search method, LSE outperforms in 4 out of 9 experiments. With
the adaptive method, LSE performs better in 7 out of 9 experiments, and when using the random method, LSE outshines in
all 9 experiments.

G.12. OPE on UCI datasets

We evaluate our method’s performance in OPE by conducting experiments on 5 UCI classification datasets, as explained in
Table 32,

We use the same supervised-to-bandit approach as in OPL experiments. Suggested by Sakhi et al. (2024), we consider a set
of softmax policies as the target and logging policy. Consider an ideal policy as a softmax policy peaked on the true label
of the sample. Moreover, a faulty policy is an ideal policy that has a set of its actions shifted by 1, hence, doing mostly
wrong on the samples from the shifted labels. For the logging policy, we use faulty policies on the first K/2 actions with
temperatures τ0 = {0.6, 0.7, 0.8}, and faulty policies on the last K/2 actions with τ = {0.1, 0.3, 0.5} as target policies, a
total of 9 different experiments for each dataset. We create a bandit dataset using the logging policy π0 and estimate the
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Table 30: MSE of LSEλn and LSλn estimators with data-driven λn = 1√
n

for β = 1.0, 1.5, 2.0 and n = 1000. The
experiment was run 100000 times with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSEλn

0.0816 0.0029 0.0096
LSλn

0.1314 0.0028 0.0200

1.5
LSEλn

0.2756 0.0054 0.0814
LSλn

0.2841 0.0073 0.0880

2.0
LSEλn

0.4651 0.0063 0.2226
LSλn

0.4476 0.0099 0.2103

1.0 1.5

1.0
LSEλn 0.1596 0.0053 0.0308
LSλn 0.2610 0.0052 0.0733

1.5
LSEλn 0.4857 0.0091 0.2449
LSλn 0.5129 0.0123 0.2754

2.0
LSEλn 0.7817 0.0100 0.6211
LSλn 0.7645 0.0159 0.6004

2.0 2.5

1.0
LSEλn

0.3652 0.0111 0.1445
LSλn

0.6177 0.0108 0.3924

1.5
LSEλn

0.9792 0.0169 0.9757
LSλn

1.0722 0.0227 1.1723

2.0
LSEλn

1.4919 0.0180 2.2437
LSλn

1.4952 0.0282 2.2637
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Table 31: MSE of LSEλ̂ and LSλ̂ estimators with random λ̂ for β = 1.0, 1.5, 2.0. The experiment was run 100000 times
with different values of α, α′, and β.

β α α′ Estimator Bias Variance MSE

0.5 1.0

1.0
LSEλ̂ 0.3418 0.0139 0.1308
LSλ̂ 0.6779 0.0640 0.5236

1.5
LSEλ̂ 0.6516 0.0247 0.4493
LSλ̂ 0.8335 0.0581 0.7528

2.0
LSEλ̂ 0.8583 0.0262 0.7629
LSλ̂ 0.9635 0.0491 0.9775

1.0 1.5

1.0
LSEλ̂ 0.6019 0.0365 0.3987
LSλ̂ 1.2196 0.1783 1.6656

1.5
LSEλ̂ 1.0803 0.0594 1.2264
LSλ̂ 1.4290 0.1521 2.1941

2.0
LSEλ̂ 1.3890 0.0603 1.9898
LSλ̂ 1.6017 0.1237 2.6890

2.0 2.5

1.0
LSEλ̂ 1.1942 0.1180 1.5442
LSλ̂ 2.4803 0.6019 6.7537

1.5
LSEλ̂ 2.0218 0.1686 4.2565
LSλ̂ 2.7676 0.4797 8.1390

2.0
LSEλ̂ 2.5258 0.1654 6.5451
LSλ̂ 3.0074 0.3796 9.4239

Table 32: UCI datasets specifications. N is the number of samples, K is the number of actions, and p is the number of
features.

Dataset N K p

Yeast 1,484 10 8
Page-blocks 5,473 5 10
Optdigits 5,620 10 64
Satimage 6,430 6 36
Kropt 28,056 18 6
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expected reward of the πθ which is calculated as below,

V (πθ) =
1

n

n∑
i=1

πθ (yi|xi) ,

where yi is the true label of the data sample xi. We also add a random uniform noise ϵ ∼ Uniform(0, 1) to the policy logits
before softmax. We ran each experiment in each setting 10 times and calculated the average MSE of each estimator over all
90 experiments. For hyperparameter selection, for LS, OS, IPS-TR, PM, and IX, we use their own proposals. For LSE and
ES, we use 0.2 of the dataset as a validation set to find the hyperparameter with the lowest MSE by grid search and evaluate
the method on the remaining 0.8 of the dataset. Table 33 illustrates this on the 5 datasets for different estimators.

Table 33: MSE of LSE, PM, ES, IX, OS, LS, IPS-TR and SNIPS estimators on 5 UCI classification datasets on the OPE
task.

Dataset PM ES IX OS LS IPS-TR SN-IPS LSE

Yeast 0.237 0.0096 0.0573 0.0131 0.0146 0.0255 0.0088 0.0077

Satimage 0.0033 0.0066 0.0057 0.0035 0.0047 0.0043 0.0086 0.0028

Kropt 0.0160 0.0041 0.0056 0.0169 0.0208 0.0189 0.0256 0.0015

Optdigits 0.0079 0.0066 0.0150 0.0076 0.0083 0.0098 0.0110 0.0042

Page-Blocks 0.0440 0.0002 0.0236 0.0487 0.0513 0.0445 0.0639 0.0008
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Figure 10: Histogram of 10K samples generated from Gaussian and Lomax distributions (we consider the absolute value of
the Gaussian samples to focus on the tail of the distributions)

G.13. Connection between heavy-tailed distributions and outlier modeling

We illustrate how heavy-tailed distributions can model outlier samples. Consider two sets of observations, the first one from
a normal distribution N (0, 2) which has an exponential tail, and the second from a Lomax distribution L(1.5), which is
heavy-tailed with ϵ = 0.5. Figure 10 depicts the histogram of observed 10K samples from each distribution. We can observe
that the Lomax distribution contains large, low-probability values (values around 400), but the total range for Gaussian
observations is less than 10. The occurrence of sparse very low probability outlier values is possible by sampling from
a heavy-tailed distribution like Lomax distribution. However, it does not hold for an exponential-tailed distribution like
Gaussian. Hence, heavy-tailed distributions seem to be able to model scenarios with sparse large rewards or outliers, which
is not possible using an exponential-tailed distribution. In the following, we discuss the heavy-tailed reward scenario in RL
applications.
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