
Under review as a conference paper at ICLR 2024

ACCURATE DIFFERENTIAL OPERATORS FOR HYBRID
NEURAL FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural fields have become widely used in various fields, from shape representation
to neural rendering, and for solving partial differential equations (PDEs). With
the advent of hybrid neural field representations like Instant NGP that leverage
small MLPs and explicit representations, these models train quickly and can fit
large scenes. Yet in many applications like rendering and simulation, hybrid neural
fields can cause noticeable and unreasonable artifacts. This is because they do not
yield accurate spatial derivatives needed for these downstream applications. In this
work, we propose two ways to circumvent these challenges. Our first approach
is a post hoc operator that uses local polynomial-fitting to obtain more accurate
derivatives from pre-trained hybrid neural fields. Additionally, we also propose a
self-supervised fine-tuning approach that refines the neural field to yield accurate
derivatives directly while preserving the initial signal. We show the application of
our method on rendering, collision simulation, and solving PDEs. We observe that
using our approach yields more accurate derivatives, reducing artifacts and leading
to more accurate simulations in downstream applications.

1 INTRODUCTION

Neural fields are neural networks that take spatial coordinates as input and approximate spatial
functions such as images (Sitzmann et al., 2020), signed distance fields (Park et al., 2019), and
radiance fields (Mildenhall et al., 2020). With the recent development of hybrid neural fields, which
modulate the neural network using features from a feature grid, these neural fields can now be trained
quickly (Müller et al., 2022; Sara Fridovich-Keil and Alex Yu et al., 2022; Chen et al., 2022) and can
approximate large-scale 3D structures such as entire cities (Xiangli et al., 2021; Tancik et al., 2022;
Peng et al., 2020; Takikawa et al., 2021).

At first glance, these neural fields accurately represent large, complex spatial signals. However,
a closer look reveals several artifacts in the derivatives of the represented signal (computed with
automatic differentiation, as is standard practice). For example, Figure 1 shows the erroneous
derivatives obtained from a grid-based neural field trained to represent the signed distance field (SDF)
of a 3D shape. These errors cause significant artifacts when the neural fields are used in established
rendering (Takikawa et al., 2021) or simulation pipelines (Chen et al., 2023a) which heavily rely on
accurate derivatives. If neural fields are to succeed as a general representation for spatial signals in a
variety of applications, we need to address and mitigate such artifacts.

What causes these artifacts in the derivative? The key problem is that neural fields are trained to
approximate the signal itself – there is no guarantee on the quality of approximation of the signal
derivatives. Furthermore, since the neural fields are usually designed and trained to reproduce high-
frequency details, they have high-frequency components and are thus liable to have high-frequency
noise (albeit of low magnitude). Taking derivatives directly will amplify these high-frequency signals
resulting in significant noise (Section 3.1). To obtain a better differential operator, we need to remove
this high-frequency noise before computing the derivative.

In this paper, we propose a new approach to compute accurate derivatives on pre-trained hybrid
neural fields. Our approach takes inspiration from classical signal processing where derivative
computation is typically done on a smoothed version of the signal to avoid amplifying high-frequency
noise. Our key idea is to replace direct derivatives of the neural field with derivatives of a local low-

1

Under review as a conference paper at ICLR 2024

Figure 1: Noisy gradients in hybrid neural fields. Normal maps of Blub the fish (Stein) (inset),
using gradients queried from its hybrid neural SDF using automatic differentiation (AD) and our
approach. Naively using AD gradients as surface normals leads to noisy artifacts. Our method is able
to alleviate these artifacts.

degree polynomial approximation: ∂
∂xFΘ(x) ≈ ∂

∂x

∑d
i=0 aix

i, where parameters ai are obtained by
least-square optimization of a set of labels randomly generated from a neighborhood N(x). These
low-order polynomials are easy to optimize efficiently and effectively remove high-frequency noise.

While this approach yields accurate derivatives for off-the-shelf neural fields, it requires that down-
stream pipelines be changed to use our new derivative operator. To avoid altering downstream
pipelines, we need an alternative approach that updates the neural field itself to remove the error
in autodiff derivatives. We address this need with a second approach that fine-tunes the pre-trained
neural field in a self-supervised manner, using the accurate derivatives from the first approach as a
training signal. Concretely, we minimize the difference between the autodiff gradients of the neural
field and the derivatives obtained from the local polynomial approximation while ensuring that the
initial field is preserved.

Our experimental results show that our new derivative operator is yields more accurate derivatives
than automatic differentiation (autodiff), reducing errors in gradients by 4× and errors in curvature by
20×. It also outperforms other alternative derivative operators, such as finite difference stencils. We
also show that our fine-tuning approach yields similar improvements in derivative accuracy without
affecting the fidelity of the original neural field. Lastly, we demonstrate that these improvements
substantially reduce artifacts in downstream rendering and simulation applications. Thus our proposed
methods open the door for using hybrid neural fields in a large set of downstream applications.

Contributions. Our overall contributions can be summarized as follows: (1) We identify the
issue of inaccurate autodiff derivatives in a given pre-trained hybrid neural field and point out its
relationship to high-frequency noise. (2) We propose a local polynomial-fitting operator to improve
the accuracy of neural field derivatives (3) We also propose a fine-tuning approach to improve the
quality of autodiff derivatives of hybrid neural fields.

2 RELATED WORK

Neural Fields. Neural fields are neural networks approximating spatial fields given coordinates as
input (Yang et al., 2021; Xie et al., 2022). They have been used to represent megapixel images (Martel
et al., 2021), 3D shapes in implicit fields (Park et al., 2019; Mescheder et al., 2019; Chen & Zhang,
2019) and radiance fields (Mildenhall et al., 2020; Barron et al., 2021; Verbin et al., 2021). Our work
is applicable to hybrid neural fields in all these applications, although our primary evaluation is on
SDFs. Typical neural field architectures are multi-layer perceptrons (Sitzmann et al., 2020; Tancik
et al., 2020; Mildenhall et al., 2020), but these can be slow to train and may not scale to large scenes
with fine-grained details. As such, more current approaches use hybrid representations that modulate
an MLP with spatial features stored on a grid (Müller et al., 2022; Takikawa et al., 2021; Yu et al.,
2021; Fridovich-Keil et al., 2022; Chen et al., 2022). These hybrid techniques scale well (Peng et al.,
2020; Xiangli et al., 2022; Tancik et al., 2022), but we show that they yield noisy derivatives: the key
issue we strive to address here. Accurate derivatives are particularly important when neural fields

2

Under review as a conference paper at ICLR 2024

(a) 0th order (b) 1st order (c) 2nd order

G
ro

un
d

tr
ut

h
H

yb
ri

d
ne

ur
al

fie
ld

(a)

400 200 0 200 400
Hz

10 4

10 3

10 2

10 1

100

101

In
te

ns
ity

Ground truth
Hybrid neural SDF

(b)

Figure 2: (a) Inaccurate differential operators of neural fields. Hybrid neural SDF of a circle
in 2D. As shown by the comparison with the ground truth, the 0th order signal accurately captures
the SDF. But the 1st and 2nd-order signals, here shown as the gradient and the radius of curvature
(inverse of the Laplacian) suffer from quite a bit of noise. (b) Fourier spectrum of a hybrid neural
SDF. Computed over a 1D slice (dashed line in (a)) of the SDF of a 2D circle. Note the noisy
high-frequency components that are captured by the hybrid neural field.

are used for applications such as rendering (Takikawa et al., 2021; Wang et al., 2021; Zhang et al.,
2022) and simulation (Sitzmann et al., 2020; Chen et al., 2023a; Li et al., 2023a; Chen et al., 2023b).
Recently, similar to our approach, Li et al. (2023b) used a finite-difference-based regularizer for
training hybrid neural fields for surface reconstruction. However, their motivation is to address the
training dynamics of hybrid neural fields, instead of removing the high-frequency noise components
present in pre-trained neural fields.

Polynomial-fitting for Shape Analysis. Polynomial-fitting approaches like Moving Least Squares
(MLS) (Nealen, 2004; Cheng et al., 2008; Levin, 2000) have a rich history in 3D shape analysis. Such
approaches have found applications in tasks like surface reconstruction from point clouds (Alexa et al.,
2003), animating elastoplastic materials (Müller et al., 2004), and learning implicit functions from
scattered data (Shen et al., 2004; Ohtake et al., 2003). In this paper, we apply polynomial-fitting to a
novel setting of neural fields to solve the important issue of obtaining accurate differential operators.
Typically, in past works, given scattered data (point clouds with associated scalar values) as input,
approaches like MLS compute fitting planes (or higher-order polynomials) to local subsets of surface
points. In essence, the planes/polynomials serve the role of an interpolant for the given data (point
clouds). In our setting, the neural field already exists as an interpolant. But, as we observe in Figure
1, the neural field interpolant does not yield accurate differential operators, and our approach attempts
to alleviate this problem. Furthermore, the fitting problem in MLS is different: in MLS, we fit a
surface to a set of input points, whereas our approach fits a polynomial to a set of values of the field
at any point in its domain.

3 METHOD

We assume that we have a pre-trained neural field, Fθ. We further assume that this is a hybrid
field (Müller et al., 2022), namely, it has a spatial grid of feature vectors in addition to an MLP. The
field value at any point is obtained by feeding to the MLP the point location as well as a feature vector
obtained by interpolating into the grid. As shown in Figure 1, we observe that the derivatives of such
neural fields have noise. Our goal is to come up with an alternative approach that yields accurate
derivatives.

To concretize the problem, we focus on neural fields representing 3D shape in the form of signed
distance fields (although our final approach is more general). We begin by analyzing why hybrid
neural fields yield noisy derivatives and then motivate our approach.

3

Under review as a conference paper at ICLR 2024

3.1 NOISY DERIVATIVES IN HYBRID NEURAL FIELDS

Why are the derivatives of hybrid neural fields incorrect? We observe that much of the capacity of
hybrid neural fields lies in the high-resolution spatial grid of feature vectors. This spatial grid is
essential for the neural field to capture fine-grained localized details. Consequently, this spatial grid
also determines the high-frequency components of the fitted signal. Unfortunately, this abundance of
capacity for high-frequency components means that there are likely many solutions with different
high-frequency components that fit the training data well. This in turn can result in noise in the
high-frequency components. We observe this noise in practice. Figure 2b compares the spectrum of
the ground truth and learned signed distance function (SDF) for a circle in 2D. Note how the learned
SDF has higher amplitudes in the high-frequency components.

This high-frequency noise is the source of artifacts in the derivatives. This is because derivative
computation accentuates high-frequency noise, scaling it up proportional to the frequency, as il-
lustrated by a sinusoidal signal with frequency ν: d sin(2πνx)

dx = 2πνcos(2πνx). Thus, even when
the high-frequency noise has a very low magnitude, the corresponding noise in the derivative has
a much higher magnitude. Figure 2a shows this issue in practice: the same SDF of the 2D circle
that we learned earlier provides an extremely noisy gradient when we use automatic differentiation.

f

∇x f(x0)
x0

Ground truth signal

Hybrid neural field

Input
Output

Post hoc
operator

Fine-tuning Improved autodiff
derivatives

Accurate polynomial-
fitting derivatives

Figure 3: Problem setup. Given a pre-trained hy-
brid neural field with noisy autodiff derivatives, we
propose two approaches for accurate derivatives.
Our polynomial-fitting operator can be applied in
a post hoc manner while our fine-tuning approach
directly improves autodiff derivatives of the field.

Derivatives and smoothing. This notion of
high-frequency noise magnifying errors in
derivative computation is well known in signal
processing, and the answer is to use smoothing
to remove the high-frequency components. The
degree of smoothing can be controlled and cor-
responds to the scale of the derivative. How this
smoothing is done depends on how the signal
is represented. For images represented as a 2D
grid of pixel values, smoothing can be done by
convolving with an averaging filter, and deriva-
tives are typically only computed after smooth-
ing. When 3D shapes are represented as meshes,
the mesh automatically represents a smooth ver-
sion of the signal: each face is effectively a local
linear approximation of the surface. Derivatives
can then be computed using the face normal.

Unfortunately, no analogous notion of smoothed derivatives exists for arbitrary hybrid neural fields.
We address this gap using our proposed approach. Instead of automatic differentiation, our approach
first smooths the neural field by computing a local low-order polynomial approximation of the neural
field, and then differentiates this polynomial approximation to yield macro-scale derivatives. An
overview of this approach is shown in Figure 3.

3.2 LOCAL POLYNOMIAL-FITTING OPERATORS

Now, we will explain our local polynomial-fitting approach. Given a hybrid neural field, FΘ : Rm →
Rn, and a query point q ∈ Rm, we want to compute accurate first-order derivatives of FΘ at q. For
simplicity of exposition, we choose n = 1 here.

First, we sample points xi, i = 1, . . . , k from a local neighborhood N(q) of the point q. We query
the neural field to obtain corresponding outputs yi = FΘ(xi) ∀xi ∈ N(q). We then use these values
to fit a local linear approximation y ≈ F̂Θ(x;q) = gTx+ b using simple least squares:

ĝ, b̂ = argmin
g,b

k∑
i=1

(gTxi + b− yi)
2 (1)

Our estimate of the derivative is then ∇̂xFΘ(q) = ∇xF̂Θ(x,q) = ĝ.

We can extend the same approach to the case of vector fields (n > 1), where g is replaced by an
m× n estimate of the Jacobian, J.

4

Under review as a conference paper at ICLR 2024

Local neighborhood selection. Different sampling schemes can be considered in order to select a
local neighborhood around the query point q. However, in our experiments, we found that sampling
from a Gaussian distribution centered at q, N (q, σ) worked best for us. The standard deviation, σ
controls the amount of smoothing that we do at a particular point. The number of neighbors sampled,
k is another hyperparameter of our method and controls the variance of the operator that we compute.
We discuss how we select these hyperparameters in detail in our experiments (Section 4).

Hessian & Laplacian. To compute second-order differential operators like the Hessian or Laplacian,
instead of fitting a linear polynomial through the local neighborhood of q, we fit a quadratic surface.
Specifically, for scalar fields, we minimize:

k∑
i=1

(xT
i Hxi + pTxi + q − yi)

2 (2)

Ideally, since the Hessian is symmetric and H is our estimate for the Hessian, we want H to be
symmetric. We therefore reparametrize H as H = D+U+UT where D is a diagonal matrix and
U is an upper-triangular matrix. Once we obtain H, we can also obtain the Laplacian (∆FΘ) as the
trace of H.

Given any pre-trained neural field with similar high-frequency noise, our operators can be applied to
it in a post hoc manner to obtain accurate differential operators from the field. However, they do not
alter the weights of the neural field, essentially acting as "test-time" operators.

Comparison to alternatives. Our approach computes a derivative by sampling points locally and
fitting a local polynomial approximation. However, one might consider other alternatives:

1. Instead of automatic differentiation, which yields the instantaneous derivative, we can
compute derivatives using finite differences. However, this amounts to sub-sampling the
signal without smoothing, which will cause aliasing and thus, inaccuracy in derivatives, as
demonstrated in the experiments (see Section 4).

2. A mesh also computes a local polynomial approximation, so we could convert the neural
field to a mesh using Marching Cubes. However, extracting a mesh with Marching Cubes
can be quite expensive, especially for applications like physical simulation where each
simulation step may require gradient queries from an evolving signal (see Appendix D).

3.3 FINE-TUNING PRE-TRAINED HYBRID NEURAL FIELDS

The post hoc operator we describe above can be used to effectively query accurate differential
operators from a given neural field. However, to use it, every downstream application must be altered
to allow for our new operator. Unfortunately, for many applications, autodiff remains the prevalent
way to obtain gradients from neural networks. Hence, we propose a method to update the neural field
directly so that autodiff yields accurate gradients for hybrid neural fields.

Concretely, given a pre-trained neural field, we propose to fine-tune it to improve the accuracy of
the differential operators obtained using autodiff. Let us denote the pre-trained neural field and the
resulting neural field by M , FΘ respectively. FΘ is initialized with the weights of M . We fine-tune
FΘ using the following loss function:

Lft(x0; Θ) = |FΘ(x0)−M(x0)|2︸ ︷︷ ︸
Lcon

+ ||∇xFΘ(x0)− ∇̂xM(x0)||22︸ ︷︷ ︸
Lgrad

(3)

Here, Lcon denotes the consistency loss which ensures that the output of FΘ matches the pre-trained
Neural Field, M . Lgrad denotes the gradient loss that tries to align the autodiff gradient of FΘ with
accurate gradient estimates obtained by applying the operator ∇̂x on M . In our experiments, we use
our polynomial-fitting gradient operator to obtain ∇̂xM .

Note that this fine-tuning process is orthogonal to any kind of smoothed gradient operator. Our
polynomial-fitting gradient for ∇̂x is just one of the ways we can perform this fine-tuning. We can

5

Under review as a conference paper at ICLR 2024

similarly use other approaches to compute accurate gradient estimates. In fact, in our experiments,
we find that even less accurate estimates, like those obtained from finite differences, can suffice to
effectively regularize the fine-tuning.

4 EXPERIMENTS AND RESULTS

We first evaluate the accuracy of our proposed operator and then evaluate the result of our fine-tuning
approach. For both sets of experiments, we use shapes from the FamousShape dataset (Erler et al.,
2020). We pre-train an Instant NGP model (Müller et al., 2022) to learn the SDF of each shape. We
evaluate the estimates of surface normals (first-order operator) and mean curvatures (second-order
operator) by comparing them to surface normals and mean curvatures obtained from the provided
meshes of the shapes (which we regard as ground truth). For surface normals, we compute the mean
L2 error, mean angular error in degrees (Ang), and the percentage of points having angle error below
1◦ (AA@1) and 2◦ (AA@2). For mean curvature, we use the rectified relative error (RRE) used by
past works for evaluating curvature estimation (Guerrero et al., 2018; Ben-Shabat & Gould, 2020).
We report metrics averaged over all evaluated shapes (detailed results for each shape are in Appendix
C). For the detailed experimental setup, please refer to Appendix B.

Choosing σ and k. As discussed in Section 3.2, our polynomial-fitting operators also requires
σ and k values as hyperparameters. In our experiments, we always choose k = 256, as choosing
a larger value minimizes the variance in the estimated gradients. For σ, its value is dependent on
downstream applications. In this case, since we do not have an explicit downstream application, we
choose σ to have the best consistency with differential operators obtained from the mesh. Specifically,

• For post hoc operators, we perform a telescoping search for the best value of σ.

• For fine-tuning, we train an ensemble of models with different values of σ and select the
value that yields the best autodiff gradients after fine-tuning.

To demonstrate the effect of our hyperparameters, we perform a quantitative ablation over different
values on two shapes: the Armadillo and the Stanford Bunny, shown in Figure 4. We also show the
qualitative effects of the choice of hyperparameters in Figure 8. The qualitative and quantitative
results tell us two things: First, more neighbors are better, and one should choose as large a value of
k as computationally feasible; Second, the choice of σ depends on the degree of smoothing needed,
which in turn depends on the downstream task. However, our accuracy metrics vary smoothly with
the choice of σ, so a coarse telescopic search should suffice.

Accuracy of operators. We first evaluate our polynomial-fitting operator by comparing it to
automatic differentiation as well as a finite difference baseline.

Table 1 shows our results. Our approach provides more accurate surface normals and mean curvature
values from Neural Fields compared to the baselines. In particular, our approach yields 4× reductions
in the angular error for the surface normal, and almost 20× reduction in error for Mean curvature.
Our approach also yields higher accuracy relative to finite differences.

Table 1: Operator evaluation. We compare against autodiff and finite difference baselines on the
FamousShape dataset (Erler et al., 2020). We report the performance averaged over the dataset. Note
that our approach provides more accurate surface normals and mean curvature than the baselines.

Method Surface Normal Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓
Autodiff 0.21 12.40 1.58 6.12 22.55

Finite difference 0.07 4.20 26.86 55.22 3.67
Ours 0.05 2.80 42.92 67.90 0.89

Improving pre-trained neural fields. We proposed in Section 3.3 a second approach of fine-
tuning the neural field to improve the autodiff derivative estimates. We evaluate two versions of

6

Under review as a conference paper at ICLR 2024

1.0e-03 5.0e-03 1.0e-02 5.0e-02 1.0e-01
3
4
5
6
7
8

lo
g 2

k
k = 28=

0.
00

2

20

40

1.0e-02 5.0e-02 1.0e-01 5.0e-01 1.0e+00
3
4
5
6
7
8l

og
2

k

k = 28 =
0.

15

0.9

1.0

(a) Armadillo

1.0e-03 5.0e-03 1.0e-02 5.0e-02 1.0e-01
3
4
5
6
7
8l

og
2

k

k = 28 =
0.

00
5

10

20

1.0e-02 5.0e-02 1.0e-01 5.0e-01 1.0e+00
3
4
5
6
7
8l

og
2

k

k = 28

=
0.

25

1.0

1.5

(b) Stanford Bunny

Figure 4: Hyperparameter Ablation. Variation in angle error for normal/gradient (top) and the mean
curvature error (bottom) for different settings. k and σ refer to the number of neighbors sampled and
the size of the neighborhood respectively. ⋆ denotes the best settings.

our fine-tuning approach, one using finite difference-based gradient operators as supervision, and
the other using our polynomial fit-based operator. We compare the results from this fine-tuning
to the un-finetuned network in Table 2. We observe that fine-tuning improves derivative estimates
significantly, with our polynomial fit-based operator providing better supervision. Note that even
though we only supervise the gradient, the curvature improves as well. Furthermore, the fine-tuning
process preserves the zero-level set of the pre-trained hybrid neural field, as highlighted by minor
changes in metrics like Chamfer Distance (CD) and F-Score.

Table 2: Effect of fine-tuning. Our fine-tuning approach improves the accuracy of surface normals
and mean curvature obtained from automatic differentiation. We compare the performance of autodiff
operators before (first row) and after fine-tuning.

Fine-tuning operator
Surface Normal Mean Curvature Mesh Reconstruction

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓ CD ↓ F-Score ↑

- 0.21 12.40 1.58 6.12 22.55 9.24× 10−4 93.07
Finite difference 0.08 5.14 21.16 46.63 3.15 9.35× 10−4 90.24

Polynomial-fitting 0.05 3.19 33.60 60.24 2.39 9.28× 10−4 92.28

5 APPLICATIONS

We now demonstrate the impact of our improved derivatives on downstream applications.

5.1 RENDERING

In rendering, accurate surface normals (which correspond to the gradient of the SDF) are needed to
estimate how light will reflect off a surface (Shirley & Marschner, 2009). We show the impact of our
improved gradients on the rendering of a hybrid neural SDF representing a perfectly specular sphere,
and another representing a perfectly lambertian Armadillo (Krishnamurthy & Levoy, 1996).

For the sphere, we use the analytic SDF and surface normals for the ground truth, while we used a
mesh as reference for the Armadillo. The sphere was lit with an environment map, and the armadillo
with a light source from behind the camera. We use sphere tracing to compute the first ray intersection
from the camera with the zero-level iso-surface. Subsequently, we queried the network to obtain
gradients using automatic differentiation, finite differences, our post hoc polynomial-fitting operator,
and autodiff gradients obtained from a network that was fine-tuned with our operator.

Figure 5 presents our results. As predicted, for the supposedly smooth sphere, as well as the
Armadillo, we observed severe surface artifacts using gradients from automatic differentiation. The
finite difference-based post hoc operator is able to tackle noise to an extent but still leads to artifacts.
On the other hand, normals estimated by our approaches give a much more noise-free image that
closely matches the reference.

7

Under review as a conference paper at ICLR 2024

Reference Autodiff Finite difference Polynomial-fitting AD after fine-tuning

OursPost hoc operators

Figure 5: Accurate Normals for Rendering. A perfectly specular sphere lighted by an environment
map (top) and a diffuse Armadillo (inset) lit by a light source put in front of the object (bottom). In
both cases, noisy normals from autodiff lead to artifacts in rendering as shown in the highlighted
parts for the sphere and the chest of the Armadillo, that are mitigated by our approaches.

Figure 6: Effect of noisy normals on collision. We illustrate the effect of noisy normals on collision.
Two spheres undergoing perfectly elastic head-on collisions simulated using correct surface normals
will re-trace their paths after a collision. However, inaccurate normal estimates from automatic
differentiation yield incorrect trajectories after bouncing.

5.2 SIMULATING COLLISIONS

When simulating collisions between objects, normals help determine the impulse direction (Catto,
2005; Erleben, 2007). When working with hybrid neural SDFs, we would need to query the normal
at the local coordinates of the point of collision to the network. If the normals are inaccurate, this can
lead to incorrect object trajectories after the collision.

For our experimental setup, we consider two identical spheres undergoing head-on collision on a
plane and simulate their trajectories post-collision. To obtain these trajectories, we use the normal
estimates from the two SDFs at the analytical point of contact. We model the collisions as perfectly
elastic so that there is no loss of energy. In the ideal case, the spheres should rebound along the
line joining the centers with the same velocity, but erroneous normal estimates will lead to incorrect
trajectories. Figure 6 illustrates such a simulation, and also shows how things fail when using autodiff
gradients to compute normals. Averaged over 106 trials, the mean error obtained from our normals
was 0.85◦, compared to 11.51◦ for autodiff normals.

5.3 PDE SIMULATION

Recently, Chen et al. (2023a) proposed using Implicit Neural Spatial Representations (INSR) as the
spatial representation of the PDE solution instead of explicit spatial discretization. We build upon

8

Under review as a conference paper at ICLR 2024

their work and highlight that having accurate gradient operators also enables the use of hybrid neural
fields for PDE simulation.

101

104

Grid Solver
AD
Ours

0 1 2 3 4 5
Time (sec.)

0.00

0.01

0.02M
SE

Figure 7: Effect of inaccurate gradients in
PDE simulation. Mean squared error (MSE)
in a 2D advection simulation, for a finite differ-
ence grid solver, autodiff gradients (AD), and our
polynomial-fitting approach. The error for AD ex-
plodes after the first few seconds and eventually
crashes (indicated by ×).

We simulate a 2D advection equation, given
by,∂u∂t = −a∇xu. For the initial condition, we
have a Gaussian wave centered at (−0.6,−0.6)
with a standard deviation of 0.1. We choose a
constant velocity, a = [0.25 0.25]T . For time
integration, we use the forward Euler method,
given by,

ut+1 = ut − a∆t∇xu (4)

In our case, the gradient of the initial condi-
tion can either be queried directly using auto-
matic differentiation or using our operator. For
evaluation, we compare the evolution using our
polynomial-fitting gradient operator with the
ground truth and the same forward-stepping
scheme but with gradients estimated by auto-
matic differentiation (AD). We also show re-
sults from a finite difference-based grid solver
to show where traditional methods stand. All the
methods use a step size of 0.05, and we run our
simulations for 100 time steps. Figure 7 shows
our results. The grid solver accumulates errors over time due to numerical dissipation caused by
its spatial discretization. Using our hybrid neural field with autodiff gradients leads to diverging
solutions and the evolution collapses after 2 seconds of evolution. Using the same neural field with
our operator leads to more accurate solutions at all time steps.

6 CONCLUSION, DISCUSSION, AND FUTURE WORKS

This paper studies how to compute accurate differential operators, such as gradient, hessian, and
laplacian, for grid-based neural fields. We show that computing these operators via an automatic
differentiation scheme will lead to significant artifacts because these derivative operators amplify the
high-frequency noise of the model. We tackle this problem via locally fitting a low-order polynomial
function and computing a derivative operator on the low-order polynomial function instead. Our
method can produce accurate derivative estimates robust to this high-frequency noise. We further
propose a self-supervised fine-tuning approach to improve the accuracy of autodiff gradients directly.
We show that our method can improve the quality of autodiff derivatives from a pre-trained hybrid
neural field. We further demonstrate that our methods improve performance in rendering and physics
simulation applications compared to directly using autodiff derivatives for hybrid neural fields.

Discussion and future works. The σ hyper-parameter required by our approach depends on the
downstream task. However, this dependence is not unique to our approach but in fact, is common
in other domains where derivatives are computed. For example, in the field of Image Processing,
image derivatives have a scale parameter associated with them which depends on the downstream
application for which the derivative is being computed. Another analogue, although in a slightly
orthogonal setting is the MLS-family of methods for surface fitting on point clouds (Nealen, 2004).
These methods often have a "spread" parameter that controls the degree of smoothing of small details.
As such, while the sensitivity to this hyperparameter is a limitation, the availability of this knob gives
additional control to the downstream application, and can therefore be useful.

Our method also requires randomly sampling a local neighborhood to estimate the parameters,
which results in many additional forward passes through the neural fields. This makes our method
expensive compared to alternative approaches to compute derivatives. One can potentially speed up
our differential operators by sharing the points between different patches or by designing a more
efficient sampling pattern. Additionally, if we use our fine-tuning approach then we can amortize this
cost and get instantaneous derivatives for subsequent queries.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

We present details for the experiments given in Section 4, including data pre-processing, model
training, and hyperparameter search in Appendix B. For the results in Secion 4 we present extended
results for each shape along with the best hyperparameters in Appendix C. For our quantitative results,
we primarily use the FamousShape dataset (Erler et al., 2020) which is publicly available. Appendix
E provides details for reproducing the qualitative and quantitative results described in Section 5. We
also plan to publicly release the data, code, and models used in our experiments, along with complete
documentation upon publication.

REFERENCES

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. Computing and rendering point set
surfaces. IEEE Transactions on Visualization and Computer Graphics, 9(1):3–15, 2003. doi: 10.1109/TVCG.
2003.1175093.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864, 2021.

Yizhak Ben-Shabat and Stephen Gould. Deepfit: 3d surface fitting via neural network weighted least squares. In
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I, pp. 20–34, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58451-1. doi: 10.1007/
978-3-030-58452-8_2. URL https://doi.org/10.1007/978-3-030-58452-8_2.

Erin S. Catto. Iterative dynamics with temporal coherence. 2005.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3D generative adversarial networks. In arXiv, 2021.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXII, pp. 333–350. Springer, 2022.

Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng, and Peter Yichen Chen. Simulating physics with
implicit neural spatial representations. In International Conference on Machine Learning, 2023a.

Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, G A Pershing, Henrique Teles Maia, Maurizio M
Chiaramonte, Kevin Thomas Carlberg, and Eitan Grinspun. CROM: Continuous reduced-order modeling
of PDEs using implicit neural representations. In The Eleventh International Conference on Learning
Representations, 2023b. URL https://openreview.net/forum?id=FUORz1tG8Og.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proc. CVPR, 2019.

Zhi-Quan Cheng, Y.-Z Wang, B. Li, K. Xu, G. Dang, and S.-Y Jin. A survey of methods for moving least
squares surfaces. pp. 9–23, 01 2008. doi: 10.2312/VG/VG-PBG08/009-023.

Kenny Erleben. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph., 26
(2):12–es, jun 2007. ISSN 0730-0301. doi: 10.1145/1243980.1243986. URL https://doi.org/10.
1145/1243980.1243986.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J. Mitra, and Michael Wimmer. Points2Surf: Learning
implicit surfaces from point clouds. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm
(eds.), Computer Vision – ECCV 2020, pp. 108–124, Cham, 2020. Springer International Publishing. ISBN
978-3-030-58558-7.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. PCPNet: Learning local shape properties
from raw point clouds. Computer Graphics Forum, 37(2):75–85, 2018. doi: 10.1111/cgf.13343.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proc. ICLR, 2014.

10

https://doi.org/10.1007/978-3-030-58452-8_2
https://openreview.net/forum?id=FUORz1tG8Og
https://doi.org/10.1145/1243980.1243986
https://doi.org/10.1145/1243980.1243986

Under review as a conference paper at ICLR 2024

Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp.
313–324, New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917464. doi:
10.1145/237170.237270. URL https://doi.org/10.1145/237170.237270.

David Levin. The approximation power of moving least-squares. Mathematics of Computation, 67, 02 2000.
doi: 10.1090/S0025-5718-98-00974-0.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu Jiang, and
Chuang Gan. Pac-nerf: Physics augmented continuum neural radiance fields for geometry-agnostic system
identification. arXiv preprint arXiv:2303.05512, 2023a.

Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan
Lin. Neuralangelo: High-fidelity neural surface reconstruction. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023b.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.
In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’87, pp. 163–169, New York, NY, USA, 1987. Association for Computing Machinery. ISBN 0897912276.
doi: 10.1145/37401.37422. URL https://doi.org/10.1145/37401.37422.

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon Wetzstein.
ACORN: Adaptive coordinate networks for neural scene representation. ACM Trans. Graph. (SIGGRAPH),
40(4), 2021.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3D reconstruction in function space. In Proc. CVPR, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing scenes as neural radiance fields for view synthesis. In Proc. ECCV, 2020.

M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based animation of elastic, plastic
and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’04, pp. 141–151, Goslar, DEU, 2004. Eurographics Association. ISBN 3905673142. doi:
10.1145/1028523.1028542. URL https://doi.org/10.1145/1028523.1028542.

Thomas Müller. tiny-cuda-nn, 4 2021. URL https://github.com/NVlabs/tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022. doi: 10.1145/3528223.
3530127. URL https://doi.org/10.1145/3528223.3530127.

Andrew Nealen. An as-short-as-possible introduction to the least squares, weighted least squares and moving
least squares methods for scattered data approximation and interpolation. 01 2004.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. Multi-level partition of unity
implicits. ACM Trans. Graph., 22(3):463–470, jul 2003. ISSN 0730-0301. doi: 10.1145/882262.882293.
URL https://doi.org/10.1145/882262.882293.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representation. In Proc. CVPR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, et al. Pytorch: An imperative style,
high-performance deep learning library. In Proc. NeurIPS, 2019.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In Proc. ECCV, 2020.

Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and approximating implicit surfaces
from polygon soup. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pp. 896–904, New York, NY, USA,
2004. Association for Computing Machinery. ISBN 9781450378239. doi: 10.1145/1186562.1015816. URL
https://doi.org/10.1145/1186562.1015816.

Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. A. K. Peters, Ltd., USA, 3rd edition,
2009. ISBN 1568814690.

11

https://doi.org/10.1145/237170.237270
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/1028523.1028542
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/882262.882293
https://doi.org/10.1145/1186562.1015816

Under review as a conference paper at ICLR 2024

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In Proc. NeurIPS, 2020.

Oded Stein. Blub, the fish. https://github.com/odedstein/meshes/tree/master/objects/
fish. Accessed: 2023-09-26.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec
Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering with
implicit 3D shapes. 2021.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. In Proc. NeurIPS, 2020.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan, Jonathan T
Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8258, 2022.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler, Jonathan T. Barron, and Pratul P. Srinivasan.
Ref-nerf: Structured view-dependent appearance for neural radiance fields. ArXiv, abs/2112.03907, 2021.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS, 2021.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and Dahua
Lin. Citynerf: Building nerf at city scale. arXiv preprint arXiv:2112.05504, 2021.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and Dahua
Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In The European
Conference on Computer Vision (ECCV), 2022.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James
Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual computing and beyond. In Computer
Graphics Forum, volume 41, pp. 641–676. Wiley Online Library, 2022.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing with neural fields.
In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for real-time
rendering of neural radiance fields. In ICCV, 2021.

Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron: Inverse rendering by optimizing neural sdfs and
materials from photometric images. In IEEE Conf. Comput. Vis. Pattern Recog., 2022.

12

https://github.com/odedstein/meshes/tree/master/objects/fish
https://github.com/odedstein/meshes/tree/master/objects/fish

Under review as a conference paper at ICLR 2024

A EFFECT OF HYPERPARAMETERS

As we discuss in Section 3.2, our approach requires two hyperparameters σ and k, which control the
amount of smoothing and the variance of the operator respectively. In Section 4, we also proposed
how we can select these hyperparameters, choosing as high a value as possible for k and choosing σ
depending on downstream applications.

Figure 8 further shows a qualitative example showcasing the effect of σ and k. We plot the normal
maps queried from a hybrid neural field trained on the Armadillo shape. As we can observe, choosing
a larger value of k for a fixed σ reduces the variance in our operator leading to smoother normals. On
the other hand, for a fixed value of k, choosing too small a value for σ can lead to under-smoothing,
while choosing too large can lead to over-smoothing.

B EXPERIMENTAL DETAILS

In this section, we provide the implementation details for our experiments described in Section 4.

B.1 DATASET

We perform pre-training on shapes from the FamousShape dataset (Erler et al., 2020). We filter out
shapes with non-watertight meshes or incorrectly oriented normals. This is because non-watertight
meshes do not admit a valid SDF and in order to compute the correct ground truth, we require meshes
with correct normals. This gave us a set of 15 shapes. We further center the meshes at the origin and
normalize them to lie inside the [−1, 1]3 cube.

B.2 PRE-TRAINING

The inputs for our experiments are the pre-trained hybrid neural SDFs of the shapes. In this section,
we present details about how we obtain the pre-trained models.

For our hybrid neural field, we used Instant NGP, keeping the same architecture details as described
in Müller et al. (2022). We implemented our models using tiny-cuda-nn (Müller, 2021). We
follow the same data sampling procedure for training neural SDFs as described by Müller et al. (2022)
for training the Instant NGP models. We trained all models for 104 steps using the Adam (Kingma &
Ba, 2014) optimizer with an initial learning rate of 1e−3 and reduced the learning rate by a factor of
0.2 every 5 steps.

B.3 POST HOC OPERATOR

In this section, we provide details for the hyperparameter selection procedure used for our post hoc
polynomial-fitting operator. We used a fixed value of 256 for k. For the value of σ, we selected the
best value using telescopic search in two levels: the first sweep is conducted over 10i : −5 ≤ i ≤ 1,
after which we zoom in to the interval bounded by the best value, σ1 and its best neighbor σ2.
Assuming without loss of generality that σ1 < σ2, we then conduct a sweep over 20 values taken at
uniform intervals from [σ1, σ2].

Baselines. We compare our polynomial-fitting operator with automatic differentiation and finite
difference for computing surface normals and mean curvatures of the shapes. For automatic differen-
tiation, we directly query the network using PyTorch’s (Paszke et al., 2019) automatic differentiation
toolkit. For the finite difference operators, we used a centered difference approach, sampling lo-
cal axis-aligned neighbors of the query point and using them to compute the operator. The finite
difference operator had a hyperparameter h for the stencil size. In essence, it gives the size of the
finite difference grid cell, if we were to set up a global grid for computing finite differences . We
selected this hyperparameter by sweeping over the set { 2

2i : 5 ≤ i ≤ 9}. Here 2i is analogous to the
resolution of the global finite difference grid.

13

Under review as a conference paper at ICLR 2024

Autodiff

Mesh Normals Ours k = 4 k = 8 k = 32

σ = 1 × 10−4 σ = 5 × 10−3 σ = 3 × 10−2
k = 256, σ ↑

σ = 5 × 10−3, k ↑

Autodiff

Mesh Normals Ours k = 4 k = 8 k = 32

σ = 1 × 10−4 σ = 5 × 10−3 σ = 3 × 10−2
k = 256, σ ↑

σ = 5 × 10−3, k ↑

Figure 8: Effect of hyperparameters. The performance of our polynomial-fitting operator is
influenced by the selected hyperparameter values. We demonstrate this on the Armadillo highlighting
this from two different viewpoints, the torso and the head. For a fixed σ, choosing a larger k can
reduce variance in the estimated plane and improve the quality (see the first row for each viewpoint).
For a fixed k, choosing a large σ can lead to over-smoothing, whereas choosing a smaller σ can lead
to no smoothing at all (second row of each viewpoint).

B.4 FINE-TUNING

As discussed in Section 3.3, we train an ensemble of models where each model is supervised with a
different version of the smoothed gradient operator, ∇̂x characterized by the amount of smoothing it
imposes. For fine-tuning based on polynomial-fitting derivatives, we ensemble using σ values taken
uniformly from the interval [1e− 3, 1e− 2] at steps of 5e− 3. For finite-difference-based fine-tuning
we ensemble using stencil sizes from the set {2i : 5 ≤ i ≤ 9}. We fine-tune all models for 4000 steps
with a constant learning rate of 2e− 3, using the Adam optimizer (Kingma & Ba, 2014).

14

Under review as a conference paper at ICLR 2024

C ADDITIONAL RESULTS

Accuracy analysis. In Section 4, we reported the results for the accuracy of our operators. In this
section, we provide the full results for the accuracy analysis of our operators and our fine-tuning
approach on the FamousShape dataset (Erler et al., 2020). Table 3 shows comparisons between our
post hoc operator and the baselines while Table 4 shows how our best fine-tuning approach, i.e.,
fine-tuning with polynomial-fitting gradients improves autodiff gradients before and after fine-tuning.

Table 3: Post hoc operator evluation. We compare our operators on the FamousShape dataset (Erler
et al., 2020). σ, h indicate the selected hyperparameters for our approach and finite difference (FD)
respectively. Note that our approach provides more accurate surface normals and mean curvature
than the baselines.

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours AD FD Ours

Angel 0.12 0.04 0.03 7.14 2.30 1.50 1.93 26.47 52.09 7.50 61.66 81.56 1.5e-3 2/512 17.77 1.60 1.47 9.5e-1 2/256

Armadillo 0.13 0.03 0.02 7.27 1.83 1.18 1.79 24.69 52.52 6.88 63.93 86.84 2.0e-3 2/512 7.20 1.66 0.81 1.5e-1 2/512

Bunny 0.12 0.03 0.02 6.95 1.79 1.26 2.13 42.46 67.98 8.19 78.31 88.39 5.0e-3 2/256 11.38 1.37 0.72 2.5e-1 2/256

Column 0.72 0.28 0.15 46.15 16.27 8.47 0.31 0.51 4.54 1.20 2.08 15.87 3.5e-3 2/256 38.15 2.54 0.88 4.5e-1 2/128

Cup 0.12 0.02 0.01 7.06 1.24 0.88 2.02 62.26 72.20 7.93 84.37 88.66 8.0e-3 2/128 40.14 4.59 0.83 2.0e-2 2/64

Dragon 0.11 0.03 0.02 6.45 1.88 1.36 2.32 29.22 54.68 8.86 69.00 86.67 2.0e-3 2/512 11.13 1.46 0.89 9.0e-1 2/256

Flower 0.26 0.08 0.06 15.21 4.50 3.39 0.63 39.12 57.18 2.52 66.99 69.30 1.0e-2 2/128 69.42 13.40 0.87 2.0e-2 2/512

Galera 0.12 0.04 0.03 7.10 2.10 1.65 1.82 21.89 37.75 7.00 58.76 75.89 2.0e-3 2/512 6.83 1.85 0.82 2.5e-1 2/512

Hand 0.14 0.04 0.02 8.03 2.12 1.44 1.40 19.60 39.32 5.54 55.55 79.82 1.5e-3 2/512 8.74 1.27 0.86 3.5e-1 2/256

Netsuke 0.12 0.04 0.03 7.00 2.19 1.67 1.89 21.48 41.84 7.21 56.91 74.48 2.0e-3 2/512 10.24 2.40 0.82 3.5e-1 2/512

Tortuga 0.11 0.03 0.02 6.07 1.51 1.08 2.51 46.14 63.30 9.70 80.90 89.30 3.0e-3 2/256 10.43 2.36 0.74 2.0e-1 2/512

Utah Teapot 0.14 0.04 0.03 8.33 2.53 2.00 1.51 27.91 42.20 5.91 62.64 73.89 4.5e-3 2/256 38.03 7.68 0.76 3.5e-2 2/512

XYZ Dragon 0.16 0.11 0.07 9.19 6.37 4.11 1.09 4.40 6.83 4.37 15.56 23.86 8.0e-4 2/512 5.37 2.00 0.92 1.5e-1 2/512

XYZ Statuette 0.61 0.25 0.18 37.50 14.53 10.55 0.12 0.72 2.11 0.46 2.94 7.86 1.5e-3 2/512 43.58 9.00 0.97 2.0e-3 2/512

Mean 0.21 0.07 0.05 12.40 4.20 2.80 1.58 26.86 42.92 6.12 55.22 67.90 - - 22.55 3.67 0.89 - -

Table 4: Fine-tuning using polynomial-fitting. Full results for fine-tuning using polynomial-fitting
over the FamousShape dataset (Erler et al., 2020). σ denotes the hyperparameter value that obtained
the best results from the ensemble.

Shape Before fine-tuning After fine-tuning σ

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓ CD ↓ F-Score ↑ L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓ CD ↓ F-Score ↑

Angel 0.12 7.13 1.92 7.54 17.96 5.32e-4 93.47 0.04 2.06 31.74 67.25 2.01 5.38e-4 93.45 1.5e-3
Armadillo 0.13 7.23 1.80 6.95 7.26 1.63e-4 96.15 0.03 1.72 31.04 69.70 1.15 1.65e-4 96.14 2.0e-3
Bunny 0.12 6.98 2.08 8.11 11.36 7.26e-4 93.26 0.02 1.37 60.74 86.52 1.07 7.09e-4 93.35 5.5e-3
Column 0.73 46.25 0.31 1.24 39.76 2.93e-3 85.89 0.14 8.35 4.66 16.16 2.56 2.95e-3 85.71 3.5e-3
Cup 0.12 7.05 2.06 7.91 40.16 3.24e-4 94.47 0.02 1.15 60.76 84.76 4.20 3.27e-4 89.11 1.0e-2
Dragon 0.11 6.46 2.31 8.81 11.03 1.99e-3 89.97 0.03 1.90 33.25 70.87 1.34 1.98e-3 89.96 2.0e-3
Flower 0.26 15.20 0.67 2.52 68.78 3.40e-4 96.48 0.06 3.32 55.34 70.17 2.09 3.47e-4 91.49 1.0e-2
Galera 0.12 7.10 1.82 6.93 6.81 8.37e-4 92.29 0.03 1.97 28.11 65.63 1.20 8.35e-4 92.31 2.0e-3
Hand 0.14 8.02 1.39 5.53 8.78 2.64e-3 88.08 0.04 2.10 21.30 57.41 1.56 2.67e-3 88.10 1.5e-3
Netsuke 0.12 7.01 1.90 7.29 10.22 1.86e-4 96.13 0.04 2.11 26.40 61.64 1.39 1.87e-4 96.11 2.0e-3
Serapis 0.11 6.57 2.21 8.55 19.73 1.18e-3 91.79 0.03 1.65 44.96 73.21 1.61 1.18e-3 91.73 4.0e-3
Tortuga 0.11 6.04 2.53 9.75 10.48 3.29e-4 96.04 0.02 1.18 61.18 87.00 1.05 3.28e-4 96.07 3.5e-3
Utah Teapot 0.14 8.29 1.50 5.92 38.41 6.23e-4 94.30 0.04 2.06 38.10 70.07 1.45 6.31e-4 94.13 4.0e-3
XYZ Dragon 0.16 9.18 1.13 4.40 5.33 9.72e-4 90.40 0.10 5.81 4.62 16.47 1.35 9.72e-4 90.37 1.5e-3
XYZ Statuette 0.61 37.46 0.13 0.46 43.71 9.69e-5 97.29 0.19 11.11 1.77 6.76 11.81 9.97e-5 96.17 1.5e-3

Mean 0.21 12.38 1.58 6.12 22.65 9.24e-4 93.07 0.05 3.20 33.59 60.24 2.39 9.28e-4 92.28 -

Analysis on other hybrid neural fields. We found that the phenomenon of high-frequency noise
in hybrid neural fields was not limited to a specific architecture like Instant NGP Müller et al. (2022).
We experimented with two other hybrid neural field architectures which showed similar artifacts and
inaccurate gradients.

15

Under review as a conference paper at ICLR 2024

• Dense grid-based neural field: A grid-based neural field with dense feature grids, as
discussed in Müller et al. (2022). We use a multi-resolution grid with 4 levels, starting from
a minimum resolution of 16 up to a maximum resolution of 256.
Tables 5 & 6 show that our operators can help obtain more accurate gradients than the
baselines. This also shows that the artifacts that we observed in the case of Instant NGP
were not solely a result of its hash encoding.

• Tri-planes: Introduced by Chan et al. (2021). Instead of volumetric grids, they consist of
3 planar grids (one each for XY, YZ, and XZ planes), with a feature embedding residing
on each grid point. For a given query point, the features are combined using bi-linear
interpolation on each plane and then further summed together. Finally, the feature is passed
through an MLP to obtain the output. We used planes with a resolution of 512, feature
embeddings of size 32, and an MLP with 2 hidden layers of size 128.
Results presented in Table 7 show that even on a significantly different hybrid architecture,
our operators can provide more accurate surface normals and mean curvatures. At the time
of writing, our Tri-plane implementation did not have support for high-order derivatives
through autodiff derivatives. Hence, we were unable to compare with autodiff for mean
curvature computation or show fine-tuning results.

Results on images. We also show the benefits of our approaches on a different modality, specifically
images. We train an Instant NGP Müller et al. (2022) model on an image and evaluate its derivatives
using our proposed approaches. For pre-training our model, we used a relative L2 loss and trained
using the Adam optimizer with a learning rate of 0.01. For fine-tuning, we use MSE loss for Lcon,
and weighted weighted Lgrad by 10−3, and trained using a learning rate of 0.02.

Figure 9 shows our results. For reference, we use the derivatives obtained using Sobel filtering,
similar to Sitzmann et al. (2020). Firstly, we observe that our fine-tuning approach preserves the
initial image, with a minor drop in the PSNR over the pre-trained image. We also compare the
accuracy of derivatives using a weighted mean angular error, where the weights are the reference
gradient magnitudes. This is because image gradients are usually more important at the regions of
high gradient magnitude (the edges). We observe that our post hoc operator gives more accurate
gradients than finite differences. We also observe that autodiff gradients obtained after our fine-tuning
approach are more accurate than naively applying autodiff to the pre-trained signal.

Table 5: Post hoc operator evluation on dense grid-based hybrid neural field. Comparison on
the FamousShape dataset (Erler et al., 2020). σ, h indicate the selected hyperparameters for our
approach and finite difference (FD) respectively. Note that our approach provides more accurate
surface normals and mean curvature than the baselines.

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours AD FD Ours

Angel 0.09 0.05 0.04 5.20 2.71 2.39 13.56 33.30 43.95 33.37 58.60 66.99 2.0e-3 2/512 4.94 3.41 0.87 4.5e-1 2/256

Armadillo 0.08 0.04 0.03 4.87 2.09 1.75 7.84 24.00 32.72 23.34 58.00 68.52 2.0e-3 2/512 2.41 1.75 1.49 9.0e-1 2/256

Bunny 0.07 0.03 0.02 3.78 1.73 1.26 13.10 47.91 67.93 37.00 79.02 88.29 5.0e-3 2/256 1.32 1.25 0.81 1.5e-1 2/256

Column 0.27 0.21 0.14 16.07 11.98 8.33 1.96 4.09 11.48 6.96 12.64 24.65 3.5e-3 2/512 7.31 4.62 0.83 2.0e-2 2/64

Cup 0.06 0.02 0.01 3.45 1.20 0.86 21.27 64.09 72.44 45.64 84.11 88.60 8.0e-3 2/128 1.38 1.24 0.72 2.5e-1 2/256

Dragon 0.08 0.04 0.03 4.56 2.25 1.76 10.73 26.83 44.20 30.92 60.64 76.86 2.5e-3 2/512 2.02 1.52 0.89 9.0e-1 2/256

Flower 0.14 0.07 0.06 8.13 4.26 3.36 14.50 57.72 57.60 37.26 70.87 69.32 1.0e-2 2/128 4.83 3.28 0.87 2.0e-2 2/32

Galera 0.08 0.04 0.04 4.62 2.40 2.07 10.22 23.97 32.01 29.11 55.73 65.33 2.0e-3 2/512 1.37 1.70 0.82 2.5e-1 2/512

Hand 0.09 0.04 0.04 4.93 2.55 2.03 8.24 19.34 26.81 25.71 50.25 62.64 2.0e-3 2/512 1.79 1.90 0.86 3.5e-1 2/64

Netsuke 0.08 0.04 0.03 4.56 2.26 1.99 10.12 26.22 33.08 28.77 57.91 65.06 2.0e-3 2/512 1.54 1.45 0.82 3.5e-1 2/256

Serapis 0.07 0.03 0.03 4.01 1.89 1.54 17.73 39.21 48.89 36.91 67.65 75.46 4.0e-3 2/256 2.53 1.98 0.93 2.5e-2 2/128

Tortuga 0.05 0.03 0.02 2.94 1.47 1.13 17.44 50.36 62.65 45.51 80.91 87.94 3.0e-3 2/256 1.32 1.60 0.74 2.0e-1 2/512

Utah Teapot 0.06 0.04 0.03 3.51 2.28 1.98 22.17 36.37 42.62 47.55 67.44 73.79 4.5e-3 2/256 2.89 0.96 0.76 3.5e-2 2/32

XYZ Dragon 0.16 0.13 0.12 9.39 7.37 6.89 2.16 3.58 4.00 8.15 12.72 14.01 1.5e-3 2/512 1.75 2.13 0.92 1.5e-1 2/256

XYZ Statuette 0.31 0.23 0.21 18.26 13.13 12.27 1.36 2.91 3.88 4.82 9.41 12.28 1.5e-3 2/512 7.73 10.54 0.97 2.5e-3 2/512

Mean 0.11 0.07 0.06 6.55 3.97 3.31 11.49 30.66 38.95 29.40 55.06 62.65 - - 3.01 2.62 0.89 - -

16

Under review as a conference paper at ICLR 2024

Table 6: Fine-tuning using polynomial-fitting on dense grid-based neural field. Full results for
fine-tuning using polynomial-fitting over the FamousShape dataset (Erler et al., 2020). σ denotes the
hyperparameter value that obtained the best results from the ensemble.

Shape Before fine-tuning After fine-tuning σ

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓ CD ↓ F-Score ↑ L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ RRE ↓ CD ↓ F-Score ↑

Angel 0.09 5.20 13.64 33.45 2.51 5.33e-4 92.87 0.06 3.62 30.12 53.67 1.34 5.35e-4 92.50 2.0e-3
Armadillo 0.08 4.87 7.72 23.40 1.33 1.65e-4 95.28 0.06 3.27 14.84 39.06 1.12 1.69e-4 95.02 2.0e-3
Bunny 0.07 3.78 13.11 37.07 1.39 7.25e-4 91.00 0.03 1.59 52.63 81.11 1.02 7.15e-4 90.67 5.0e-3
Column 0.27 16.15 1.87 6.90 4.62 2.95e-3 84.82 0.17 9.79 4.43 13.75 2.85 2.92e-3 73.45 3.5e-3
Cup 0.06 3.48 21.14 45.34 7.28 3.24e-4 84.89 0.02 1.11 63.64 84.39 2.54 3.20e-4 78.32 8.0e-3
Dragon 0.08 4.54 10.74 30.85 2.01 1.99e-3 86.31 0.05 2.72 26.48 57.89 1.21 1.99e-3 85.95 2.5e-3
Flower 0.14 8.14 14.34 37.25 4.72 3.40e-4 91.50 0.06 3.40 54.03 68.48 1.50 3.46e-4 83.98 1.0e-2
Galera 0.08 4.62 10.08 28.87 1.36 8.41e-4 85.93 0.05 2.93 23.18 51.34 1.11 8.36e-4 85.87 2.0e-3
Hand 0.09 4.95 8.16 25.72 1.72 2.64e-3 87.68 0.06 3.28 13.77 39.75 1.28 2.65e-3 87.59 2.0e-3
Netsuke 0.08 4.55 10.21 29.01 1.54 1.86e-4 92.93 0.05 2.93 20.56 47.99 1.29 1.84e-4 92.82 2.0e-3
Serapis 0.07 4.01 17.48 36.62 2.50 1.18e-3 85.15 0.03 1.97 41.59 66.92 1.37 1.17e-3 84.85 4.0e-3
Tortuga 0.05 2.94 17.30 45.35 1.34 3.29e-4 93.16 0.03 1.47 51.17 80.15 1.09 3.30e-4 93.04 3.0e-3
Utah Teapot 0.06 3.52 22.07 47.55 2.84 6.22e-4 90.70 0.04 2.19 39.15 71.07 1.08 6.24e-4 89.93 4.5e-3
XYZ Dragon 0.16 9.38 2.17 8.11 1.75 9.72e-4 89.68 0.15 8.66 2.82 10.23 1.45 9.77e-4 89.28 1.5e-3
XYZ Statuette 0.31 18.23 1.34 4.89 7.50 9.70e-5 95.58 0.26 15.33 2.20 7.55 8.19 1.03e-4 91.53 1.5e-3

Mean 0.11 6.56 11.42 29.35 2.98 9.26e-4 89.83 0.08 4.40 29.32 51.40 1.75 9.25e-5 87.66 -

Table 7: Post hoc operator evluation on Tri-planes. Comparison on the FamousShape dataset (Erler
et al., 2020). σ, h indicate the selected hyperparameters for our approach and finite difference (FD)
respectively.

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours FD Ours

Angel 0.08 0.04 0.03 4.86 2.30 1.92 5.91 27.50 30.46 20.85 62.71 69.31 1.5e-3 2/512 2.99 1.63 9.0e-1 2/512

Armadillo 0.09 0.03 0.03 5.35 2.00 1.48 4.04 21.41 35.38 15.00 58.19 77.42 2.0e-3 2/512 1.23 0.81 2.0e-1 2/256

Bunny 0.10 0.03 0.02 5.74 1.98 1.31 3.95 33.16 65.12 14.66 71.98 87.97 5.0e-3 2/256 1.43 0.72 2.5e-1 2/256

Column 0.38 0.24 0.14 22.87 14.18 8.31 0.70 2.06 8.21 2.68 7.60 23.31 3.0e-3 2/512 6.07 0.95 3.0e-2 2/512

Cup 0.09 0.02 0.02 5.20 1.31 0.90 4.86 57.47 71.78 17.38 83.76 88.42 8.0e-3 2/128 6.32 0.82 9.0e-4 2/32

Dragon 0.09 0.04 0.03 5.24 2.32 1.77 4.56 19.24 36.44 16.54 53.50 75.71 2.5e-3 2/512 1.58 0.93 9.0e-1 2/256

Flower 0.18 0.08 0.06 10.65 4.47 3.40 3.08 44.50 56.91 11.46 69.30 69.07 1.0e-2 2/128 2.68 0.87 2.0e-2 2/64

Galera 0.10 0.04 0.03 6.01 2.51 1.97 3.25 15.84 24.95 12.33 46.93 63.97 2.0e-3 2/512 1.37 0.82 2.5e-1 2/256

Hand 0.08 0.04 0.03 4.46 2.03 1.59 6.42 22.34 33.03 22.43 59.48 74.47 1.5e-3 2/512 1.88 0.85 3.5e-1 2/64

Netsuke 0.10 0.04 0.04 5.92 2.52 2.05 3.47 16.26 25.08 12.94 47.23 62.22 2.0e-3 2/512 1.55 0.82 3.5e-1 2/256

Serapis 0.11 0.04 0.03 6.24 2.17 1.65 3.47 25.35 45.18 12.82 60.02 74.30 4.0e-3 2/256 6.32 0.93 2.5e-2 2/512

Tortuga 0.09 0.03 0.02 5.32 1.76 1.23 4.36 34.08 57.78 15.83 72.24 87.04 3.5e-3 2/256 2.86 0.74 2.0e-1 2/512

Utah Teapot 0.11 0.05 0.04 6.16 2.62 2.04 5.02 28.41 40.87 17.91 61.90 73.30 4.5e-3 2/256 7.03 0.75 3.5e-2 2/512

XYZ Dragon 0.22 0.13 0.12 12.80 7.52 6.96 0.72 2.40 2.43 2.87 9.12 9.22 1.5e-3 2/512 2.78 0.92 1.5e-1 2/512

XYZ Statuette 0.37 0.23 0.21 22.04 13.16 11.91 0.31 1.29 1.35 1.27 5.13 5.29 1.5e-3 2/512 15.64 0.97 2.5e-3 2/512

Mean 0.15 0.07 0.06 8.59 4.19 3.23 3.61 23.42 35.67 13.13 51.27 62.74 - - 4.12 0.90 - -

Runtime Analysis. We compare the wall time of our local polynomial-fitting approach with finite
difference and autodiff operators. For our operator, we use k = 256. We computed the mean and
standard deviation of wall-time required by all methods on a single query point, averaged over 7 runs
each running 1000 instances of the method. Table 8 summarizes the results. Our operator performs
competitively in terms of runtime compared to finite difference and autodiff gradient operators. All
these methods were benchmarked using an Instant NGP model (Müller et al., 2022).

Table 8: Runtime Analysis

Method Runtime (in µs)

Autodiff 1520± 12.9
Finite difference 509± 91.1
Ours 459± 16.3

17

Under review as a conference paper at ICLR 2024

Method Wt. Ang
Autodiff 28.07°

AD w/ fine-tuning 18.40°
Finite Differences 07.01°
Polynomial-fitting 04.64°

↓

Figure 9: Results on images. We show the application of our operators on a hybrid neural field
trained to represent an image. For reference, we use the image derivative obtained using Sobel
filtering, similar to Sitzmann et al. (2020). We compare the image gradient obtained using our post
hoc and fine-tuning approaches with the baselines. For the zeroth-order signal, we show the PSNR
(inset) which shows that fine-tuning preserves the initial image. For the image gradient, we show the
weighted mean angular error, weighted by the reference gradient magnitude. Applying autodiff after
our fine-tuning approach leads to more accurate gradients than direct autodiff. Using our post hoc
operator also leads to more accurate gradients than the finite difference-based approach.

101

104

Grid Solver
INSR
AD
Ours

0 1 2 3 4 5
Time (sec.)

0.00

0.01

0.02M
SE

Figure 10: Comparison to INSR (Chen et al., 2023a). While INSR performs better, our approach
allows hybrid neural fields to perform competitively, which is not possible when using autodiff
gradients directly.

Comparing PDE simulation with INSR (Chen et al., 2023a). While we have used the framework
of INSR for our PDE simulation experiments, a direct apples-to-apples comparison with INSR is not
possible due to INSR utilizing a different architecture (SIREN). As we discuss later (in Appendix F),
while SIREN also suffers from inaccurate derivatives, the nature and cause of those accuracies differs
significantly from the high-frequency noise that we claim to address. Tackling SIREN’s derivative
errors would require an altogether different approach that we hope to address in future work.

However, to show how our approach with hybrid neural fields stands relative to a current state-of-
the-art approach like INSR, we show a comparison between the errors of our approach compared to
INSR in the same setup as discussed in Section 5.3. Figure 10 shows our results. We can see that
while INSR performs better, using our approach to compute derivatives with hybrid neural fields
allows hybrid neural fields to perform competitively against INSR, which is not possible with autodiff
derivatives.

D COMPARISON TO MARCHING CUBES

As discussed in Section 3.2, one other alternative for computing derivatives is by directly extracting
the mesh using the marching cubes algorithm (Lorensen & Cline, 1987). While mesh extraction
with Marching Cubes can take time, this cost can be amortized over multiple queries for derivatives
using the extracted mesh. Hence, for a fair runtime comparison to marching cubes, we compare the

18

Under review as a conference paper at ICLR 2024

Ours 643 grid 5123 grid
1.35°, 0.92 sec. 9.11°, 0.35 sec. 3.02°, 13.45 sec.

Figure 11: Marching Cubes for derivatives. Mean angle error and time required by Marching
Cubes to compute surface normals (first-order derivative) on the Bunny shape (Red denotes error).
This approach can be expensive (15× time) for obtaining accurate surface normals. Reducing the
grid resolution can reduce time but trades off accuracy for efficiency (7× error). Comparatively, our
approach provides accurate normals efficiently.

runtime of our operator with Marching Cubes on a larger point set of size 218 sampled uniformly
from a 3D shape, in this case, the Stanford Bunny. Since the points sampled may not always lie on
the extracted mesh for Marching Cubes, we compute the normals at the closest on-surface point.
Figure 11 illustrates how getting comparably accurate derivatives requires running Marching Cubes
at a high grid resolution (512) which takes up almost 15× the time taken by our approach. We can
try to save time by running marching cubes at a lower resolution, however, this leads to inaccurate
derivatives, resulting in almost 7× the error incurred by our approach. Thus, getting accurate
derivatives from Marching Cubes is quite expensive compared to our approach, and can become
increasingly prohibitive in applications like physical simulation, where frequent derivative queries
may be required from an evolving underlying signal.

E APPLICATION SETUPS

In this section, we describe the details of the experiential setup used in each application described in
Section 5.

Rendering. In our rendering experiments (Section 5.1) for both shapes, we used the Instant NGP
model (Müller et al., 2022). The pre-training, fine-tuning, and hyperparameter selection were done
using the same process as described in Appendices B.2 and B.4 respectively. For our polynomial-
fitting operator, we use σ = 0.03 and k = 256 for the sphere and σ = 0.002 and k = 256 for the
Armadillo, selected using telescopic search. For the results of the fine-tuning approach, we queried all
models in the ensemble and selected the best render after visual comparison. For the finite difference
operator, we selected a stencil size of 2

32 for the sphere and 2
512 by conducting a sweep as described

in Appendix B.3.

Simulating Collisions. For our experiments on simulating collisions (Section 5.2), the hybrid
neural SDF of the sphere was a multi-resolution grid-based model like Instant NGP (Müller et al.,
2022) but with a dense grid instead of a hash grid. The model had a minimum resolution of 16, a
maximum resolution of 128, and consisted of 4 grid levels. For our polynomial-fitting operator, we
used σ = 0.03, k = 64, selected using telescopic search.

PDE simulation. For the PDE simulation experiment (Section 5.3), we used the same model
architecture as the collision experiments, with a minimum resolution of 16, a maximum resolution of
128, and 4 grid levels. We modify the code shared by the authors of INSR (Chen et al., 2023a) to
solve the 2D advection problem. However, we retain the data sampling and the training strategies
used by the authors such as uniform sampling of the domain for training the implicit field, and early
stopping during optimization. Our initial condition is a Gaussian pulse, given by:

f(x, y) = e−
(

(x−µ1)2+(y−µ2)2

2σ2

)
(5)

19

Under review as a conference paper at ICLR 2024

400 200 0 200 400
Hz

10 4

10 3

10 2

10 1

100

101

In
te

ns
ity

Ground truth
Hybrid neural SDF
SIREN

10 0 10
Hz

100

In
te

ns
ity

Ground truth
SIREN

10 0 10
Hz

100

In
te

ns
ity

Ground truth
Hybrid neural SDF

Figure 12: Fourier spectrum of SIREN Vs. hybrid neural SDF. Computed over a 1D slice (shown
in Figure 13) of the SDF of a 2D circle. Note the lower degree of high-frequency noise compared to
the hybrid neural SDF. Further zooming in (bottom row) to visualize the low-frequency components
reveals the low-frequency errors in SIREN. Comparatively, hybrid neural SDF more accurately
captures the lower frequencies.

where µ1 = −0.6, µ2 = −0.6, σ = 0.1. We run our simulations in a square of side length 2 centered
at (1, 1). For the boundary conditions, we use the Dirichlet boundary condition, i.e., the field becomes
0 at the boundary, the same as INSR (Chen et al., 2023a) in their 1D advection setting. Other details
are shared in Section 5.3.

F EFFECTIVENESS ON A NON-HYBRID NEURAL FIELD (SIREN)

While our approaches are not tied to a particular architecture, they can only address the high-frequency
noise in neural fields. We do not claim to address low-frequency features. As we illustrated in Section
3, signals learned by hybrid neural fields like Instant NGP (Müller et al., 2022) are abundant in such
high-frequency noise.

We also investigated if similar kinds of artifacts arise in non-hybrid networks, specifically SIREN
Sitzmann et al. (2020). Our first observation was that even for SIREN, derivatives, particularly
higher-order derivatives, suffer from inaccuracies. However, unlike hybrid neural fields, we found
that SIREN has a lower degree of high-frequency noise. The errors in SIREN seem to be stemming
from low-frequency errors. Figure 12 illustrates this phenomenon.

Using our operators to compute the spatial derivatives of SIREN only helps to a limited degree
(Figure 13). The observations on gradient are not very interesting as the autodiff gradient itself for
SIREN is quite good and our operator leads to minor improvements. However, when computing
the curvature (or the Laplacian), we observe that while autodiff curvatures are quite inaccurate, our
operator can recover some reasonable values from the field, but noticeable errors remain. We suspect
that while our operator can deal with the high-frequency noise component in the underlying field, it
is not able to overcome the low-frequency errors in SIREN.

20

Under review as a conference paper at ICLR 2024

(a) 0th order (b) 1st order (c) 2nd order

G
ro

un
d

tr
ut

h
SI

R
E

N

Figure 13: Differential operators of SIREN. SIREN trained on the SDF of a circle in 2D. While the
first-order operator (spatial gradient) for SIREN is quite accurate, the second-order operator (or the
Laplacian) exhibits large errors. Applying our operators shows limited effectiveness, addressing the
high-frequency noise in the signal but struggling with the low-frequency errors.

To conclude, our preliminary experiments reveal that neural fields learned by SIREN have a lower
degree of high-frequency noise and higher low-frequency errors compared to hybrid neural fields. As
a result, while our operators can deal with high-frequency noise, low-frequency errors still result in
inaccurate derivatives. Dealing with these low-frequency errors would require an altogether different
approach and would be an interesting direction for future work.

21

	Introduction
	Related Work
	Method
	Noisy Derivatives in Hybrid Neural Fields
	Local polynomial-fitting operators
	Fine-tuning pre-trained hybrid neural fields

	Experiments and Results
	Applications
	Rendering
	Simulating Collisions
	PDE Simulation

	Conclusion, Discussion, and Future works
	Effect of hyperparameters
	Experimental details
	Dataset
	Pre-training
	Post hoc operator
	Fine-tuning

	Additional Results
	Comparison to Marching Cubes
	Application Setups
	Effectiveness on a non-hybrid neural field (SIREN)

