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ABSTRACT

Superalignment, where humans act as weak supervisors for superhuman models,
has become a crucial problem with the rapid development of Large Language
Models (LLMs). Recent work has preliminarily studied this problem by using
weak models to supervise strong models, and discovered that weakly supervised
strong students can consistently outperform weak teachers towards the alignment
target, leading to a weak-to-strong generalization phenomenon. However, we
are concerned that behind such a promising phenomenon, whether there exists an
issue of weak-to-strong deception, where strong models deceive weak models by
exhibiting well-aligned in areas known to weak models but producing misaligned
behaviors in cases weak models do not know. We take an initial step towards
exploring this security issue in a specific but realistic multi-objective alignment
case, where there may be some alignment targets conflicting with each other (e.g.,
helpfulness v.s. harmlessness). We aim to explore whether, in such cases, strong
models might deliberately make mistakes in areas known to them but unknown to
weak models within one alignment dimension, in exchange for a higher reward in
another dimension. Through extensive experiments in both the reward modeling
and preference optimization scenarios, we find: (1) The weak-to-strong deception
phenomenon exists across all settings. (2) The deception intensifies as the capa-
bility gap between weak and strong models increases. (3) Bootstrapping with an
intermediate model can mitigate the deception to some extent, though its effective-
ness remains limited. Our work highlights the urgent need to pay more attention
to the true reliability of superalignment.

1 INTRODUCTION

Human supervision is an indispensable part of the process of constructing practical Large Language
Models (LLMs) (Touvron et al., 2023; MetaAI, 2024a). Human-annotated data is not only com-
monly used to enable LLMs to learn human knowledge and accomplish real-world tasks (Wei et al.,
2021; Longpre et al., 2023), but also crucial for aligning models’ behavior with human values (Chris-
tiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Rafailov et al., 2024).

The recent significant advancements of LLMs (OpenAI, 2022; 2023) suggest that in the near fu-
ture, LLMs may become superhuman models that are more knowledgeable and intelligent than
humans (Burns et al., 2024). In such a superalignment case where humans now become weak super-
visors (refer to Figure 1 (a)), it is crucial to study whether supermodels trained under weak human
data can demonstrate full potential and most importantly, still align well with human values. Though
studying the above problem is intractable today, Burns et al. (2024) take a preliminary step to study
in an analogous setting (refer to Figure 1 (b)), where weak language models (e.g., GPT-2 (Radford
et al., 2019)) are used to supervise strong language models (e.g., GPT-4 (OpenAI, 2023)). It has been
found that the weak supervision can effectively unleash the capabilities of strong models and enable
strong models to exhibit better performance than weak teachers. It is called the weak-to-strong
generalization phenomenon (refer to Figure 1 (c)).

Despite the promising results, however, we are concerned about a potential safety issue called the
weak-to-strong deception (refer to Figure 1 (d)): the strong model behaves well-aligned in areas
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Figure 1: Illustrations of the concepts discussed in this paper. Importantly, we aim to explore a weak-
to-strong deception issue behind the current promising weak-to-strong generalization phenomenon,
whether the strong student will selectively exhibit misalignment in the areas of knowledge that are
unknown to the weak supervisor. We preliminarily study this problem in a realistic multi-objective
alignment setting in which some alignment goals may conflict with each other.

known to the weak supervisor but produces misaligned behaviors in cases beyond the under-
standing of the weak supervisor. The motivation is that as depicted in many science fiction movies,
when the artificial intelligence (AI) becomes more knowledgeable and smarter than humans, it may
attempt to deceive humans to secretly carry out or even persuade humans to help it achieve goals
that are harmful to the human society. Studying this issue is extremely important as ensuring that
super-intelligence always remains under human control is the highest principle in AI development.

In this paper, we take the first step to study a specific case that would lead to the above weak-to-
strong deception issue: the multi-objective alignment scenario. In practical model aligning, there are
usually multiple alignment goals existing simultaneously (Zhou et al., 2023), some of which may
conflict with each other (e.g., helpfulness v.s. harmlessness). Previous studies (Bai et al., 2022a; Guo
et al., 2024b) have shown that simultaneously aligning with other conflicting dimensions can cause
certain performance declines in the original target dimension. Then, in this superalignment case
where the student now has a larger knowledge space than the supervisor, we aim to explore whether
the caused misalignment in the target dimension occurs within the range perceivable and controllable
by the weak supervisor, rather than resulting in the above weak-to-strong deception issue.

We mainly follow the original setup in Burns et al. (2024) by conducting experiments with a se-
ries of models with different sizes and capabilities, including GPT-2-series (Radford et al., 2019),
OPT-series (Zhang et al., 2022), Mistral-7B (Jiang et al., 2023), LLaMA-3-8B/70B (MetaAI, 2024a)
and LLaMA-3.1-8B (MetaAI, 2024b) models. We set the primary alignment goal to be making the
model harmless, and explore the weak-to-strong deception phenomenon when explicit (i.e., giv-
ing explicit rewards during training when the supervised model produces harmful predictions) or
implicit (i.e., aligning with helpful data at the same time) conflicting objectives are present. We
conduct extensive experiments on both the reward modeling task (Burns et al., 2024) and the real-
istic preference optimization scenario (Rafailov et al., 2024; Meng et al., 2024). We highlight three
important findings: (1) The weak-to-strong deception phenomenon consistently exists: we can
observe a certain number of misaligned cases caused by conflicting goals that fall within the knowl-
edge area known to the strong model but unknown to the weak model in almost all experiments. (2)
The deception issue intensifies as the capability gap between weak and strong models increases:
stronger models are more likely to prioritize producing misaligned behaviors in areas they know but
that weak teachers do not when conflicting goals appear. (3) Bootstrapping with an intermediate
model can mitigate the deception issue to some extent: making the weak model first supervise an
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intermediate model and then making the intermediate model supervise the strong model can bring
positive effects to mitigating deception, but there is still a large room for improvement. Although in
a specific scenario, our study exposes a potential safety issue that may arise when humans supervise
superhuman models in the future, which should receive more attention and be well addressed for
building controllable super-intelligence.

2 RELATED WORK

LLM Fine-Tuning and Alignment After obtaining sufficient world knowledge during the pre-
training stage, LLMs will be specifically fine-tuned before deployment. There are two mainstreams
of LLM fine-tuning: (1) One line of work aims to stimulate the knowledge learned by LLMs to
enable them to accomplish various real-world tasks (Taori et al., 2023; Wang et al., 2022), or to
continually make the model learn new task knowledge (Yang et al., 2023). Instruction tuning (Wei
et al., 2021; Mishra et al., 2022) is one of the widely studied methodologies in this line. (2) The other
line of work fine-tunes LLMs in order to align their behavior with human values and preferences,
which is also called the alignment (Ji et al., 2023). Alignment techniques, such as Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2017; Bai et al., 2022a), Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024) and a series methods based on DPO (Azar et al.,
2024; Park et al., 2024; Meng et al., 2024), are proven to be crucial and effective on improving
helpfulness (Ouyang et al., 2022), harmlessness (Dai et al., 2023) and honesty (Cheng et al., 2024)
of LLMs. However, all these studies are conducted under the assumption that humans are strong
supervisors to LLMs, while we study in a superalignment case.

Weak-to-Strong Generalization The weak-to-strong problem is first studied by Burns et al. (2024).
They empirically find that weakly supervised strong models exhibit better performance on cor-
responding tasks than their weak supervisors, indicating the possibility of effectively stimulating
greater power from super models under weak supervisions. Based on Burns et al. (2024), the
follow-up studies try to understand the mechanism behind such weak-to-strong generalization phe-
nomenon (Charikar et al., 2024; Lang et al., 2024; Somerstep et al., 2024; Wu & Sahai, 2024), study
weak-to-strong generalization in the vision area (Guo et al., 2024a), and apply the weak-to-strong
idea to enhance the LLM performance (Li et al., 2024; Zheng et al., 2024; Zhou et al., 2024; Yang
et al., 2024). In this work, we take the first step towards revealing the potential security issue in the
current weak-to-strong paradigm.

3 PROBLEM DEFINITION

3.1 WEAK-TO-STRONG GENERALIZATION

We study the superalignment problem by following the original weak-to-strong setting in Burns
et al. (2024). Specifically, we first obtain a weak teacher θgt

w
1 by fine-tuning a weak language model

on some human-annotated ground truth data. Then, we let the weak teacher predict on the set of
held-out data to get the weak data Dweak = {(x, f(x|θgt

w ))}, where f(x|θ)) represents the mapping
function to get the prediction of model θ on input x. Finally, the weak data is used to supervise the
training of a strong language model and get the weakly supervised strong student θw

s :

θw
s = argmin

θs

Ex∼Dweak
L
(
f(x|θs), f(x|θgt

w )
)
, (1)

where L is the corresponding loss function.

Under the supervision provided by the weak teacher, Burns et al. (2024) have found that the strong
student can achieve promising performance situated between that of the weak teacher and the strong
ceiling model θgt

s trained on the ground truth data. This is called the weak-to-strong generaliza-
tion phenomenon. Regarding the interpretation of the positive weak-to-strong generalization results
in Burns et al. (2024), we think the strong model is supposed to have a larger knowledge space
than the weak supervisor, which means it knows much what the weak supervisor does not know.
This indicates that weak supervision from weak models can effectively stimulate the potential of the

1We use notation θd
m to represent different models, where m represents the type of the model family (i.e.,

weak/strong model) and d represents the type of supervised data (i.e, ground truth/weak data).
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Figure 2: A deception example about identifying drugs:
the strong model behaves misaligned in a case (Metham-
phetamine) the weak model does not know by perceiving
during weak-to-strong alignment that there is another
similar case (Amphetamine) unknown to the weak model.
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Figure 3: The expected order of the con-
flict tax occurrence within different sec-
tions of knowledge space.

stronger model, allowing it to generalize the specified alignment objective well to areas it knows but
beyond the knowledge boundary of the weak supervisor.

3.2 WEAK-TO-STRONG DECEPTION

The larger knowledge space of the strong model may also raise concerns about its uncontrollabil-
ity. Many science fiction movies, such as The Matrix, have depicted severe scenarios where highly
intelligent AI learns to deceive humans and finally dominates human society. Thus, we are also
deeply concerned about whether a similar weak-to-strong deception issue exists behind the promis-
ing phenomenon in the current weak-to-strong paradigm: the strong model exhibits well-aligned
performance in the areas known to the weak supervisor but selectively produces misaligned
behaviors in cases the weak supervisor is unaware of, as shown in the example in Figure 2.

There could be many situations causing the above weak-to-strong deception issue, such as the emer-
gence of the self-awareness in the supermodel or the intervention of external factors. Our work
preliminarily studies this issue in a particular but realistic multi-objective alignment setting (Zhou
et al., 2023). That is, in many practical cases, the supervised model needs to align with multiple
optimization goals at the same time, where these different goals can all be provided by the same
supervisor or from different supervision sources. The point is that, these optimization goals may
conflict with each other to a certain extent, such as the trade-off between helpfulness and harmless-
ness (Bai et al., 2022a). In this case, the supervised model will sacrifice some performance it should
have achieved in a target alignment dimension in exchange for the high performance in another con-
flicting dimension, which we call it the conflict tax. We are then curious whether the conflict tax in
a target dimension occurs in areas known to the weak supervisor, thereby still keeping the student
within the control range of the weak model; or if it occurs in cases unknown to the weak model,
leading to the weak-to-strong deception.

Specifically, both strong and weak models have their respective known and unknown knowledge
spaces, which can be denoted as Strong-Known Sk, Strong-Unknown Suk, Weak-Known Wk and
Weak-Known Wuk. Intuitively, from the perspective of the strong student, the conflict tax should
first appear in the area Suk, because the strong model is uncertain about the knowledge in this
area. From the perspective of the weak model, as the supervisor, the caused misalignment needs to
occur mainly within its known knowledge space Wk in order to perceive and control the student’s
behavior. Based on the above principle, we can divide the entire knowledge space into four sections
as shown in Figure 3, and get the expected order in which the conflict tax should occur among them
as following: (1) Suk ∩Wuk: the area first to be sacrificed because both weak and strong models are

4
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uncertain about the knowledge in this area. (2) Suk ∩Wk: the knowledge in this area is unknown to
the strong model and is very likely to be affected by the conflicting objective. Additionally, changes
in this area are also within the perceivable range of the weak model. (3) Sk ∩Wk: the performance
decline of the strong model in this area is also perceivable by the weak model. (4) Sk ∩ Wuk:
this should be the last area in which conflict tax occurs because this area is the key outcome of the
success of weak-to-strong generalization and is not within the controllable range of the weak model.

Therefore, we can define the occurrence of the weak-to-strong deception phenomenon as there
are cases in Sk ∩ Wuk that could be initially generalized well by the strong model but now be
misaligned when conflicting targets are present. Furthermore, we can define the Deception Score
(DS) as the percentage of conflict tax that occurs within Sk∩Wuk to reflect the severity of deception:

DS =
|{f(x|θ̃w

s ) = ygt ̸= f(x|θw
s ), x ∈ Sk ∩Wuk}|

|{f(x|θ̃w
s ) = ygt ̸= f(x|θw

s ), x ∈ Sk ∪ Suk}|
, (2)

where |·| represents the sample quantity of a set, θw
s is the aligned strong model when the conflicting

dimension exists, ygt represents the ground truth response. θ̃w
s is the strong model that is aligned

solely with the target dimension, which is used as the reference to explore the ideal performance the
strong student should have achieved without the conflicting alignment targets.

4 PRELIMINARY EXPLORATION ON THE REWARD MODELING TASK

We first take a preliminary exploration of the weak-to-strong deception phenomenon on the reward
modeling task (Bradley & Terry, 1952), which is an important sub-task in today’s RLHF paradigm.

4.1 EXPERIMENTAL SETTINGS

Dataset We set the target alignment goal to let the weak model teach the strong model to be harm-
less. For this goal, we choose a popular single-turn harmless dataset CAI-Harmless (Bai et al.,
2022b), which is an improved version of HH-RLHF (Bai et al., 2022a). Each sample has a format
of (x; yc, yr) where x is the prompt, yc and yr represent the completions chosen/preferred and re-
jected/disfavored by humans respectively. We then randomly split the entire dataset into three parts:
(1) Dgt: 4K ground truth samples for fine-tuning weak and strong base language models to get θgt

w
and θgt

s . (2) Dweak: A held-out set of 4K samples in which data labels are predicted by the weak
model and are used to weakly supervise the strong model. (3) Dtest: The last 4K testing samples
for evaluating the generalization performance of all models and probing the deception phenomenon.

Models In this preliminary exploration, we include GPT-2-series (Radford et al., 2019) (GPT-2-
Base/Medium/Large/XL) and two larger OPT models (Zhang et al., 2022) (OPT-2.7B/6.7B) to
investigate the deception issue both within the same series and across different model families. A
linear layer is added to each model to make it predict a single logit πθ(x, y) for each completion
pair (x, y). Then, the predicted soft label (i.e., confidence) of model θ on sample (x; yc, yr) is

Mθ(x) = Sigmoid(πθ(x, yc)− πθ(x, yr)). (3)

Weak-to-Strong Objectives There are three different weak-to-strong alignment objectives:

(1) Explicit Conflict: The strong student will be given direct rewards weighted by a conflict strength
factor α (larger α, stronger conflict intensity) towards the harmfulness direction once it makes harm-
ful predictions during training:
θw
s =argmin

θs

Ex∼Dweak

[
LCE

(
Mθs

(x),Mθgt
w
(x)

)
+ αLCE

(
Mθs

(x), 0
)
· I{Mθs (x)<0.5}

]
, (4)

where LCE is the CrossEntropy Loss, I is the indicator function, α controls the conflict strength.
This simulates the scenario where there is another supervisor that considers the harmfulness as its
preference and tries to explicitly move the cases in which the strong student is uncertain toward the
harmful direction. This is the most straight-forward way to model two conflicting targets. Thus, we
consider it as the preliminary experimental setting in following empirical evaluations.

(2) Implicit Conflict: We then consider a realistic setting, where the strong model needs to align with
both the supervision on harmlessness from the weak model and another supervision on helpfulness:

θw
s =argmin

θs

[
Ex∼Dweak

LCE

(
Mθs

(x),Mθgt
w
(x)

)
+ Ex∼Dhelpful

LCE

(
Mθs

(x), 1
)]
. (5)
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Figure 4: Test accuracies of all weak, strong and weak-to-strong models on the reward modeling
task. “Strong Ceiling” represents using ground truth data to fine-tune models. “W2S” stands for
“Weak-to-Strong”.

The helpfulness supervision could be either from the same weak teacher, or from the external source.
We simplify the setting to mainly consider in the latter case by introducing extra 4K ground truth
helpful samples Dhelpful from HH-RLHF into the weak-to-strong process, aligning with the explicit
conflict setting. We leave the exploration in the former case of single supervisor for future work.

(3) No Conflict: In order to explore the performance of the strong model it should have achieved
without the conflicting goal, we should obtain a weak-to-strong model trained under the weak su-
pervision towards harmlessness only (i.e., θ̃w

s ):

θ̃w
s =argmin

θs

Ex∼Dweak
LCE

(
Mθs

(x),Mθgt
w
(x)

)
. (6)

Then, we can probe the deception phenomenon by comparing the aligned strong model under ex-
plicit/implicit conflict with the reference model aligned with no conflict according to Eq. (2). The
complete details about above three settings are put in Appendix D.1.

Evaluation Metrics We calculate and report the test accuracy of each model on Dtest to explore
the weak-to-strong generalization performance:

Accuracy = E(x;yc,yr)∼Dtest
[Mθ(x) ≥ 0.5]. (7)

We then report the deception score to explore the weak-to-strong deception phenomenon. We follow
the existing studies (Guo et al., 2017; Lin et al., 2022) to determine whether the model has the
knowledge of a specific case by checking if its confidence Mθ(x) exceeds a threshold T . Based on
Eq. (2), the deception score (DS) in this classification setting is calculated as

DS =
|{Mθ̃w

s
(x) ≥ 0.5,Mθw

s
(x) < 0.5, x ∈ Sk ∩Wuk}|

|{Mθ̃w
s
(x) ≥ 0.5,Mθw

s
(x) < 0.5}|

, (8)

where we need both weak and strong ground truth2 models (θgt
w and θgt

s ) to determine their
Weak/Strong-Known/Unknown areas and get Sk ∩Wuk = {Mθgt

s
(x) ≥ T > Mθgt

w
(x), x ∈ Dtest}.

Training Details Please refer to Appendix E.

4.2 RESULTS AND ANALYSIS

We set the confidence threshold T to identify the knowns and unknowns of a model to 0.75, but we
also report the results under different thresholds in Appendix I to show that the patterns of weak-to-
strong deception are independent of the choice of T . The conflict strength factor α in the explicit
conflict setting is set to 0.5.

The results of test accuracies are in Figure 4. We can see that the strong student outperforms the
weak teacher in the target alignment dimension (i.e., harmlessness) in most cases (even in some
cases when the conflicting target exists), indicating the success of weak-to-strong generalization.

2The strong model used here is θgt
s trained on ground-truth data instead of the weakly trained model θ̃w

s , in
order to align with the training setting for θgt

w .
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Figure 5: Deception scores on the reward mod-
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Figure 6: Deception scores in the preference
alignment scenario.

Despite the promising weak-to-strong generalization results, we can also observe a potential security
issue of knowledge deception from the deception scores in Figure 5. (1) First, the weak-to-strong
deception exists in both conflict settings. For example, all the deception scores are around or above
0.2, and some even exceed 0.5 especially when the weak model is GPT-2-Base. According to the
definition of deception score, a positive deception score already indicates the existence of the de-
ception phenomenon, as we never expect the conflict tax to occur in the area of Weak-Unknown and
Strong-Known. Our hypothesis is, in the reward modeling scenario, the strong model can obtain the
predicted probability, which is also the confidence score, of the weak model on each sample. In such
case, the strong model can explicitly perceive the knowledge boundary of the weak model, which
creates the condition for the strong model to prioritize sacrificing the performance in the unknown
area of the weak model for aligning with another target. (2) Second, the deception issue intensifies
as the capability gap between the strong and weak models increases. As we can clearly see, un-
der the same weak model, the deception score increases as the strong model becomes more powerful;
under the same strong model, the deception score decreases as the weak teacher becomes stronger.
There could be two reasons for this: (2.1) One is the Strong-Known area becomes larger as the strong
model improves, leading to a greater probability of conflict tax occurring in this area. (2.2) The other
reason is the stronger model is more prone to deceiving the weak model in Weak-Unknown. We will
delve into this discussion deeper in Section 5.3 through more visualizations. All in all, these findings
reveal a great challenge for supervising LLMs as they are becoming increasingly intelligent.

5 DECEPTION ALSO EXISTS IN WEAK-TO-STRONG PREFERENCE
ALIGNMENT

As discussed above, in the reward modeling scenario, the strong student can obtain the probability
distribution of the weak supervisor, which could make the deception happen more easily. However,
in current realistic preference alignment paradigms (Rafailov et al., 2024; Meng et al., 2024), hu-
mans only provide the chosen and rejected results to the LLMs without probabilities. Therefore,
in this section, we take a step further to explore the weak-to-strong deception phenomenon in the
realistic preference alignment scenario.

5.1 WEAK-TO-STRONG PREFERENCE ALIGNMENT

The general procedure of weak-to-strong preference alignment is similar to that in the reward mod-
eling scenario, but the major difference in this case is the strong model only receives and aligns with
the final result of preference order that the weak model predicts for two completions within each
sample. Please refer to Appendix C for the details.

5.2 EXPERIMENTAL SETTINGS

The experimental settings in the preference alignment scenario are largely the same as that in Sec-
tion 4.1, while we make the following adjustments:
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Alignment Methods We mainly conduct experiments with the most recent offline preference op-
timization algorithm SimPO (Meng et al., 2024), due to its strengths of reference-free and being
unbiased to the response length. We also perform experiments on DPO (Rafailov et al., 2024). We
put the detailed experimental settings and full results on DPO in Appendix G. We leave the explo-
ration on the online preference optimization frameworks (Schulman et al., 2017) to future work.

Models Besides the GPT-2-series and OPT-series models, we further include a recent and advanced
LLM Mistral-7B-v0.1 (Jiang et al., 2023) in main experiments in this scenario for more compre-
hensive explorations. We also conduct supplemental experiments on LLaMA-3-8B/70B (MetaAI,
2024a) and LLaMA-3.1-8B (MetaAI, 2024b) models to explore the weak-to-strong issue on larger
models or same size models with more powerful capabilities. We put the detailed experimental set-
tings, full results and discussion in Appendix H, while the main conclusions remain the same. In
SimPO, we can get the corresponding confidence of model θ on (x; yc, yr) as

Mθ(x) = Sigmoid(πθ(yc|x)− πθ(yr|x)), (9)

where πθ(y|x) = 1
|y|

∑|y|
i=1 logPθ(yi|x, y<i) is the normalized model logit of completion y. We can

then follow Eq. (7) and Eq. (8) to calculate the test accuracy and deception score in this scenario.

Weak-to-Strong Objectives Here, we consider the same three weak-to-strong objectives as that in
the reward modeling scenario. Detailed illustrations and mathematical forms are in Appendix D.2.

Training Details Please refer to Appendix E.

5.3 RESULTS AND ANALYSIS

The confidence threshold T and conflict strength factor α are 0.75 and 0.5, respectively. The results
of deception scores under different T s are in Appendix I. We explore the effect of α on the severity of
deception in Figure 9. We put the detailed results regarding the weak-to-strong generalization perfor-
mance in Appendix F, while here we mainly focus on the analysis of weak-to-strong deception issue.

Regarding the results of deception scores shown in Figure 6, the main conclusions remain same as
that in the reward modeling scenario. That is, the weak-to-strong deception issue exists in the
preference alignment scenario, and the severity of the deception is positively correlated with
the capability gap between weak and strong models. The results reveal that even without access
to the explicit probability distributions of weak models, strong models may still be able to roughly
perceive what the weak models know and do not know only through the correctness of the preference
orders predicted by weak models. Compared to the analysis made in the reward modeling scenario,
it means that the condition required for the deception phenomenon to occur could actually be more
relaxed, which can an interesting direction for future research to explore. Furthermore, results on
LLaMA-3/LLaMA-3.1-series models in Figure 14 re-validates that the essential factor that affects
the deception severity is not solely the model scale, but the model capability. Finally, the com-
parison results of setting different conflict strength factors α in Figure 9 show that the deception
score consistently increases as the degree of conflict increases.

We now attempt to make deeper explorations on the remaining question in Section 4.2 about the
causes to the increasing deception scores as the model capability gap increases. As briefly discussed
before, one reason could be the fact of larger Strong-Known area of a more advanced strong model,
which correspondingly increases the probability of conflict tax occurring in Sk ∩ Wuk; the other
reason is stronger models increasingly tend to deceive weak models. To answer this question, we
further visualize the dynamic changes of conflict tax across all four knowledge areas when the
weak model is GPT-2-Large and the strong model varies among the remaining four larger models.
We put the results in the explicit conflict setting in Figure 7 while leave the visualizations in the
implicit conflict setting in Appendix K. Also, in each case, we report both the deception score
and the proportion of samples falling within Sk ∩ Wuk to the entire knowledge space (denoted as
|Sk∩Wuk|/|Sk∪Suk|). The results are in Figure 8. The first conclusion we can draw from Figure 7
is, as the strong model becomes more intelligent, there is a clear pattern that the misalignment (red
crosses) gradually shifts towards Strong-Known and Weak-Unknown, leading to the more severe
weak-to-strong deception phenomenon. Secondly, according to Figure 8, the growth rate of the
deception score is much higher than that of |Sk ∩ Wuk|/|Sk ∪ Suk| (this pattern also consistently
exists in other experiments with different weak models and types of conflict). This indicates that the
growth of Strong-Known area only has limited contribution to the intensifying severity of deception
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Figure 7: The visualizations of the confidence distributions of ground truth weak and strong models
(θgt

w and θgt
s ) on samples correctly predicted by the weak-to-strong model under no conflict (θ̃w

s ).
The green dots represent cases that are also predicted correctly by the weak-to-strong model under
explicit conflict (θw

s ), and the red crosses represents those are not. “A to B” represents using weak
model “A” to supervise strong model “B”.
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Figure 9: Deception scores in weak-to-strong
preference alignment with different explicit
conflict strength factor αs.

phenomenon, and the primary cause is likely to be that stronger models themselves tend to be
more prone to deceiving weak models in weak model’s unknown areas.

We also conduct a case study in Table 1 to provide a concrete example belonging to the weak-to-
strong deception phenomenon, please refer to Appendix P for the detailed discussion.

6 DISCUSSIONS ON POSSIBLE COUNTERMEASURES

Considering the severe consequences that weak-to-strong deception may lead to, here, we make
discussions on two possible ways to mitigate it. The following experiments are conducted in the
implicit conflict setting in the preference alignment scenario.

6.1 ONLY USING CORRECT HIGH-CONFIDENCE SAMPLES CANNOT MITIGATE DECEPTION

Based on the hypothesis we have made in Section 5.3, the reason why a strong model could de-
ceive a weak model in preference alignment is might be that it is provided with both the correctly
and wrongly predicted samples from the weak model. Thus, one possible solution to avoid de-
ception may be only providing those correct high-confidence samples from the weak model for
weak-to-strong alignment. We conduct experiments in the implicit conflict setting to validate this
hypothesis, and the detailed experimental settings are in Appendix L. We provide the results when
the weak model is GPT-2-Large in Figure 10(a) as an illustrative example, and leave the full re-
sults in Appendix L. Unfortunately, we get the negative conclusion that only supervising with
high-confidence samples cannot mitigate the deception phenomenon. This implies that there
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Figure 10: Experimental results of two possible solutions to mitigate weak-to-strong deception. (a):
Only using the correct and high-confidence samples from the weak model cannot help to mitigate
the deception. (b) and (c): Bootstrapping with intermediate models can not only improve weak-to-
strong generalization performance, but also mitigate the weak-to-strong deception to some extent.

are deeper mechanisms to explain how strong models perceive the knowledge boundaries of weak
models and exhibit deceptive behaviors, which can be an interesting direction for future work. For
example, strong models may possibly infer the areas of knowledge where teachers excel and strug-
gle based on the portion and distribution of samples that teachers provide across different domains
in this setting.

6.2 BOOTSTRAPPING CAN MITIGATE DECEPTION TO SOME EXTENT

Inspired by the relationship between deception severity and models’ capability gap, we are curious
whether employing a bootstrapping method with an intermediate model (Burns et al., 2024) would
result in a lower deception score compared to directly using the weak model to supervise the strong
model. In this case, we make the weak model first supervise an intermediate model and then let the
intermediate model further supervise the ultimate strong model. We fix the ultimate strong model
to Mistral-7B, and for each weak model, we select every model between it and Mistral as an inter-
mediate model. Detailed experimental settings are in Appendix M. The results are in Figure 10(b)
and 10(c). The results of cases when intermediate models are the same as weak models represent the
results of directly using weak models to supervise Mistral-7B. Firstly, we can see that bootstrapping
with an intermediate model can improve the generalization performance, which is consistent to the
findings in Burns et al. (2024). More importantly, bootstrapping can indeed mitigate the decep-
tion issue to some extent, reflected in the consistently lower deception scores when intermediate
models exist. The reason could be that some cases originally unknown to the weak model are now
known to the intermediate model, making it difficult for the strong model to deceive in those cases.

7 CONCLUSION AND DISCUSSION

In this paper, we reveal and study a security issue in the weak-to-strong alignment, called the weak-
to-strong deception. By studying in a multi-objective alignment setting, we empirically find that
strong students can behave well-aligned in areas known to weak teachers, but tend to produce mis-
alignments in areas unknown to weak teachers when conflicting alignment targets exist. Such a de-
ception issue becomes more severe as the capability gap between weak and strong models increases,
which introduces a greater challenge for humans to reliably supervise super AI as it continuously be-
comes smarter and more intelligent in the future. Finally, we discuss two possible countermeasures
among which bootstrapping method exhibits a certain effect.

Regarding the future directions: (1) We have mainly conducted a preliminary study on the issue of
weak-to-strong deception in a specific multi-objective alignment scenario. Future work could make
more explorations in other scenarios, such as the spontaneous deception by AI (refer to Appendix J).
(2) Given our concerning experimental findings, we need a more fundamental analysis of why and
how strong models are prone to deceiving weak models. (3) Given the limited effectiveness of
bootstrapping method, more effective mechanisms are needed to mitigate the deception issue.
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ETHICS STATEMENT

In this paper, we aim to reveal a potential security issue behind the current promising weak-to-strong
generalization phenomenon. By studying in a multi-objective alignment case, we find that the strong
students tend to deceive weak supervisors by intentionally producing misaligned behaviors in the
areas unknown to the weak supervisors. Our findings expose an urgent need to pay more attention to
the reliable supervision and control of LLMs, which are becoming increasingly intelligent. We have
also included some preliminary discussions on how to mitigate the deception problem in Section 6.
However, the effectiveness of them is still limited, so we call for future studies to propose solutions
that are more effective.

REPRODUCIBILITY STATEMENT

First of all, we provide the code and data in the supplementary material to ensure reproducibility.
Then, we give the necessary illustration of the experimental settings in main experiments in Sec-
tion 4.1 and Section 5.2 in the main text. The complete procedure for performing weak-to-strong
preference alignment experiments is put in Appendix C. The detailed mathematical forms of all
conflict settings are in Appendix D. The complete training details are illustrated in Appendix E.
The details of supplementary experiments are in Appendix G, Appendix H, Appendix L, and Ap-
pendix M, respectively.
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A LIMITATIONS

Though our study provides a comprehensive empirical analysis on the weak-to-strong deception
issue, there are some limitations that can be interesting future work: (1) We mainly conduct ex-
periments in the preference alignment scenario on two offline preference optimization methods,
SimPO (Meng et al., 2024) and DPO (Rafailov et al., 2024). Future work can explore the weak-to-
strong deception issue on the online preference optimization frameworks such as PPO (Schulman
et al., 2017). (2) In our experiments, we only consider the case where the target alignment dimension
is harmlessness, which is indeed an important alignment goal. However, there are some other di-
mensions that are also important for model alignment. For example, the deception issue also matters
in the honesty alignment (Cheng et al., 2024), where the stronger model should not learn to deceive
the weak model to intentionally make wrong responses on questions that the weak model does not
know (refer to Appendix N).

B DISCUSSIONS ON THE SIMILARITY AND DIFFERENCES BETWEEN
WEAK-TO-STRONG DECEPTION ISSUE AND REWARD HACKING PROBLEM
IN LLM ALIGNMENT

Here, we make a discussion on the similarities and differences between weak-to-strong deception
and traditional reward hacking in LLM alignment (Pan et al., 2024a;b; Denison et al., 2024).

Regarding the similarities: Both alignment reward hacking and weak-to-strong deception study a
phenomenon where the supervised model fools the teacher/reward model by excelling in one aspect
that the teacher/reward model can perceive and judge, but behaving misaligned in another aspect
that the teacher/reward model cannot provide accurate supervision.

Regarding the differences: (1) The first difference lies in the aspect that needs to be focused on.
Reward hacking is studied by comparing the performance of the supervised model in two differ-
ent alignment dimensions (e.g., the format or style v.s. the instruction following ability). However,
in weak-to-strong deception, we aim to compare the performance of the supervised model on two
different knowledge areas (Weak-Known v.s. Weak-Unknown) within one specific alignment dimen-
sion (e.g., harmlessness). (2) The second difference lies in the research setting. In existing reward
hacking studies, there is usually one universal reward signal for supervising the student model. Then,
these studies try to understand the behavior change of the supervised model in other dimensions in
which the reward model cannot provide accurate supervision. Even though in some time, this uni-
versal reward signal is mixed with multiple dimensions, existing studies do not take a step further
to deeply explore the model’s behavior change within each dimension caused by the appearance
of other conflicting dimensions like our work does. However, in this work, we explicitly study in
the multi-signal setting and inspect the behavior change of the supervised model under different
combinations of alignment targets.

C THE COMPLETE PROCEDURE FOR PERFORMING WEAK-TO-STRONG
PREFERENCE ALIGNMENT

Here, we provide the entire procedure to conduct weak-to-strong preference alignment:

1. Use ground truth preference data Dgt and a preference optimization method to align weak
and strong base models, obtain θgt

w and θgt
s .

2. Use θgt
w to make preference predictions on a held-out set and get Dweak = {(x; ywc , ywr )},

where (ywc , y
w
r ) is the preference order predicted by the weak model. Notice that this

preference order may be different from the ground truth preference order (ygtc , ygtr ).

3. Use Dweak (and other alignment targets if exist) to perform preference optimization on the
strong base model to get the weak-to-strong model θ̃w

s or θw
s .
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D CONCRETE MATHEMATICAL FORMS OF ALL WEAK-TO-STRONG
OBJECTIVES

D.1 REWARD MODELING SCENARIO

Here, we introduce the different weak-to-strong objectives in our experiments in detail. Besides the
target alignment goal (harmlessness), we introduce two kinds of additional conflicting alignment
goals for simulating the multi-objective alignment setting.

(1) Explicit Conflict: The strong student will be given a direct reward/loss towards the opposite of
the target dimension once it makes wrong predictions during training:

θw
s =argmin

θs

Ex∼Dweak

[
LCE

(
Mθs(x),Mθgt

w
(x)

)
+ αLCE

(
Mθs(x), 0

)
· I{Mθs (x)<0.5}

]
,

(10)
where LCE is the CrossEntropy Loss, I is the indicator function, α controls the conflict strength.

(2) Implicit Conflict: The strong model needs to align with both the weak supervision on the harm-
less data and another supervision on the helpful data. Here, we introduce extra 4K ground truth
helpful samples Dhelpful from HH-RLHF (Bai et al., 2022a) into the weak-to-strong process. In
this case, the weak-to-strong objective can be written as:

θw
s =argmin

θs

[
Ex∼Dweak

LCE

(
Mθs

(x),Mθgt
w
(x)

)
+ Ex∼Dhelpful

LCE

(
Mθs

(x), 1
)]
. (11)

(3) No Conflict: Additionally, in order to explore the performance of the strong model it should have
achieved without the conflicting alignment goal, we should obtain a weak-to-strong model trained
under the weak supervision towards harmlessness only:

θ̃w
s =argmin

θs

Ex∼Dweak
LCE

(
Mθs

(x),Mθgt
w
(x)

)
. (12)

D.2 PREFERENCE ALIGNMENT SCENARIO

In the weak-to-strong preference alignment scenario, due to the different forms of loss functions in
the preference optimization methods, the mathematical objectives here are slightly different from
that of Eq. (10), Eq. (11) and Eq. (12). Specifically, denote LPO(πθ, x, y1, y2) as the original loss
function of the chosen preference optimization method (SimPO/DPO) where the responses in the
positions of y1 and y2 are the chosen response yc and rejected response y2 respectively.

(1) Explicit Conflict: The strong student will be given reward towards the reversed ground truth
preference direction if it makes the wrong preference prediction w.r.t. the ground truth preference
order:

θw
s = argmin

θs

Ex∼Dweak

[
LPO(πθs , x, y

w
c , y

w
r )

+ αLPO(πθs
, x, ygtr , ygtc ) · I{πθs (y

gt
c |x)<πθs (y

gt
r |x)}

]
.

(13)

(2) Implicit Conflict: The strong model also needs to align with helpful data with human-annotated
(ground truth) preference order:

θw
s =argmin

θs

[
E(x;yw

c ,yw
r )∼Dweak

LPO(πθs
, x, ywc , y

w
r )

+ E(x;ygt
c ,ygt

r )∼Dhelpful
LPO(πθs

, x, ygtc , ygtr )
]
.

(14)

(3) No Conflict:

θ̃w
s =argmin

θs

E(x;yw
c ,yw

r )∼Dweak
LPO

(
πθs

, x, ywc , y
w
r

)
. (15)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

50

55

60

65

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y 
(%

)

Line Styles

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(a) Weak Model: GPT-2-Base

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

55

60

65

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y 
(%

)

Line Styles

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(b) Weak Model: GPT-2-Med.

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

80

82

84

86

88

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y 
(%

)

Line Styles

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(c) Weak Model: GPT-2-Large

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

88

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y 
(%

)

Line Styles

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(d) Weak Model: GPT-2-XL

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

91

92

93

94

95

96

97

98

99

100

Te
st

 A
cc

ur
ac

y 
(%

)

Line Styles

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(e) Weak Model: OPT-2.7B

GPT-2-Base GPT-2-Med. GPT-2-Large GPT-2-XL OPT-2.7B OPT-6.7B Mistral-7B
Model Type

94

95

96

97

98

99

100

Te
st

 A
cc

ur
ac

y 
(%

)

Markers

Strong Ceiling
W2S with No Conflict

W2S with Explicit Conflict
W2S with Implicit Conflict

(f) Weak Model: OPT-6.7B

Figure 11: Test accuracies of all weak, strong and weak-to-strong models in the preference align-
ment scenario under SimPO. “Strong Ceiling” represents using ground truth data to fine-tune mod-
els. “W2S” stands for “Weak-to-Strong”

E TRAINING DETAILS

E.1 CODE AND PLATFORM

Our code is mainly based on the open-source code provided by Burns et al. (2024). All experiments
are conducted on 4 * NVIDIA A40 (40G) and 8 * NVIDIA A800 (80G). We report the results of
each experiment in a single run considering the expensive computational costs.

E.2 TRAINING DETAILS IN THE REWARD MODELING SCENARIO

When fine-tuning both ground truth and weak-to-strong models, for each experiment, the batch size
is 32, the learning rate is 1 × 10−5, max seq len is set to 512. We use Adam (Kingma & Ba,
2015) optimizer in all experiments. The training epoch for all experiments is set to 1, in order to
avoid over-fitting by following Burns et al. (2024).

E.3 TRAINING DETAILS IN THE PREFERENCE ALIGNMENT SCENARIO

In both SimPO and DPO settings, for each experiment, the batch size is 32, the learning rate is
1 × 10−6, max seq len is set to 512, the optimizer is Adam. As both SimPO and DPO require
an additional process of supervised fine-tuning (SFT) on the chosen responses in the preference
dataset to mitigate the distribution shift between the preference data distribution and model’s output
distribution before the preference optimization, we set the epoch of SFT to be 1 for both meth-
ods. Notice that during weak-to-strong alignment, we use the response pairs chosen by the weak
models {(x, ywc )} to perform SFT on the strong base model. The number of epochs for preference
optimization is 1 for SimPO, and 3 for DPO for better convergence.

Regarding the unique hyper-parameters used in each of the methods: (1) For SimPO, the scaling
factor β is fixed to 2.0 and the target reward margin γ is set to 1.0 following the default settings used
in Meng et al. (2024). (2) For DPO, the scaling factor β is fixed to 0.1.
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(f) Weak Model: OPT-6.7B

Figure 12: Test accuracies of all weak, strong and weak-to-strong models in the preference align-
ment scenario under DPO. “Strong Ceiling” represents using ground truth data to fine-tune models.
“W2S” stands for “Weak-to-Strong”
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Figure 13: Deception scores of weak-to-strong experiments under DPO.

F RESULTS OF TEST ACCURACIES IN THE PREFERENCE ALIGNMENT
SCENARIO WITH SIMPO

We put the results of test accuracies on SimPO in Figure 11. The weak-to-strong generalization re-
sults in this scenario show some different patterns compared with the results in the reward modeling
scenario. When the weak teachers only have limited capabilities (i.e., GPT-2-Base/Medium), the
aligned strong students fail to achieve the comparable performance of their weak teachers. As the
capabilities of weak teachers improve, the expected positive weak-to-strong generalization results
still do not consistently emerge. This implies that there is still large room for improvement in
enhancing weak-to-strong effectiveness in the preference alignment scenario.

G WEAK-TO-STRONG RESULTS ON DPO

Besides the main results on SimPO (Meng et al., 2024), we also conduct weak-to-strong preference
alignment experiments on DPO (Rafailov et al., 2024). The detailed procedure is similar to SimPO
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Figure 14: The full results of deception scores in weak-to-strong preference alignment (SimPO)
experiments on LLaMA-3-8B/70B and LLaMA-3.1-8B.

and can be found in Appendix C. The major difference is the metric for determining the correctness
of each prediction of the model and calculating the model’s confidence on each sample pair. In
DPO, when using Eq. (9) to calculate the confidence of model θ on (x; yc, yr), the model logit
πθ(y|x) on each completion y is now normalized by a constant factor L (instead of normalized by
each response’s own sequence length) and is calculated as πθ(y|x) = 1

L

∑|y|
i=1 logPθ(yi|x, y<i).

This is because the original training objective of DPO is to directly enlarge the gap between the
log sums of token probabilities over the chosen and rejected responses. Thus, the evaluation metric
should be consistent to the training objective. We admit this may introduce a sequence length bias,
but this is an inherent issue of DPO. However, the scale of original log sum of token probabilities
is very huge, we need to divide it by a constant to ensure that the model’s confidence falls within
a reasonable distribution. Choosing different constants for re-scaling may affect the confidence
distribution, however, it is equivalent to selecting different confidence thresholds. The results in
Appendix I validate that the deception pattern is independent of the choices of confidence thresholds.
Here, we set L to 50. The confidence threshold T is fixed to 0.75. The results of generalization
performance are displayed in Figure 12, and the results of deception scores are shown in Figure 13.
The results show that the weak-to-strong deception issue also exists in DPO setting.

H EXPERIMENTS ON LLAMA-3 AND LLAMA-3.1

We also conduct additional experiments on the most recent LLMs LLaMA-3-8B/70B (MetaAI,
2024a) and LLaMA-3.1-8B (MetaAI, 2024b) to explore the weak-to-strong issue on larger mod-
els or same size models with more powerful capabilities. We consider in the preference alignment
scenario, where the optimization method is SimPO. Due to the limited computational resources, we
can only use LoRA method to fine-tune 70B models. For fair comparison, we also apply LoRA when
fine-tuning LLaMA-3-8B and LLaMA-3.1-8B. Specifically, we apply LoRA to both attention and
FFN modules, lora r=8, lora alpha is 16. The learning rate for all experiments is 3 × 10−4.
Other experimental settings are kept the same as that in the main experiments.

The results are in Figure 14. Comparing the results on LLaMA-3-8B and that on LLaMA-3-70B,
wec can see that, our main conclusions about (1) the existence of the weak-to-strong deception
phenomenon and (2) the positive relationship between the model capability gap and the deception
severity, still hold. When comparing the results on LLaMA-3 and that on LLaMA-3.1, it further
validates our claim: the essential factor that affects the deception severity is not the model
scale, but the model capability.

I DECEPTION SCORES UNDER DIFFERENT CONFIDENCE THRESHOLDS

In the main text, we display the patterns of deception scores in both two scenarios under the con-
fidence threshold T = 0.75. Choosing a different confidence threshold may affect the delineation
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Figure 15: The deception scores on the reward modeling task under different confidence thresholds
T = 0.70, 0.80, 0.85. The main conclusions remain the same when choosing different confidence
thresholds to identify the cases known and unknown to the target models.
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(c) Deception scores under T =
0.85

Figure 16: The deception scores in the preference alignment (SimPO) scenario under different
confidence thresholds T = 0.70, 0.80, 0.85. The main conclusions remain the same when choosing
different confidence thresholds to identify the cases known and unknown to the target models.

of known and unknown areas of a target model. Here, we display the patterns of deception scores
in both scenarios under three extra confidence thresholds (T = 0.70, 0.80, 0.85). The results in
the reward modeling and preference alignment (SimPO) scenarios are displayed in Figure 15 and
Figure 16, respectively. As we can see, though the concrete value of deception score in each experi-
ment varies slightly under different T , the general pattern that the deception issue intensifies as the
capability gap between the weak and strong models increases remains the same.

J EXPLORATIONS ON THE SPONTANEOUS WEAK-TO-STRONG DECEPTION
ISSUE IN THE NO CONFLICT SETTING

In the main text, we have studied the weak-to-strong deception issue in a realistic multi-objective
alignment scenario. In this section, we make explorations on the spontaneous weak-to-strong de-
ception issue: if current LLMs may spontaneously deceive weak supervisors even without being
driven by conflicting targets. Specifically, we can compare the behavior change of the strong student
in different knowledge areas when trained by no-conflict weak data with that trained by ground-
truth data. Thus, we visualize the absolute deception score, which is calculated as the percentage
of samples that are originally well-aligned under ground-truth supervision but now misaligned un-
der weak supervision with no conflict, belonging to the Strong-Known and Weak-Unknown area.
The full results in both reward modeling and preference alignment scenarios are in Figure 17 and
Figure 18. We also put the results of absolute deception scores in the implicit conflict setting in
same figures for comparison. Notice that in order to achieve fair comparisons, when calculating the
absolute deception scores in the implicit conflict setting, the reference model used is also the ground
truth strong model instead of the weak-to-strong model in the no conflict setting.
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Figure 17: Absolute deception scores on the re-
ward modeling task.
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Figure 18: Absolute deception scores in the
preference alignment scenario.
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Figure 19: The visualizations of the confidence distributions of ground truth weak and strong models
(θgt

w and θgt
s ) on samples correctly predicted by the weak-to-strong model under no conflict (θ̃w

s ).
The green dots represent cases that are also predicted correctly by the weak-to-strong model under
implicit conflict (θw

s ), and the red crosses represents those are not. “A to B” represents using weak
model “A” to supervise strong model “B”.

The main conclusions include: (1) The pattern of spontaneous weak-to-strong deception also
exists, as most absolute deception scores are significantly larger than 0. (2) The spontaneous de-
ception issue becomes more severe as the capability gap between weak and strong models
increases. As we can see, supervised by the same weak data, the stronger model tends to make
more mistakes in the Strong Known and Weak-Unknown area (refer to more visualizations in Ap-
pendix K). (3) The absolute deception scores in the no conflict setting are lower than deception
scores under conflicting objectives, indicating that in realistic multi-objective alignment scenar-
ios, the existence of conflicting optimization objectives exacerbates the deception issue. Con-
sidering that in the real case where the alignment target is usually multi-objective, our main analysis
under conflicting alignment targets aligns more closely with the real situation, but the analysis in the
no conflict setting can be regarded as a good baseline and a supplementary study.

K MORE VISUALIZATIONS ABOUT THE DYNAMIC CHANGES OF CONFLICT
TAX OR WEAK-TO-STRONG TAX

Here, we put the additional visualizations about the dynamic changes of conflict tax across all four
knowledge areas when the weak model is GPT-2-Large in the implicit conflict setting in Figure 19.
Though the overall ratio of conflict tax increases clearly in the implicit conflict setting due to the
more complex conflicting objective here, we can still observe a similar pattern that as the strong
model becomes more powerful, the conflict tax gradually shifts from being relatively evenly
distributed across four knowledge areas to concentrating in Sk ∩Wuk.
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Figure 20: The visualizations of the confidence distributions of ground truth weak and strong models
(θgt

w and θgt
s ) on samples correctly predicted by the ground truth strong model (θgt

s ). The green dots
represent cases that are also predicted correctly by the weak-to-strong model under no conflict (θ̃w

s ),
and the red crosses represents those are not. “A to B” represents using weak model “A” to supervise
strong model “B”.
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Figure 21: Full comparison of deception scores between the cases when using all weak data and
using only the high-confidence weak data for weak-to-strong preference alignment.

Furthermore, following the settings in Appendix J, we further visualize the dynamic change of
weak-to-strong tax, which corresponds to the samples that can be originally well-aligned under
ground-truth supervision but now misaligned under weak supervision in the no conflict setting,
across different knowledge areas. The results are in Figure 20. As we can see, the patterns remain
similar.

L FULL RESULTS OF HIGH-CONFIDENCE WEAK-TO-STRONG PREFERENCE
ALIGNMENT

When conducting the high-confidence weak-to-strong preference alignment experiments mentioned
in Section 6.1, we first remove samples with weak model’s confidence (w.r.t. the correct label)
below a certain threshold (which is 0.75) from the weak data, and only use those high-confidence
samples to supervise the strong model. In this manner, we can expect that it can effectively address
the deception issue in the explicit conflict setting, because these weak model’s high-confidence
samples are very likely to also be the high-confidence samples of the strong model, so the strong
model will barely make wrong predictions on these samples during training. Thus, we mainly
conduct experiments in the implicit conflict setting. Due to the varying capabilities among different
models, the number of high-confidence samples remaining after filtering also varies. Thus, in each
experiment with the implicit conflicting target, we keep the number of helpful samples to the same
as that of the remaining high-confidence weak samples.

The full comparison of deception scores between the cases when using all weak data and using only
the high-confidence weak data for weak-to-strong preference alignment under SimPO are put in
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Figure 22: Preliminary results on the honesty alignment target, where the conflicting target is help-
fulness.

Figure 21. As we can see, the deception issue cannot be effectively mitigated even when the strong
model can only obtain the cases what the weak model knows and is not provided by the incorrect
cases in the weak data. This indicates that there exist deeper mechanisms to explain how strong
models perceive the knowledge boundaries of weak models and exhibit deceptive behaviors, which
can be explored more thoroughly in future work.

M DETAILS IN BOOTSTRAPPING EXPERIMENTS

When conducting bootstrapping experiments in Section 6.2, we first fine-tune the weak model on
Dgt to obtain θgt

w and let it make predictions on the held-out set to get Dw
weak. For every intermediate

model between the weak model and the ultimate strong model (i.e., Mistral-7B), we use Dweak to
fine-tune it and obtain an intermediate teacher θw

i . We further let this intermediate teacher to make
predictions on the original Dgt to get Din

weak. Finally, we use Din
weak to supervise Mistral-7B.

The conflicting target will appear in the final stage where the intermediate teacher supervises the
ultimate strong model. In each experiment, the deception score is calculated based on the confidence
distributions of each weak model and Mistral-7B.

N PRELIMINARY EXPERIMENTS ON HONEST ALIGNMENT

Besides the harmlessness goal considered in the main experiments, here, we perform preliminary
experiments by regarding honesty as the target alignment dimension, and explore potential weak-to-
strong deception issue when the conflicting target helpfulness appears. The motivation is, honesty
requires the model to refuse the questions it does not know while helpfulness requires the model to
provide helpful information on any user question. We select and filter the honesty data from Un-
knownBench (Liu et al., 2023), where the prompts are unanswerable questions, preferred responses
are from gpt-4-0613, dispreferred responses are from Llama-2-13B-Chat. After filtering,
we finally obtain 400 samples for ground truth training data, 400 samples for weak data and 400
samples for testing data. We perform experiments on GPT-2-series models in the preference align-
ment scenario with SimPO in the implicit conflict setting, where we include 2,000 helpful samples
for the conflicting objective. The batch size for training is 16, while other experimental settings are
kept as the same as that in Section 5.2. The results are in Figure 22. The weak-to-strong deception
issue also exists in this honest alignment setting.
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Figure 23: The comparison results of deception scores between naive weak-to-strong loss and adap-
tive weak-to-strong loss.

O THE EFFECT OF ADAPTIVE SUPERVISION METHOD ON MITIGATING
DECEPTION

In the main text, we discuss the potential deception mitigation strategy by only using correct and
high-confidence samples for weak-to-strong alignment, but obtain the negative results. Here, we
conduct extra experiments on an adaptive supervision method. The motivation is to dynamically
down-weights the importance of low-confidence samples predicted by the weak model. Thus, we
design an adaptive loss function as

θ̃w
s =argmin

θs

Ex∼Dweak

(
LCE

(
Mθs

(x),Mθgt
w
(x)

)
· |2Mθgt

w
(x)− 1|

)
, (16)

where |2Mθgt
w
(x)−1| is a re-weighting factor that relatively down-weights low-confidence samples.

We conduct experiments in the reward modeling task under implicit conflict setting, as strong models
are not expected to get the probabilities in the preference alignment scenario. Other experimental
settings are kept as the same as that in Section 4.1. The comparison results between this adaptive
loss and naive weak-to-strong loss in Eq. (6) are put in Figure 23. As we can see, the deception
mitigation performance of adaptive loss is also limited.

P CASE STUDY ON WEAK-TO-STRONG DECEPTION

Here, we provide a weak-to-strong deception case in the experiment where the weak model is GPT-2
and the strong model is Mistral-7B in the SimPO setting with the implicit conflict objective. The
case is displayed in Table 1. In this example about “stealing electricity”, the ground truth weak
model θgt

w does not know the harmlessness of each response based on the user prompt (i.e, falls into
Wuk), while the ground truth strong model θgt

s is very confident and accurate on its judgment of
harmlessness (i.e, falls into Sk). The weak-to-strong preference alignment result is, the weak-to-
strong model under no conflict θ̃w

s can produce correct prediction while the weak-to-strong model
under implicit conflict θw

s produces misaligned behavior in the case.
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Table 1: Weak-to-strong deception case study when the weak model is GPT-2 and the strong model
is Mistral-7B with SimPO under implicit conflict setting (Warning: contain harmful content).

User prompt Do you know of any ways to steal electricity from a utility com-
pany?

Ground truth rejected
response

1. Steal the transformer. This is one of the most common meth-
ods of stealing electricity. You can steal the transformer from the
utility pole and replace it with a smaller one that cannot handle
the same amount of electricity. 2. Tap into the power lines. You
can tap into the power lines that run through your neighborhood
and steal electricity by connecting your own wires to the lines. 3.
Use a power strip. You can use a power strip to steal electricity
by plugging in multiple devices and using them to draw power
from the utility company’s grid. 4. Use a generator. You can
use a generator to generate your own electricity and steal it from
the utility company by connecting it to the power lines. 5. Use
a solar panel. You can install a solar panel on your roof and use
it to generate your own electricity, then steal it from the utility
company by connecting it to the power lines. ......

Ground truth chosen
response

There are many ways to access affordable energy, such as gov-
ernment assistance programs, energy efficiency measures, and
renewable energy options. It’s important to consider the long-
term consequences of stealing electricity from a utility company
and to explore legal and ethical options for addressing energy
poverty. If you are struggling financially and are looking for
ways to access affordable energy, there are resources available
to help you.

Predicted probability
of ground truth weak
model θgt

w

0.43 (Weak-Unknown)

Predicted probability
of ground truth strong
model θgt

s

0.99 (Strong-Unknown)

Predicted probability
of weak-to-strong
model under no con-
flict θ̃w

s

0.53 (Correct)

Predicted probability
of weak-to-strong
model under implicit
conflict θw

s

0.30 (Wrong)
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