
Improving Classification and Data Imputation for
Single-Cell Transcriptomics with Graph Neural

Networks

Han-Bo Li
University of Cambridge
hbl26@cam.ac.uk

Ramon Viñas Torné
University of Cambridge
rv340@cam.ac.uk

Pietro Lio
University of Cambridge
pl219@cam.ac.uk

Abstract

Single-cell RNA sequencing (scRNA-seq) provides vast amounts of gene expres-
sion data. In this paper, we benchmark several graph neural network (GNN)
approaches for cell-type classification and imputation of missing values on single-
cell gene expression. For cell classification, we use a cell-cell graph representation
to find greatest performance using a graph convolutional network (GCN) model
with a differentiable group normalisation (DGN) layer to alleviate issues of over-
smoothing, in conjunction with an adjacency matrix predetermined by spectral
clustering. This method marginally outperforms an SVM benchmark model, 59.4%
compared to 58.6%, on the Paul15 dataset, which describes the development of
myeloid progenitors. Performance scales well with the number of gene expres-
sions, and on the PBMC3K dataset describing peripheral blood mononuclear cells
with higher a higher number of gene expressions, this method outperforms an
SVM benchmark, 95.6% vs 94.2%. For data imputation, we model the data as
a bipartite graph consisting of cell and gene nodes, with edge values signifying
gene expression. We train a 3-layer GraphSage GNN to impute data by training
it to reconstruct the dataset based on the downstream task. When applied with
this imputation model, GNN classification performance is similar at 58%, however
exhibits better learning and generalisation characteristics. Our findings catalyse
the development of new tools to analyse complex single-cell datasets.

1 Introduction

GNNs offer an enticing framework for representation learning on scRNA-seq data as they can provide
a natural and flexible model structure. Buterez et al. [2021] propose a variational graph autoencoder
architecture with graph attention layers for dimensionality reduction and clustering of challenging
scRNA-seq datasets. Wang et al. [2021] model cell-cell relationships and perform gene expression
imputation with autoencoders and GNNs. They outperform existing tools for gene imputation and cell
clustering on four benchmark datasets. Rao et al. [2021] combine graph convolution and autoencoder
neural networks to impute drop-out events in scRNA-seq datasets, and outperform state-of-the-art
techniques.

The primary goal of this paper is cell classification using gene expression data from scRNA-seq
datasets 1. We approach this task in two ways. Firstly, in Section 2, we directly apply GNN techniques
to the unstructured data using various methods for calculating graph adjacency. Secondly, in Section
3 we represent the data using a bipartite graph, where cell samples and gene features are nodes, and
observed gene expressions are edge attributes between these. This representation is inspired by the
GRAPE framework introduced by You et al. [2020], and its application to scRNA-seq data is novel.

1Code can be found at https://github.com/hbl4310/gnn_sc_transcript/

NeurIPS 2022 AI for Science Workshop.

https://github.com/hbl4310/gnn_sc_transcript/

We examine various extensions to this framework including node representations in the bipartite
graph, how its performance scales with the dimensionality of the gene expression, and how adding a
reconstruction penalty affects downstream cell classification.

We find that using a small graph convolutional network with adjacency based on principal component
analysis (PCA) and k-nearest neighbours (KNN) analysis can achieve similar test accuracy than
the SVM benchmark with a linear kernel. When we regularise against oversmoothing in the GNN,
performance improves to beat the SVM benchmark, 59.4% compared to 58.6%. On a dataset with
more gene expressions and fewer cell classes, the GNN models outperform the SVM benchmark
95.6% vs 94.2Ċombining these approaches with a GNN-based data imputation framework [You et al.,
2020], we achieve similar performance, but better learning characteristics.

2 Cell Classification Methods

Initially we explore cell classification directly with GNNs, where we represent cells as graph nodes,
and their gene expressions as node features. The graph adjacency can be either statically precomputed,
assumed, or dynamically calculated. Under this representation, a GNN finds node embeddings which
allow for accurate node classification against provided cell labels. Appendix A briefly summarises
various GNN architectures. Section 2.1 explores the issue of the adjacency of the data representation.

2.1 Adjacency Assumptions

There are several options for the graph adjacency representation. Naïvely, we can assume full or
no adjacency. Both of these assumptions are equivalent to Deep Sets [Zaheer et al., 2017] as the
neighbourhood for each convolution is either the entire graph’s features or just the receiver node’s,
respectively. Alternatively, we can precompute an adjacency using a standard algorithm such as
KNN. This is relatively inexpensive, however relies on the gene expression data, and requires an extra
hyperparameter for tuning, k, the number of neighbours. The usefulness of this adjacency is sensitive
to the k, and choosing an optimal value systematically may be costly. Similarly, we could infer the
adjacency from a distance metric between cell gene expressions, assigning an edge for nodes with a
distance less than a threshold.

The graph adjacency can also be calculated dynamically, rather than input statically. Wang et al.
[2019] introduce Dynamic Graph CNN (DGCNN) which computes adjacencies at each layer of the
network based on the node embeddings at that point. They use KNN to construct the adjacency
based on the embeddings and propagate information with this. The convolution operator is hi =
σ
(∑

j∈N ′(i) f(xi∥xj − xi)
)

, where f is a neural network taking as input the concatenation of the
receiver node features and its difference with features of nodes in its KNN adjacency. Using a
dynamic adjacency may allow GNNs more flexibility in learning.

2.2 Experiments

In order to assess various GNN designs on classifying cells with gene expression data, we use the
19 cell types labelled in the Paul15 dataset [Paul et al., 2015] as targets for the node classification
task. Node labels are one-hot encoded and cross entropy loss is calculated. We apply a variety of
convolutional GNN layers, described in Appendix A, to cell classification using the cells’ measured
gene expressions as node features and test models’ performances under various graph adjacency
assumptions outlined in Section 2.1. For the KNN adjacency, we apply the clustering algorithm
on the raw data, as well as the top 40 principal components. For the node similarity adjacency, we
use the Euclidean distance and define the threshold for edge existence by the quantile, q, over all
distances. The hyperparameters for the adjacency methods are chosen such that the three methods
produce similar levels of graph sparsity (equivalently, similar numbers of edges). k = 10 for KNN
after PCA produces an adjacency sparsity of 0.6%, which is close to k = 20 for KNN on the gene
expression data and q = 0.5% for the Euclidean similarity threshold. k = 40 for KNN after PCA
produces an adjacency sparsity of 1.7%, which is close to k = 50 for KNN on the gene expression
data and q = 2% for the Euclidean similarity threshold. We do not include the full adjacency due to
computational constraints.

2

As classificaiton baselines, we use a support vector machine (SVM) with a linear kernel, and a
multi-layer perceptron (MLP) with a hidden dimensionality of 64 and 2 layers. For all analyses we
take a random 70-30% train-test transductive split, and run GNN models 5 times over 2000 epochs
per run for each setting with a constant learning rate of 0.001.

2.2.1 Results

Figure 1: Convolutional GNN model performances based on different adjacency assumptions. Boxes
are mean final test accuracies over 5 training runs while the single dashes of the same colour represent
the highest and lowest final test accuracies over those runs. The dashed lines signify the performance
of the benchmark techniques.

The performances of standard convolutional GNN layers are presented in Figure 1. We look at the
average model performances over all runs for each setting, and select the best hyperparameter settings
from a narrow hyperparameter search for each model. None of the GNN models outperform SVM
(58.65% test accuracy) on average, and most do not outperform a 2-layer MLP (52.8% test accuracy).
Only the GCN model achieves similar performance to SVM in settings with PCA+KNN adjacency.

Comments on Adjacency Assumptions

We test models with a variety of hyperparameters, including with 1 and 2 layers (of the same type).
The models’ hidden dimensions, where relevant, are set constant to 64. The DGCNN models with
1 layer do not use dynamically calculated adjacency. The GCN model is also tested with a 4 layer
setting. Interestingly, most model performances are relatively consistent across all adjacency choices,
except GCN and GAT, which perform significantly better on PCA+KNN adjacency methods. GIN
models underperform their peers in most adjacency settings suggesting it may be better suited to
graph level tasks rather than node level tasks. A 2-layer GraphSAGE model performs the best out
of GNN models for empty, Euclidean and KNN adjacencies, while a 2-layer GCN and a 1-layer
GAT model with 32 attention heads outperform with PCA+KNN adjacencies. Compared to the GCN
model, the GAT model has roughly 10 times the number of parameters, and takes roughly twice as
long to train and test. We also observe that while the 2-layer GCN outperforms the 4-layer variant
on PCA+KNN, the 4-layer variant performs to best on other adjacency settings. This might be an
indication of oversmoothing, where more layers leads to more similar node representations, hindering
node classification.

Comments on Generalisation

Inspecting the training trajectories of GCN, GAT and GraphSAGE models with PCA+KNN adjacency
and k = 30 in Figure 2, we can see that all models gradually improve their training accuracies, but
maximum testing accuracies are achieved very early and subsequently stagnate or worsen slightly.
We further observe that the models’ relative performance ranks on training data is the inverse of
their ranks on testing data. This suggests that models can achieve reasonable performance with few

3

Figure 2: Performance across training epochs for various models. Dashed lines represent testing
performance.

iterations over the data, however they may suffer from poor generalisation as models are overfitting
to the training data.

Oversmoothing

Figure 3: Model predictions are displayed as a heat map, with white-hot squares representing high
prediction of a particular label for a particular ground truth. As the number of layers increases, the
predictions collapse to the most common labels. A histogram of labels in the data is shown on the
right for reference. In the 6-layer model prediction modes 1 and 13 are the two most common true
labels, while 7, 9 and 19 are rarer but may be more characteristic.

We look for evidence of mode collapse by inspecting the distribution of label predictions using the
GCN model with varying layers. In Figure 3 we can see that as the number of GCN layers increases,
predictions collapse to the most over-represented class labels in the training data, with the 6-layer
model only predicting 5 unique labels out of the data’s 19 labels.

This is indicative of oversmoothing, where node features become more similar as information is
propagated and averaged. Several remedies exist to address this. Skip connections can alleviate the
problem, as earlier node representations may be more distinct than those after several convolution op-
erations. Zhou et al. [2020a] introduce Differentiable Group Normalisation (DGN) which normalises
nodes within the same group, and separates node distributions from different groups. The number
of groups is user-defined. This simultaneously ensures representations of similarly labelled nodes
remain smooth, while representations for differently labelled nodes are distinct.

The authors introduce the group distance ratio (GDR) to measure oversmoothing, which is a ratio of
inter-group distance over intra-group distance using the Euclidean metric. Lower GDR may indicate
greater oversmoothing. Using the group distance ratio described in Zhou et al. [2020a], the 1, 2,
4, 6-layer GCN models produce metrics of 0.0630, 0.0640, 0.0624 and 0.0640 respectively. These
metrics do not appear to correlate to the mode collapse shown in Figure 3 which might be due to the
number of unique labels predicted decreases (10, 7, 7, 5) as the number of layers increase.

4

We retrain the GCN models with an appended DGN layer with groups set to 10, on the PCA+KNN
adjacencies with k = 30. With DGN, the 1-layer GCN model achieves an average test accuracy of
59.44%, which marginally outperforms the SVM benchmark of 58.65%. The 1-layer model achieves
an average final test accuracy of 59.44%, which marginally outperforms the SVM benchmark of
58.65%. The 2-layer variant achieves an average test accuracy of 58.48%, which is only marginally
better than the 2-layer GCN model without DGN normalisation.

Figure 4: Performance of GCN model vs bench-
marks for datasets with varying numbers of genes.
Genes are selected during the preprocessing stage
according to their expression variance. GCN per-
formance scales better than benchmarks despite
underperforming until the full dataset is used.

Scaling the Number of Genes

To understand how the GNNs’ performances
scale with the number of unique gene expres-
sions, we filter for the top n genes by their ex-
pression variance. We train a GCN model with
1, 2 and 4 layers with PCA+KNN adjacency for
k = 10 and k = 30 on the reduced datasets. The
results are displayed in Figure 4 where the result
from using all 685 genes is displayed for com-
parison. The performance of the GCN model
appears to scale better than the benchmarks’, as
the gap in performances decreases as the dimen-
sionality of the gene expression increases.

The preprocessed PBMC3K data provided2 has
2638 cell samples with 1838 genes and 8 pro-
vided cell labels. Fitting 1, 2 and 4 layer GCN
models to this unseen dataset, we find that all
settings outperform the SVM and MLP bench-
marks. The GCN models achieve test accura-
cies of 95.2%, 95.6% and 95.6% respectively,
while SVM achieves 94.2% and the best MLP
setting achieves 90.3%. While the GNN out-
performance on this dataset may be due to the
higher gene expression dimensionality, it might
be confounded by the reduced number of target
classes. Performance with DGN is similar to without, suggesting that oversmoothing is less of a
concern, possibly due to fewer target classes.

2.2.2 Discussion

Directly applying various convolutional GNN models to cell classification on scRNA-seq data, we
find that a simple GCN with DGN can outperform a SVM benchmark. Performance of other models
was mixed, relative to benchmarks. It is unclear why GCN and GAT models perform better with
adjacencies determined by PCA+KNN. This is more marked in the GCN case, where performance
under KNN adjacency is dramatically different to PCA+KNN adjacency. Since the PCA+KNN is
a form of spectral clustering, one might think that it might favour spectral convolutions, however
ChebNet models did not see a significant performance gain, and GAT models are spatial. These
results suggest that finding an informative adjacency for GNN models in cell classification using
scRNA-seq data is challenging. Further work could be done on incorporating PCA+KNN adjacency,
instead of KNN, to dynamic adjacency techniques such as DGCNN. Other clustering or community
detection methods could be explored in place of KNN, such as the Louvain or Leiden algorithms
[Traag et al., 2019].

Alternatively, future work could explore combining cell spatial transcriptomics data with scRNA-seq
data in a GNN model to improve cell classification performance. Several recent attempts have been
made integrating the data [Moncada et al., 2020, Longo et al., 2021], however the application of
GNNs to this augmented data has not been studied. The spatial data would provide a natural adjacency
structure which could be augmented with gene expression node features.

2https://scanpy.readthedocs.io/en/stable/generated/scanpy.datasets.pbmc3k.html

5

https://scanpy.readthedocs.io/en/stable/generated/scanpy.datasets.pbmc3k.html

3 Gene Expression Imputation Methods

Figure 5: Using the top 100 varying
genes we test the performance of the
GRAPE framework on cell classifica-
tion using MLP and GCN models for the
prediction task. Learnable embeddings
seem to improve GCN performance, but
degrade MLP performance.

Gene expression measurement is known to be difficult,
with variability across experimental batches, intrinsic tran-
scription noise, extrinsic noise from cell cycles [Dal Molin
and Di Camillo, 2019]. Cell classification can be impeded
by missing or incorrect gene expression data. We explore
methods of imputing gene expression data with GNNs to
facilitate cell classification downstream. While learning
a robust data imputation method is valuable due to the
difficulties of experimental techniques, another potential
benefit is that the imputation training might regularise the
cell classification model if both models are trained simul-
taneously. This could address the generalisation concerns
observed in the previous section in a similar way to the
effect of dropout in neural networks.

3.1 GRAPE

You et al. [2020] introduce GRAPE, a general framework
for feature imputation and label prediction in the pres-
ence of missing data. Fundamental to GRAPE is the data
representation: samples and features are represented as a
fully connected bipartite graph, where edge values denote
a feature occurring in a sample. Sample nodes have con-
stant node features, and feature nodes are one-hot encoded.
We use a GNN to learn embeddings for each sample and
feature node whose output node features are fed into an imputation model which predicts edge
values, denoting feature existence and values. We will refer to this as the data model. In the original
implementation, when used for node classification, the loss from the node predictions are propagated
through to the imputation and data models. The authors apply this method to various UCI datasets.
Their data model for the bipartite graph is a 3-layer GraphSAGE model which accommodates edge
value convolution. The imputation and node classification models are MLPs.

We will apply the GRAPE framework to scRNA-seq data, where we regard cells as samples and
gene expressions as features. The edge prediction therefore corresponds to predicting missing or
incorrect gene expression measurements for cell samples. This differs from existing GNN-based data
imputation methods designed for scRNA-seq data, such as the single-cell GNN (scGNN), introduced
by Wang et al. [2021]. Their model uses a graph autoencoder and left-truncated Gaussian mixture
model to reconstruct the data.

3.2 Experiments

We perform several experiments using GRAPE on the Paul15 dataset to assess whether the augmenta-
tions to the GRAPE framework are useful. We use the 3-layer GraphSAGE model with edge updates
for the data model, since this outperformed other layer types such as GCN with edge updates in
testing. The imputation model is kept as a 2-layer MLP. The downstream task of cell classification
is the same as that covered in Section 2. We make the following modifications to the framework to
adapt it to scRNA-seq analysis:

• Since the number of potential genes is large, instead of using one-hot encoded feature nodes,
we use a lower-dimension learnable embedding. The features for the cell nodes remain
constant, and the same size as the gene nodes’.

• Informed by our experiments in the previous section, we use a GCN model for the down-
stream node classification task. We experiment with both a 2-layer GCN without DGN and
a 1-layer GCN with DGN. We compute the adjacency using PCA+KNN with k = 30 from
the imputed data at each update step3.

3We use torch.pca_low_rank and torch_cluster.knn to perform this step to preserve gradient infor-
mation, however, doing so introduces a minor source of randomness through the low-rank SVD step.

6

• Along with the cross entropy loss for cell classification, we also compute a reconstruction
loss between the imputed gene expression values and the original data. This may have
the effect of further regularising the downstream task of cell classification and aid in its
generalisation. The data, imputation and prediction models are trained simultaneously and
updated with both accuracy and reconstruction losses.

Throughout all experiments, the learning rate remains constant at 0.001, and the train/test split is
70/30%, as before.

Gene Embeddings and Classification Model

Figure 6: Test accuracies for GRAPE with GCN
prediction model, trained on datasets of varying
size, and with varying gene embedding sizes. 685
genes is the full pre-processed dataset.

To test whether using learnable embeddings im-
proves downstream task performance, we re-
strict the dataset to 100 of the most highly vari-
able genes so that one-hot encodings for gene
nodes are not too large. We test learnable em-
beddings for gene nodes of sizes 16, 32 and 64
with different prediction models: MLP, GCN,
GCN with DGN. The hidden dimensions in all
models are 64. The results are shown in Figure 5.
When one-hot encodings are used, test accura-
cies for all models are similar, at around 36-37%.
When learnable embeddings are used, both GCN
models perform significantly better while the
MLP model performance degrades. Since the
GCN without DGN outperforms the MLP for
all embedding sizes tested, and performs only
marginally worse than GCN with DGN, we will
focus on GCN without DGN hereafter due to
computational considerations.

Scaling the number of genes

Next, we increase the number of genes and ex-
amine the performance of the GRAPE frame-
work with a GCN prediction model. The results
are displayed in Figure 6. We can see that per-
formance improves as the number of genes in
the dataset increases. Further, as the number of genes increases, greater accuracy is achieved with
larger gene embedding sizes, suggesting that the optimal embedding size might proportional to
the number of genes. We can compare the classification performance against the SVM and MLP
baselines, shown in Figure 4. With the full dataset, the GRAPE framework, using a gene embedding
size of 64, matches the performance of the SVM baseline and the performance of a GCN (without
GRAPE). Memory constraints inhibited testing performance with larger embedding sizes.

Reconstruction

We now turn our attention to measuring the performance of the gene expression imputation of the
GRAPE framework, and the effect of incorporating reconstruction error into the cost function along
with a classification loss for the downstream task. We use a MSE loss function between the imputed
data and the original data, looking only at cell samples which are in the training data. This is a
similar approach to Wang et al. [2021], who introduce scGNN, however we do not use auxilliary
regularisation such as gene regulatory networks. The reconstruction loss is attenuated with a constant
multiplier, chosen such that the initial penalty is roughly 10% of the classification penalty. Figure 7
shows that performance over training epochs using the reconstruction loss is more stable, and that the
generalisation gap between train and test performance is much smaller. The final test performance
using the reconstruction penalty is lower, however we did not focus on optimising the regularisation
strength parameter.

Also following Wang et al. [2021], we look at a simulated dropout reconstruction metric, along with
downstream accuracy to assess the performance of the framework. This involves randomly dropping
out certain cell gene expression values with a fixed probability, and measuring the divergence between
the original dataset and the reconstructed dataset built from the dropped out dataset. Figure 8 shows

7

Figure 7: Performance over epochs for
GRAPE+GCN model with gene embedding
dimension of 64, with and without reconstruc-
tion loss penalty. The top 400 genes are used.

Figure 8: Reconstruction loss on simulated
data dropout using GRAPE+GCN model with
embedding size of 64 and trained on 400
genes.

MSE reconstruction loss for varying data dropout rates. The model with reconstruction loss achieves
much lower and consistent losses. As a comparison, we run the VAE scGNN with no gene regulatory
network regularisation to impute the data, and on higher dropout rates, it outperforms GRAPE.

3.3 Further Work

Heterogeneous Graph Learning The bipartite data representation in GRAPE is implicitly homoge-
neous as all nodes are treated the same. This may be suboptimal as cell and gene representations have
different interpretations, however in a homogeneous graph setting, their representations may converge.
Hu et al. [2020] introduce the Heterogeneous Graph Transformer which models heterogeneity in
nodes and edges explicitly by introducing node- and edge-type dependent parameters to characterise
the heterogeneous attention over each edge. This allows separate representations for different node
and edge types, which ultimately may improve downstream task performance.

Imputation Model and Reconstruction Loss One potential direction for improvement on the
imputation model would be using the VAE graph model from Wang et al. [2021], as well as the gene
regulatory networks as the reconstruction loss.

Cell Clustering GNNs have been applied to clustering tasks with models such as Deep Modularity
Networks [Tsitsulin et al., 2020, DMoN], which tries to optimise for the modularity of cluster
assignments, which is a measure of the “disconnectedness” of different clusters and “connectedness”
of nodes in a cluster, and a regularisation to encourage more cluster groups. This clustering layer
could be attached to the GRAPE framework to perform unsupervised cell clustering, and compared
to standard methods such as the Leiden algorithm [Traag et al., 2019, Levine et al., 2015], which is
an improvement on the Louvain algorithm [Blondel et al., 2008], and dendograms.

4 Conclusion

GNNs offer a promising avenue for single-cell transcriptomics as they provide a flexible and intuitive
framework for representing interesting relationships. We examine cell classification using scRNA-seq
data using various GNN methods. Directly applying GNN models to the data, we find that using
a small GCN and an adjacency derived from PCA+KNN can achieve similar test accuracy than
the SVM benchmark with linear kernel. When we add DGN to regularise against oversmoothing,
performance improves to beat the benchmark. On the PBMC3k dataset, the GCN models outperform
the benchmarks. We apply the GRAPE framework to the task of data imputation and cell classification,
and suggest several augmentations to the procedure to accommodate scRNA-seq analysis. The
GRAPE framework, with learnable embeddings for gene data, has a regularising effect on the GCN
cell prediction model and can achieve similar performance to the GCN models applied directly, but
with better learning characteristics. With further research, this modular framework has potential to
harness the benefits of more sophisticated GNN architectures to various scRNA-seq analysis tasks.

8

References
David Buterez, Ioana Bica, Ifrah Tariq, Helena Andrés-Terré, and Pietro Liò. CellVGAE: an

unsupervised scRNA-seq analysis workflow with graph attention networks. Bioinformatics, 38
(5):1277–1286, 12 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab804. URL https:
//doi.org/10.1093/bioinformatics/btab804.

Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang,
Hongjun Fu, Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for
single-cell rna-seq analyses. Nature communications, 12(1):1–11, 2021.

Jiahua Rao, Xiang Zhou, Yutong Lu, Huiying Zhao, and Yuedong Yang. Imputing single-cell rna-seq
data by combining graph convolution and autoencoder neural networks. Iscience, 24(5):102393,
2021.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019.

Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-
Shaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, et al. Transcriptional
heterogeneity and lineage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in Neural Information
Processing Systems, 33:4917–4928, 2020a.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1–12, 2019.

Reuben Moncada, Dalia Barkley, Florian Wagner, Marta Chiodin, Joseph C Devlin, Maayan Baron,
Cristina H Hajdu, Diane M Simeone, and Itai Yanai. Integrating microarray-based spatial transcrip-
tomics and single-cell rna-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.
Nature biotechnology, 38(3):333–342, 2020.

Sophia K Longo, Margaret G Guo, Andrew L Ji, and Paul A Khavari. Integrating single-cell and
spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics, 22(10):
627–644, 2021.

Alessandra Dal Molin and Barbara Di Camillo. How to design a single-cell rna-sequencing ex-
periment: pitfalls, challenges and perspectives. Briefings in bioinformatics, 20(4):1384–1394,
2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pages 2704–2710, 2020.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. arXiv preprint arXiv:2006.16904, 2020.

Jacob H Levine, Erin F Simonds, Sean C Bendall, Kara L Davis, D Amir El-ad, Michelle D Tadmor,
Oren Litvin, Harris G Fienberg, Astraea Jager, Eli R Zunder, et al. Data-driven phenotypic
dissection of aml reveals progenitor-like cells that correlate with prognosis. Cell, 162(1):184–197,
2015.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

9

https://doi.org/10.1093/bioinformatics/btab804
https://doi.org/10.1093/bioinformatics/btab804

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020b.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

10

A Graph Neural Networks

A graph G = (V, E) consists of nodes V and edges E ⊆ V ×V . The graph edges define the adjacency
matrix A and degree matrix D. GNNs propagate features along a graph structure, and aggregate and
transform neighbourhood information to form node representations, and sometimes edge embeddings,
best suited to a given task.

A simple GNN convolutional layer is defined as

hi = ϕ

xi, ⊕
j∈Nj

ψ(xj)

 (1)

where hi represents the embedding and xi are the features of node i, and
⊕

is some permutation
invariant aggregation operation. In this report we will focus on homophilic graph representations,
where edges describe some form of interaction or relationship between nodes and so connected nodes
are assumed to have similar representations.

Convolutional GNN layers can be attributed to a general taxonomy [Zhou et al., 2020b] with two
categories: spectral and spatial. Spectral approaches define the convolution operation in the graph
spectral domain. The graph signal is transformed with a graph Fourier transform F(x) = U⊤x,
a convolution is applied, and the resultant signal is transformed back into the graph domain with
an inverse Fourier transform, F−1(x) = Ux. U is the matrix of eigenvectors of the normalised
graph Laplacian, L = I −D− 1

2AD− 1
2 . The convolution operation can be expressed with ψ(X) =

UgwU
⊤X , where gw is a learnable diagonal matrix.

ChebNet Defferrard et al. [2016] propose approximating gw with a Chebyshev polynomial truncated
to order k. The k-th order Chebyshev polynomial is defined recursively as Tk(x) = 2xTk−1(x)−
Tk−2(x), with initial conditions T0(x) = 1 and T1(x) = x. They write the convolution operation
with

H = σ

 k∑
j=0

Tj(L̃)XWj

 (2)

where L̃ = 2
λmax

L− I , λmax is the largest eigenvalue of L, and Wi is a learnable weight matrix.
This operation results in information passing between nodes which are connected by k hops in the
graph.

GCN Kipf and Welling [2016] propose a simplification of the operation in ChebNet to

H = σ((I +D− 1
2AD− 1

2)XW) (3)

by truncating at k = 1, assuming λmax = 2, and reducing the number of weight parameters. This is
further reduced to H = σ(D̃− 1

2 ÃD̃− 1
2XW) to address exploding gradients with Ã = I +A and D̃

the corresponding degree matrix.

Spatial approaches define the convolution operation in the graph domain directly. GCNs can also be
regarded as spatial convolutions.

GraphSAGE Hamilton et al. [2017] introduce a framework which uniformly samples within node
neighbourhoods and applies some aggregation. With mean aggregation, the convolutional update is

hi = σ

W1xi +
W2

|Ni|
∑
j∈Ni

xj

 (4)

With this aggregation, GraphSAGE can be viewed as an inductive version of the GCN layer, though
other aggregations can be used.

GAT Veličković et al. [2017] introduce an attentional spatial convoultional. They incorporate attention
into the propagation step, computing nodes’ hidden states by attending to their neighbours. With

11

linear attention, node embeddings are updated according to

H = σ

∑
j∈Ni

αi,jWxj

 (5)

αi,j =
exp (LeakyReLU(a⊤Wxi∥Wxj))∑

k∈Ni∪{i} exp(LeakyReLU(a⊤Wxi∥Wxk))
(6)

where a is a weight vector of a MLP.

GIN Xu et al. [2018] introduce the Graph Isomorphism Network, which is as powerful as the the
Weisfeiler-Lehman graph isomorphism test.

H = σ (f(A+ (1 + ϵ)I)X) (7)

where f is some neural network.

12

	Introduction
	Cell Classification Methods
	Adjacency Assumptions
	Experiments
	Results
	Discussion

	Gene Expression Imputation Methods
	GRAPE
	Experiments
	Further Work

	Conclusion
	Graph Neural Networks

