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ABSTRACT

Understanding and identifying the features of the input a deep network (DN)
extracts to form its outputs is a focal point of interpretability research, as it enables
the reliable deployment of DNs. The current prevailing strategy of operating under
the linear representation hypothesis (LRH) — where features are characterised by
directions in a DN’s latent space — is limited in its capacity to identify features
relevant to the behaviour of components of the DN (e.g. a neuron or a layer). In this
paper, we introduce the centroid affinity hypothesis (CAH) as a strategy through
which to identify these features grounded in the behaviour of the DN’s components.
We theoretically develop the CAH by exploring how continuous piecewise affine
DNs — such as those using the ReLU activation function — influence the geometry
of regions of the input space. In particular, we show that the centroids of a DN —
which are vector summarisations of the DN’s Jacobians — form affine subspaces
to identify features of the input space. Importantly, we can continue to utilise
LRH-derived tools, such as sparse autoencoders, to study features through the
CAH, along with novel CAH-derived tools. We perform an array of experiments
demonstrating how interpretability under the CAH compares to interpretability
under the LRH: We can obtain sparser feature dictionaries from the DINO vision
transformers that perform better on downstream tasks. We can directly identify
neurons in circuits of GPT2-Large. We can train probes on Llama-3.1-8B that
better capture the action of generating truthful statements.
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Figure 1: The centroid affinity hypothesis (CAH) posits that a deep network’s (DN’s) centroids (i.e.
the sum of the rows of the Jacobians computed at the features in the input space) decompose into
affine structures to identify the extracted and utilised features of the input space. This is derived by
studying the functional geometry of the continuous piecewise affine (CPA) approximation of DN,
which refers to the induced partition on the input space where the CPA approximation is linear. Here
we train a DN to classify the interior of a star-shaped polygon in the two-dimensional plane (see
[Figure 2)). We sample input points from the boundary of the polygon, centre plot, and visualise their
corresponding centroids, right plot, which form affine structures. The linear regions of the DN (i.e.,
its functional geometry) surrounding the polygon are visualised in the left plot using SplineCam
(Humayun et al., 2023).
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1 INTRODUCTION

Understanding and identifying what features of the input space a deep network (DN) extracts
to form its output is important to facilitate the reliable deployment of DNs. Despite DNs only
being constructed through a layer-wise composition of linear and nonlinear operations, this task is
notoriously difficult.

The current interpretability framework for identifying these features — the linear representation
hypothesis (LRH) (Elhage et al., |2022; |Park et al.| |2024) — abstracts away from the individual
functional components of DN (e.g. neurons and layers). This has led to a growing consensus that
the LRH is limited in its capacity to provide a meaningful understanding of the role of features in the
components of DNs (Sharkey et al.,[2025). The LRH has encumbered the field of interpretability
with contextualising features across the components of the DN (Balagansky et al.,[2025)) and within
the DN’s input space (Paulo et al., 2024).

In this paper, we propose the centroid affinity hypothesis (CAH), which inherently focuses on the
relationship between features and components by studying the centroids of a DN. The centroids of a
DN are given by the sum of the rows of the Jacobian of a component at an input point. This is in
contrast to the LRH, which focuses on latent activations, which are simply the output of a component
at an input point.

The CAH posits that the features of the input space that a DN uses are characterised by affine
subspaces of centroids, as demonstrated in [Figure T} This characterisation is developed by studying
how a DN affects the geometry of regions of the input space using the spline theory of deep learning
(Balestriero & Baraniukl |2018a)). Indeed, centroids are known to parametrise the input space partition
induced by the linear regions of the continuous piecewise affine (CPA) approximation of a DN
(Balestriero et al., 2019)).

The advantages of the CAH over other proposed frameworks for identifying architecturally-
contextualised features (Bae et al. 2022; [Murfet et al., 2023) are two-fold. (1) In practice, it
can be considered exactly as theoretically derived, rather than requiring approximations. (2) Existing
interpretability techniques, such as sparse autoencoders (Trenton Bricken et al., |2023; |Huben et al.,
2024), can be used to explore it.

In summary, the main contributions of our paper are as follows.

[C1]. The centroid affinity hypothesis for how features of the input space are extracted and utilised
by a DN.

[C2]. A novel set of interpretability techniques for extracting the features of a DN and identifying
their relationship to the components of the DN.

[C3]. An illustration of how the existing interpretability techniques can be used to fruitfully
explore the features of a DN using the centroid affinity hypothesis.

As a consequence of introducing the CAH, we can more effectively explore features relevant to
the behaviours of components of DNs as compared to the LRH. (1) On DINO vision transformers,
sparse autoencoders applied to their centroids identify a sparser feature dictionary that performs
better on downstream tasks as compared to those obtained from sparse autoencoders applied to
latent activations. In particular, these features persist more coherently between the DINOv2 and the
DINOvV3 models. (2) On GPT2, we utilise novel CAH-derived attribution metrics to corroborate prior
circuit analysis work (Clement & Josephl 2023). (3) On Llama-3.1-8B, we show how linear probes
trained on centroids extract generalising features that capture the behaviour of outputting a truthful
statement.

2 BACKGROUND

Deep Networks and their Approximations. A DN f : R%” — R¥™  with the convention that

d© = d, is a composition of L functions £ : R%"™" — R4’ These functions are referred to as
layers and usually constitute an affine transformation followed by a nonlinearity. Using the spline
approximation theory (Lyche & Schumaker;, 1975} |Schumaker, 2007), DNs can be approximated to
arbitrary precision or even characterised exactly using continuous piecewise affine (CPA) splines
(Balestriero & Baraniuk} 2018a). More specifically, one can write f(x) ~ A x+b

Wy (x) Wy (x)?
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where A, € R" " *“and b, € R are the affine parameters specific to the linear region
Wy(x) R? encompassing x. Here v(x) identifies the equivalence class of x under the collection of
all equivalence classes V constructed by ~ where x; ~ x» if and only if x; and x5 are in the same

linear region. Similarly, approximations can be constructed for each layer f(©) to obtain
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RA“T EI For CPA approximations of sub-components of the DN, say f(1¢¢2) ; Rd“ 7 _, Rd“?
for 1 < /¢, < {5 < L, we adopt a similar notation. When the DN employs CPA nonlinearities (e.g.,
ReLU), these approximations are exact (Balestriero & Baraniuk, |2018a). Henceforth, when we speak
in terms of DN sub-components, we do so with the understanding that this covers everything from a
single layer to the entire DN.

where w - R4“™" denotes the linear region for the mapping f(*) encompassing f( ¢~V (x) €

Functional Geometry. The functional geometry of a DN sub-component refers to the arrangement
of the linear regions of its CPA approximation. That is, the functional geometry of the DN sub-
component f(“12) is the disjoint union of linear regions {w,(,zl(_z"’)} .
veV
On the one hand, the linear regions forming this geometry can be thought of as being bounded by the
level-sets of the nonlinearitie of the DN sub-component, which is a hyperplane in its input space.
As the hyperplane is projected back to the input space of the sub-component, it bends at the point of
intersection with the level-sets of the preceding nonlinearities (see[Figure 7). It is the intersection of
these planes that forms the regions which constitute the DN sub-component’s functional geometry
(Humayun et al., [2023)).

On the other hand, the functional geometry of f(1-¢2) can be parametrised by a power diagram
subdivision (Balestriero et al.,[2019). The power diagram is a generalisation of the Voronoi tiling,
which is suitable for parametrising the functional geometry of a DN. Instead of each point in the
input space being assigned to the centroid it is closest to, as is the case in a Voronoi tiling, the power
diagram additionally weights each centroid with a radius. That is, using a collection of centroid-radius

pairs { (u,(f*"”, T,gé“_%)) } C R 7Y X R, each region of the partition is constructed as

vey
‘2 ([1(—@2)) }
— Ty .
2

Proposition 2.1 (Balestriero et al.2019). Let Jy (f(142)) € RV %A donote the Jacobian
of [ g fI0-1) (x). Then, u{25 ) = (3, (f(eleez)))T 1.

v(x)

(21(722) _ d(zlil) . _ . _ (Z1<_€2)
wy, =q¢xeR .I/—&I‘gglél‘l} X — [y,

From |[Proposition 2.1} it follows that the parameterisation of the functional geometry of a DN is
computationally accessible through Jacobian-vector products.

Feature and Circuits. Regions of the input space of a DN consist of a combination of atomic
features that are useful for the DN to generate its output. For example, an image of a cat probably
represents the atomic features of whiskers and a furry tail. Therefore, to extract an atomic feature
(e.g., whiskers), the DN must encode their superposition for regions of the input space and aggregate
them to delineate them. For the atomic feature to influence the output of the DN, this delineation
should be such that the DN can use it to influence the behaviour of its components. For example,
inducing a particular activation pattern in its nonlinearities, or triggering an attention head. The
precise influence that an atomic feature has on the computational graph of a DN is often termed a
circuit. With this, the task of interpretability is to understand how to identify these features of the

'Tt should be understood that in this context, /(x) identifies the equivalence class on the linear regions in
qe—1)

R

2By level-set, we refer to the points in space — whether that be in the input space of the DN or the input space
of the nonlinearity — that activate the nonlinearity at its knots. For example, for the ReLU nonlinearity, the level
set would refer to the points that are zero when input into the nonlinearity.
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input space that the DN has extracted to influence its output. Henceforth, we will usually refer to
these as the features of the DN.

The linear representation hypothesis (LRH) posits that these features emerge as linear directions
within the latent spaces of a DN. Evidence for the LRH was first teased out using text semantics
in word-embedding models (Mikolov et al.,|2013)), before being supported in transformers (Nanda
et al., 2023). This simple perspective facilitated the development of a variety of computationally
efficient tools to perform feature extraction (Kim et al.,|2018}; [Trenton Bricken et al.| 2023} |Huben
et al., [2024) and understand the behaviours of DNs (Liu et al., [2019; [Hewitt & Manning, [2019;
Templeton et al.,2024; |Arditi et al., 2024; [Lin et al., 2024). Furthermore, the LRH is amenable to
theoretical characterisation, allowing for the systematic study of DN features (Arora et al., 2016}
Park et al.l 2024;2025). However, since the LRH abstracts away from the individual components of
the DN, there is a growing consensus that the LRH does not reliably identify features relevant to the
computational graph of a DN (Sharkey et al.,[2025)). That is, the LRH may identify features that have
been extracted but not utilised by the DN, as opposed to functionally relevant features.

Definition 2.2. A functionally relevant feature of a DN sub-component is an extracted feature of
the input space that is utilised by particular components of the DN. With the exact nature of this
utilisation referred to as the corresponding circuit.

In[Appendix B| we explain how this description of features and circuits is analogous to prior work.

3 THE CENTROID AFFINITY HYPOTHESIS

In [Section 3.1} we theoretically motivate and derive the centroid affinity hypothesis (CAH). In
we support the CAH with a simple experiment of a DN classifying whether a two-
dimensional input point is inside or outside a star-shaped polygon.

3.1 DERIVING THE CENTROID AFFINITY HYPOTHESIS

Our Hypothesis. |[Humayun et al.|(2024) characterised the grokking phenomenon in DNs (Power|
et al., [2022)) — the delayed generalisation of DNs — as the migration of linear regions from the
training data to the decision boundary. Due to the inherent connection between linear regions and the
nonlinearities of the DN, this was compared with the phenomenon of circuit clean-up (Nanda et al.,
2022) — the observation that redundant circuits are discarded as the DN generalises. In particular,
Humayun et al.|(2024)) demonstrated that this region migration phenomenon — which results in linear
regions aligning in the input space — is a universal phenomenon of DN training dynamics, with
connections to the generalisation and robustness of the DN. Similarly, the functional geometry of a
DN sub-component is known to characterise its properties, such as toxicity (Balestriero et al., 2023)
and (Cosentino & Shekkizhar, 2024)) reasoning in large language models.

Thus, it is intuitive to then expect linear regions to be pertinent to identifying the functionally relevant
features of a DN. Indeed, this amounts to our central hypothesis, which we introduce now.

Definition 3.1 (Informal). Functionally relevant features of a DN sub-component are represented by
collections of aligned linear regions in the input space. (Formalised in[Appendix C).

Features as Aligned Nonlinearities. The nonlinearities of the DN sub-component form these
regions through their level-sets, which are hyperplanes within the input space of the nonlinearities.
Meaning nonlinearities can only align in the input space of the DN sub-component when the latent
activations form a linearly identifiable boundary within the input space of the nonlinearity. Therefore,
we have that the functionally relevant features of the £ layer of a DN sub-component are the regions
of its input space whose latent activations are linearly identifiable within the input space of the (™
layer and populated with the level-sets of the nonlinearities of the (™ layer:

Features as Affine Centroids. For practical purposes, we can convert this characterisation of
features as aligned nonlinearities into the power diagram perspective.

Proposition 3.2 (Informal). The functionally relevant features of the ¢" layer of a DN sub-component
are represented by centroids that form an affine subspace in R4, (Formalised and Proved in

Appendix ).
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To pull back the features of the /" layer into the input space of the larger sub-component, it suffices to
iteratively take the intersection with the regions of the previous layers of the sub-component. Using
this is done by performing a linear projection based on the activation pattern of
the points in the region at the previous layers of the sub-component. This refinement maintains the
affine structure of the original centroids, although now a single feature at the /" layer may partition
into multiple features in the input space of the sub-component. This neatly describes how a DN
sub-component can iteratively refine the superposition of features in its input space into atomic
features that it can utilise to form its output. We formalise this reasoning with

Theorem 3.3 (Informal). The functionally relevant features of a DN sub-component are represented
by the affine structures in its corresponding centroids. (Formalised and Proved in[Appendix C).

In light of [Theorem 3.3] we characterise our hypothesis on how the functionally relevant features of a
DN are represented as the centroid affinity hypothesis (CAH).

Connection to the LRH. The CAH offers a subtle, although complementary, difference from
the LRH. The LRH requires that the latent activations of features form affine structures, which is
a stronger condition than being linearly identifiable. Moreover, the way the LRH is utilised and
interpreted implies that any set of activations that form affine structures corresponds to features of the
DN (Smith} 2024). However, in the CAH, we require both the linear identifiability of latent activations
and that the level-sets of the nonlinearities separate them. For if no nonlinearities separate them, then
moving along these affine structures would not induce a distinct difference in the behaviour of the

DN, and thus not represent a functionally relevant feature (see|Definition 2.2)).

Centroid Stability Identifies Circuits. Circuits are identified by quantifying the relationship
between components of a DN and features through attribution methods (Meng et al., [2022; [Wang
et al.}[2023; |Goldowsky-Dill et al.l[2023)). In light of we propose to use the sensitivity
of centroids to manipulations in the components of a DN as an attribution method.

Formally, let f be a DN and f(**) be the same DN but with the i neuron of the /" manipulated. The
attribution of neuron i to the features of a collection of samples N is quantified as

xeN H/’('

(4,€)
Hx — 1 f

X

. L ]

where 1 and 1" are the centroids of f and (@) at x respectively. Quantifying the attribution
of a neuron to the local features of a sample point x can be done by taking A to be B.(x) =
{x’ eRY: Ix—x'||, < e}

3.2 SUPPORTING THE CENTROID AFFINITY HYPOTHESIS

Here we consider the validity of the CAH for a DN trained to classify whether two-dimensional input
points are inside or outside the star-shaped polygon of (far left). In this instance, the atomic
features of the input space — that are relevant for the task of the DN — are the interior and exterior of
the polygon. In the input space, these exist as a superposition of other features, such as the edges and
vertices of the polygon.

Centroid Affinity for Feature Identification. In[Figure 2] we observe that the nonlinearities of the
last hidden layer of this DN align themselves along the boundary of the polygon, which identifies the
interior and exterior as a functionally relevant feature of the DN. Consequently, with the far right plot
of we support [Proposition 3.2} since the centroids of the interior and exterior of the polygon
form affine subspaces in the input space of the last layer.

Moreover, with the right plot of we support the idea that the CAH requires linear separability
between the latent activations. Additionally, with the right plot of we observe that the latent
activations of the exterior form three separate directions. Under the LRH, these would correspond to
three distinct features; however, since no nonlinearities align in these regions, they will not relate to

3Henceforth, we will use s to denote sg’l&) unless stated otherwise.
€
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Figure 2: Here we train a fully connected ReLLU DN with three hidden layers to classify the interior
of a star-shaped polygon in two-dimensions, far left. We visualise the functional geometry of the
second and the third hidden layer components with the left and centre plots, respectively. In the
right and far right plots, we project the latent activations and centroids obtained from the third
hidden layer onto their first two principal components, respectively. Orange points correspond to
input samples from outside of the polygon, and blue points correspond to input samples from inside
the polygon.

the components of the DN. Consequently, performing interpretability under the LRH in this instance
would lead to identifying functionally irrelevant features, as we demonstrate in

Similarly, the second hidden layer identifies the three edges of the polygon as features, as the
nonlinearities align along these boundaries (evidenced by the extending hyperplanes emanating from
each of the three tips of the polygon). Thus, with[Figure T|we support[Theorem 3.3]since the centroids
of the linear regions bounding the edges of the polygon form affine subspaces segmented according
to which edge they identify.

This demonstrates how the DN uses linear regions, and thus its nonlinearities, to extract the superpo-
sition of features in the input space into atomic features that can then be used to form its outputs. In
particular, this process yields coherent structures in the centroids of the DN as claimed by the CAH.

Point-Cloud Analysis. Under the LRH, a standard interpretability technique is studying point
clouds of latent activations using embedding methods (Li et al.,[2025)), topological descriptors (Fay
et al., |2025) or linear probes (Kim et al.,|2018}; Nanda et al.,[2023)). In addition to centroids possessing
an affine structure under the CAH, it is evident from that this structure is semantically
coherent. Suggesting that applications of these analyses may be particularly fruitful under the CAH.

To aid the study of centroids as point clouds, we consider softening DNs using CPA nonlinearities
(e.g., ReLU), by replacing these nonlinearities with smooth approximations (e.g., GELU). We justify

this in Appendix F

First, we consider directly measuring the distribution of centroid affinity, using a notion of effective
dimension to identify feature boundaries. In we see that this identifies the external sectors
and interior of the polygon as features of the input space.

Second, we consider a t-SNE embedding (van der Maaten & Hinton, 2008])) of the centroids at the
second hidden layer obtained from the samples of [Figure 8| In[Figure 3| we observe a neat partition
with respect to which sector of the input domain the input samples were located. This corroborates
our prior analysis using the second hidden layer’s functional geometry.

We reproduce these findings for DNs trained on other polygons in and extend the
analyses to a convolutional neural network trained on MNIST (Lecun et al.,{1998) in

Circuit Discovery. Using we can compute neuron attribution values to study the
circuits of this DN by observing the sensitivity of neurons to pruning. In (right), we see
that the neurons of the third hidden layer have an encompassing effect on the entire boundary of the
polygon — as expected from our prior analyses.

*Here we measure effective dimension using the exponential of the entropy of the normalised singular values.
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Centroid Affinity 2" Layer t-SNE 5(3)

Figure 3: Here we study the centroids of the softened DN of In the left plot, we take
individual points in the input space, obtain a 128 sized sample of points within a 0.4 radius of this
point, and compute the effective dimension of the corresponding centroids. In the centre plot, we
took the input sample of and embedded — using t-SNE — their corresponding centroids
obtained at the second hidden layer. Points within the polygon are coloured grey, whilst the other
points are coloured depending on what sector of the input space they came from. In the right, we
visualise the influence of neurons from the third hidden layer on the centroids of points sampled in

the input space, as given by

4 EXPERIMENTS

We now use the CAH to interpret larger DNs, including the vision transformers DINOv2

2024) and DINOv3 (Siméoni et al., [2025), GPT2 (Radford et al.,[2019) and Llama-3.1-8B
(Grattafiori et al.| 2024). In[Appendix 1] we detail the differences in computational resources required

to perform these experiments under the CAH compared to under the LRH.

4.1 FEATURE EXTRACTION WITH SPARSE AUTOENCODERS

Here, we explore the features of sparse autoencoders trained on the latent activations and centroids
from DINO models (Oquab et al.| 2024} [Siméoni et al, [2025). Similar to [Hindupur et al.| (2025),
we extract the latent activations of Imagenette (Jeremy Howard}, 2025) from these models to train a
TopK sparse autoencoder (Gao et al.,[2025) — in[Appendix 1| we explore the robustness of the learned
dictionaries of these sparse autoencoders when applied to the full ImageNet dataset
2012). However, we additionally consider training a TopK sparse autoencoder on the centroids
extracted from the last multi-layer perceptron block of the models.

Generalising, Sparse and Functionally Relevant Features. First, we compare the feature dic-
tionaries extracted from a DINOv2 model (Oquab et al; [2024) in the following ways{| Train linear
probes on the feature decompositions of the train set of Imagenette to classify its classes, and then
evaluate the accuracy of the probe on the feature decompositions of the test set of Imagenette. Record
the frequency at which the features of the sparse autoencoder fire on the test set of Imagenette. Record
the activation pattern similarity ratios of an input sample.

The activation pattern similarity ratio is computed as follows: We sample an input point and record
the Jaccard similarity between its feature decomposition and the feature decomposition of the other
points in the train set. We then compute the Jaccard similarity of its binarised latent activation in the
DINOvV2 model to the other points in the train set. The activation pattern similarity ratios are then
these latter quantities divided by the former pairwise.

In [Figure 4} we observe that the feature dictionaries from the centroid sparse autoencoders yield
linear probes with higher accuracy and a more uniform firing distribution on the test set of Imagenette.
Moreover, the activation pattern similarity ratios are generally larger, which means similar feature
decompositions correspond to similar activation patterns in the DINOv2 model.

>We additionally provide a more qualitative analysis in
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Figure 4: For the left and centre plots, we train sparse autoencoders on the latent activations and
centroids extracted from all the tokens of the DINOv2 feature extractor applied to the Imagenette
train dataset. An expansion factor of 10 is used with sparsity values in the range {8, 16, 32,64}. In
the left plot, we measure the accuracy of the linear probes, and in the centre plot, we measure the
firing distribution of the 32-K sparse autoencoder. For the linear probes we consider five random
initialisations and we report a baseline accuracy obtained by applying PCA reduction to the latent
activations and centroids directly, rather than applying a sparse autoencoder. In the right plot,
we train a 32-K TopK sparse autoencoder with an expansion factor of 10 on the latent activations
and centroids extracted from the class token of the DINOv2 feature extractor. We then record the
activation similarity ratios for an input sample.

Persistent Features. Next, we compare the feature dictionaries of the sparse autoencoders when
applied to the DINOv2 model and the DINOv3 (Siméoni et al.l 2025) model. Intuitively, we would
expect DINOV3 to refine the features learned by DINOv2. Consequently, the cosine similarities of
feature dictionaries of the corresponding sparse autoencoders should have a large mass concentrated
around one with a long tail toward lower values
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Figure 5: In the left plot, we record the pairwise cosine similarities between the dictionary features of
centroid and latent activation TopK sparse autoencoders obtained from DINOv2 and DINOv3.In the
right plot, we prompt GPT2-Large and note the normalised attribution value (using in
a neighbourhood of the embedding at the input of the multi-layer perceptron block at the thirty-first
layer of the last token of this prompt. The neighbourhood is constructed by sampling 256 points
within a radius of 0.25 of the embedding. We normalise these values to be between zero and one. In
black we indicate the 892" neuron in the multi-layer perceptron.

Indeed, this is precisely what we observe for the sparse autoencoders trained with centroids, see
Whereas the sparse autoencoders trained with latents have a bimodal distribution, where
some features have a high cosine similarity and others have a cosine similarity of around 0.4. This
bimodal distribution is concerning as it suggests the identified features do not correlate between the
models, and are instead just spurious artefacts.

5We may additionally observe lots of features with low cosine similarity, since the learned dictionaries have
inactive features.
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4.2 CIRCUIT DISCOVERY

In [Clement & Joseph| (2023), it was observed that GPT2-Large has a neuron in the multi-layer
perceptron component of the thirty-first layer, which is responsible for predicting the “an” token.
This was determined by observing the effects of latents on the model. It was concluded that this
neuron works in concert with other neurons within the multi-layer perceptron block to capture the
corresponding feature. We support this by computing neuron attribution values with [Equation (T)|
using a neighbourhood of the last token embeddings at the input of the thirty-first layer on the prompt
“I climbed up the pear tree and picked a pear. I climbed up the apple tree and picked”. In
the distribution of neuron attribution values is heavily skewed, with the neuron identified by |Clement
& Joseph|(2023), marked in black, sitting within the top 99.8th percentile of values. In
we use this example to explore the robustness of as an attribution metric.

BN latents EEE Centroids

4.3 PROBING

Probing is another technique that exploits lin-
ear structures in DNs to either extract fea-
tures (Kim et al.| 2018)), extract representations
(Nanda et al., [2023)), or classify inputs (Marks
& Tegmarkl 2024). Here, we explore the latter
of these applications by forming linear classi-
fiers to discern the truthfulness of input state-
ments to large language models. More specifi-
cally, we adopt the mass-mean probes of Marks
& Tegmark| (2024) along with their dataset to
test the generalisation capacities of probes. Us-  Figure 6: We obtain mass-mean probes on the
ing the 1ikely dataset, we obtain mass-mean 1ikely dataset from the twelfth layer of Llama-
probes from the twelfth layer of the Llama- 3 1-8B, either using latent activations or centroids
3.1-8B large language model (Grattafiori et al., extracted from the multi-layer perceptron compo-
2024), either using the latent activations or the nent. We then test these probes using a collection

centroids extracted from the multi-layer percep-  of other datasets from [Marks & Tegmark| (2024)).
tron component. The 1ikely dataset is formed

as a classification problem on whether sample tokens are likely or unlikely under the model’s logit
distribution from non-factual textual inputs. The other datasets are formed as a classification problem
between factually truthful or untruthful statements. Therefore, 1ikely is identifying plausibility in
the model’s outputs rather than a concept of truthfulness. Consequently, by virtue of the fact that
centroid-based mass-mean probes generalise more effectively to the truth-identifying datasets (see
[Figure 6)), it follows that centroids capture the action of outputting a truthful statement rather than the
concept of a truthful statement.

Accuracy

5 DISCUSSION

In this work, we have attempted to address the limitation of the LRH of not being aware of the
components of the DN. To do so, we appealed to the spline theory of deep learning to explore how the
components of the DN affect its functional geometry, where the functional geometry of a DN refers
to the arrangement of the linear regions of its continuous piecewise affine approximation. From this
perspective, we proposed the centroid affinity hypothesis (CAH), which posits that the functionally
relevant features of a DN are represented as affine structures in the DN’s centroids.

Under the CAH we can continue to leverage interpretability techniques derived under the LRH.
Indeed, we applied sparse autoencoders to centroids to extract sparser feature dictionaries from vision
transformers that are robust and perform strongly on downstream tasks. Furthermore, we showed that
centroids identify features relevant to the behaviour of DNs by obtaining probes from the centroids
of Llama-3.1-8B that generalise better than probes obtained from latent activations. The CAH also
introduces novel interpretability tools, which we use to perform circuit discovery on GPT2.

In summary, the CAH provides a complementary perspective to the LRH for identifying DN features
in a manner that is less susceptible to spurious or over-fitted features. A limitation of CAH currently
is that it cannot be directly utilised for feature steering, unlike the LRH.
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A MOTIVATING EXAMPLE

In we utilised a simple example to demonstrate how the CAH can be used to identify
features in practice. In|Figure 7| we use this example to indicate how the nonlinearities of a DN form
its geometry.

Input Polygon Deep Network Functional Geometry

Figure 7: A DN has a functional geometry formed by its nonlinearities. Each nonlinearity identifies a
boundary within the input space of the DN. These boundaries start off as hyperplanes in the input
space of the nonlinearity. They are then projected back to the input space of the DN by intersecting
with the hyperplanes of the nonlinearities of the previous layer. These then bound the linear regions
which constitute the functional geometry of the DN. Consequently, the blue nonlinearities appear
as hyperplanes in the input space, the level-sets of the green nonlinearities only bend when they
intersect with the level-sets of the blue nonlinearities, etc. On the left, we visualise the underlying
data distribution that the DN is being trained on. In the centre, we visualise a simplified schematic of
the architecture of the DN. In this schematic, we highlight the nonlinearities in the first, second and
third hidden layers of the DN; each of which constructs a hyperplane within the input space of the
DN, which we identify in the right plot. The right plot depicts the functional geometry of the DN
(using SplineCam (Humayun et al.,[2023))), having trained on the polygon of the left plot.

B COMPARISON TO PRIOR WORK

Features. is analogous to the notion of a DN concept used in [Park et al.| (2024),
which provides a rigorous theoretical characterisation of the LRH. In particular, in |[Park et al.|(2024),
a DN concept is a variable that leads to a particular output when caused by a context. In
the context would correspond to the regions of the input space that poses a given feature. The variable
notion of [Park et al (2024) would then be equivalent to the extraction requirement of
since the assumed distribution on the input space would define a distribution over these regions.
Similarly, the referenced causation on the output would be equivalent to the utilisation requirement

of [Definition 2.2)

Circuits. Circuits were initially introduced in |Olah et al.| (2020) to deal with the apparent poly-
semantic nature of neurons. That is, specific neurons were observed to trigger on seemingly semanti-
cally disjoint inputs, whereas ensembles of neurons demonstrated more reliable activation patterns.
Instead, our notion of a circuit arises naturally as the responses of the components of a DN to a
feature. In particular, this response is likely to incorporate multiple neurons or components of a DN
due to the DN’s compositional construction.

C FORMAL THEORY

Definition C.1. A feature of the /! layer of a DN is a collection of regions constructed by hyperplanes
whose normals have a pair-wise cosine similarity bounded below by 1 — €, and whose closest points
to the origin have a pair-wise Euclidean distance bounded above by 4.
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Proposition C.2. The functionally relevant features in the input space of the ™ layer of a DN

. ; (-1 . .
sub-component are represented by centroids that form an affine subspace in R? with deviations
proportional to approximately +/2e.

Proof. Let the corresponding centroids and radii of the ¢ of the DN be { (MS/ ), T,SZ)) } - R4 x

R. Then suppose II and IT are hyperplanes forming the feature. Each hyperplane, say II, corresponds
to a boundary of two regions, such that

2 2
1 o o o =t = o o 47}
S L

for some constant c. Thus, II has normal vector n; := ,ugz) — ,ugz). Similarly, we can assume I is

such that it has normal ny := u( ) ,ugé). By assumption, we have that
e o
[ {], [zl

Thus, by using small angle approximations, the angle between the normal vectors € is approximately
less than +/2e¢. In particular, ns can be decomposed into components parallel and orthogonal to n; as

1y = [|na [ cos(6)y + |[nzl|, sin(6)a,

where n; is the unit vector of n; and 1 is normal to it. Consequently, we can write

) = pd? ) +0-d
f —Inyf,d
s = ué — [z, cos(6)d — |[nal|, sin(6),

where d = fi;. Therefore, since sin(f) is of order v/2¢. Repeating this for each tuple of three regions,
we conclude that all the centroids forming a feature lie in the same affine subspace. Thus, the proof is
complete. O

Theorem C.3. The features of a DN sub-component are represented by centroids that form approxi-
mate affine subspaces.

Proof. Suppose that the feature corresponds to a (e, §)-feature of the /" layer. Then by Proposition
the centroids at the /" form an approximate affine subspace. Thus, for sufficiently small J, the
DN sub-component corresponds to an affine transformer, meaning the corresponding centroids within
the input space of the DN sub-component also form an approximate affine subspace. O

D RE-EVALUATING INTERPRETABILITY TOOLS

An advantage of the CAH over other frameworks for identifying functionally relevant features is
that interpretability tools derived under the LRH can be utilised. For example, sparse autoencoders
(Trenton Bricken et al., |2023; [Huben et al., [2024) for constructing dictionaries of features and
transcoders (Dunefsky et al., 2024)) for circuit extraction.

Here, we demonstrate that sparse autoencoders applied to latent activations of the DN of
are insufficient for identifying the interior of the polygon as a feature, and spuriously assign multiple
directions to the exterior of the polygon. However, sparse autoencoders applied to centroids only
identify the two directions corresponding to the interior and exterior of the polygon as features.
Likewise, transcoders are insufficient at reconstructing the functionally relevant features of the DN.
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Sparse Autoencoders. Sparse autoencoders are a method for extracting an over-complete basis for a
set of vectors (Trenton Bricken et al.,[2023;|Huben et al.,|2024), with the aim of identifying meaningful
directions. A sparse autoencoder has an architecture of the form g(z) = Wyeco (Wenez + benc ), with

W, € REXE b RI™ Wy, € REX™ where d*! is the dimension of the set of vectors
and d™ is the size of the over-complete basis which is to be constructed. In the context of a DN, a
sparse autoencoder is trained to reconstruct its latent activations with an added sparsity regularisation
term. The idea is that the rows of W, would then constitute a dictionary of features, with the term
0 (WencZ + bene) giving the decomposition of the activation z in terms of these features.

Under the CAH, it is not necessarily the case that the latent activations of features correspond to
linear directions. This means that sparse autoencoders may not extract every feature, and may
extract spurious features instead. For example, in the sparse autoencoder trained on latent
activations identifies directions that are not functionally relevant (see [Figure 2)). Another problem
with this approach is the neglect of any functional information.

These problems can be mitigated by applying sparse autoencoders to reconstruct centroids rather than
latent activations. In we see that sparse autoencoders trained on centroids only recover the
affine structures of the centroids that correspond to the features of the DN.

Transcoders. Transcoders have a similar architecture to sparse autoencoders, except they are trained
to reconstruct the input-output mapping of a DN sub-component rather than its activations (Dunefsky:
et al.,[2024)). Although this approach is more faithful to the function of the DN sub-component, it
is inherently limited since the transcoder only has one hidden layer and so its functional geometry
is not very expressive. In Figure [Figure 8] we see that the transcoder’s functional geometry is not
faithful to that of the DN sub-component, meaning it has not captured its underlying features.

Activation Features Centroid Features Transcoder

Figure 8: Sparse autoencoders identify the meaningful affine structures present in DN centroids, and
are susceptible to identifying linear structures in latent activations that have no functional relevance
to the DN. Transcoders are limited in their capacity to reconstruct the features of a DN. In the left and
centre plots, we train a sparse autoencoder to reconstruct the latent activations and softened centroids
of the input sample from [Figure 10]at the last hidden layer of the DN, respectively. The projections
of these latent activations and centroids can be observed in :Flgure 2[ In the right plot, we train a
transcoder with twice as many features as neurons in the hidden layer of the DN whose functional

geometry is visualised in the left plot of

E EMERGENCE OF CENTROID STRUCTURE

The centroid affinity of emerges gradually through training. At initialisation, the centroids
have a similar arrangement to the input samples, due to the random initialisation of the DN. However,
as training progresses, we observe that the centroids slowly migrate and align themselves. In particular,
we can see the alignment of the centroids manifest before they arrive at their ultimate position.
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Figure 9: Throughout the training of the DN of we tracked the DN centroids of the input
samples highlighted in

F SOFTENING DEEP NETWORKS

We developed the CAH by studying the level-sets of nonlinearities, which is a property of CPA DNs
(i.e., those implementing CPA nonlinearities, like ReLU). We argued that this was valid since any
DN can be approximated to arbitrary precision by CPA DNs. However, for these DN, the centroids
are discrete objects since they exist uniquely for each linear region, which may present a challenge
since [Theorem 3.3|is a necessarily continuous utilisation of centroids. Therefore, here we consider
the effect of using smooth nonlinearities on the CAH.

Firstly, to allow for better analyses of CPA DNs, we will explore the effect of relaxing their non-
linearities to smooth nonlinearities. For example, for the DN of[Section 3} we consider softening it
by replacing the ReLU nonlinearities with GELU nonlinearities (Hendrycks & Gimpell,[2023)). The
GELU nonlinearity belongs to the swish family of nonlinearities (Ramachandran et al.,[2017), which
are theoretically known to provide an appropriate softening of a ReLU DN’s functional geometry
(Balestriero & Baraniukl, [2018b). In[Figure 10} we see that by softening the DN, we maintain and add
more detail to the structure of the centroids.

4

'.’-"P:.:: .-. : 1-. ":f;.—o”. y .
NN S
g

Input Sample ReLU Centroids GELU Centroids

Figure 10: Softening a DN with ReL.U nonlinearities by replacing them with GELU nonlinearities
provides more detail to the structure of the centroids without affecting their overall structure. Here
we sample a grid of points in the input space of the polygon-classifying DN of left plot, and
compute their corresponding centroids when the ReLLU nonlinearity is maintained, centre plot, and
when the ReLU nonlinearity is replaced by the GELU nonlinearity, right plot.

Secondly, we determine whether our investigations of hold for DN trained from scratch
using continuous nonlinearities. That is, for a DN with GELU nonlinearities, we perform the exact
same training procedure for the DN considered in [Section 3] and then analyse the resulting centroids.

we observe similar features as those identified for the ReLU DN considered in

Appendix Df when replacing the nonlinearity back to a ReLU we can observe its functional geometry
using SplineCam (Humayun et al.|[2023) and we see the alignment of the nonlinearities around the
polygon, when we observe the centroids of the input samples from [Figure 10| we see the same affine
structures that arose in the ReLU DN, computing centroid affinity for points in the input space again
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identifies the edges of the polygon as a feature, the influence of pruning neurons on the centroids is
still effective as a neuron attribution metric.

IR A
“
< ™

Functional Geometry Centroids Centroid Affinity s s

i,3)

Figure 11: Here we train a DN in the same manner as the one considered in and 2] except
we use the GELU nonlinearity. In the far left plot, we replace the nonlinearities with ReLLU such that
we can use SplineCam to visualise its functional geometry. In the left plot, we visualise the centroids
from the input samples of In the centre plot, we compute the centroid affinity of points in
the input space based on a sample of radius 0.4. In the right and far right plots, we consider the
sensitivities of centroids when pruning neurons from the second and third layers, respectively.

G OTHER POLYGONS

In addition to the star-shaped polygon considered in the main text, in we corroborate the
observed patterns when the input distribution is a bowtie-shaped and reuleaux-shaped polygon.

H MNIST CENTROID STRUCTURE

Thus far, we have seen theoretically and in a simple example how the centroids of a DN have a
semantically coherent structure. Here, we demonstrate how this can be used to explore the feature
boundaries of a DN trained on the MNIST classification task (Lecun et al.,[1998)). For this, we train
a DN with a convolutional feature extractor followed by a linear layer on MNIST. After training,
we sample two inputs from distinct classes and compute centroid affinity values — at the feature
extractor component of the DN — along the linear interpolation between the samples. We observe in
[Figure T3|that there is a greater relative drop in centroid affinity between more distinct classes. More
specifically, the 3 and 6 classes are intuitively more distinct than the 4 and 9 classes; consequently,
centroid affinity is lower along the interpolation between the 3 and 6 inputs since the features are
more distinct. Whereas, if we similarly consider the effective dimensions of the latent activations, we
do not observe any contextual change.

I IMAGENET FEATURE STRUCTURE

In addition to the Imagenette dataset considered in[Figure 4] we also consider TopK sparse autoen-
coders trained on ImageNet (Krizhevsky et al) 2012). More specifically, we train TopK sparse
autoencoders on the class token extracted from the DINOv2 feature extractor, with the intention
of understanding how robust the CAH framework is to hyperparameters. We train such sparse
autoencoders across multiple random initialisations, with varying sparsity parameters and expansion
factors. We compare the resulting feature dictionaries using the Centred Kernel Alignment metric

(Kornblith et al} 2019).

From[Figure T4 we observe that the dictionaries obtained from centroids are more similar across
random initialisations. In particular, this holds consistently as the sparsity parameter and expansion
factors are varied.

J  QUALITATIVE ANALYSIS OF FEATURES

In we demonstrated quantitatively that the features extracted from a sparse autoencoder
trained to reconstruct centroids were semantically- and functionally-relevant to the input distribution
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Figure 12: Here we perform some of the same analyses as conducted previously, but with a DN
trained on a bowtie-shape polygon, top two rows, and a reuleaux-shaped polygon, bottom two rows.

and feature extractor. Here, we qualitatively support this and compare them to the features extracted
by the sparse autoencoder trained to reconstruct latent activations. To do so, we randomly sample
a point from the input distribution and identify the other inputs from the distribution with similar
feature decompositions — as measured by Jaccard similarity.
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Figure 13: We train a DN on the MNIST classification. In the right plot, we consider the CA of
centroids at the feature extractor component of the DN — which constitutes three convolutional layers.
In the left plot, we similarly consider the effective dimensions of the latent activations. For two
training points of distinct classes, we compute the CA of samples along their linear interpolation. We
visualise these affinities for samples from class pairs (3,6) and (4,9).

- 0.985
——&— centroids —&— centroids
0.99 A —$- latents —%— latents
0.980 A
0.98 0.975 1
O 0s7 ] Y 0.970 1
0.965 A
0.96
0.960
8 16 32 64 6 8 10 12 14
TopK Expansion Factor

Figure 14: The dictionaries learned by sparse autoencoders trained on centroids are more similar, as
formalised by the CKA metric, across random initialisations as compared to the dictionaries of sparse
autoencoders trained on latent activations. Here we train sparse autoencoders on the class token of
the DINOv2 extractor when applied to ImageNet. We repeat this over five random initialisations, and
then we compare the dictionaries of these sparse autoencoders using the CKA metric. Reported are
the mean values along with one standard deviation. In the left plot we consider how these values
change as the sparsity parameter of the sparse autoencoder is changed. In the right plot we consider
how these values change as the expansion factor of the sparse autoencoder is changed.

In we see that the sparse autoencoder trained to reconstruct centroids identifies similar
features to those of the sparse autoencoder trained to reconstruct latent activations. This further
supports that the centroids of a DN have a coherent structure that can be used to identify the features
of the DN.

K ROBUSTNESS OF NEURON ATTRIBUTION WITH CENTROIDS

In order for[Equation (1)|to prove useful as a tool for interpreting DN, it is essential that it is robust
in its application. For example, [Equation (T)]ought not be sensitive to the neighbourhood A/ chosen.
Furthermore, since in practice we can only approximate [Equation (1)]by taking a finite sample of
points from N/, it is important that [Equation (T)] has low variance in relation to this finite sample.

In we test both these properties for the experiment of In the left plot, we
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Centroid Golf-ball Feature Latent Golf-ball Feature

Figure 15: For a sampled input, we compute its feature decomposition using the sparse autoencoders
of and then identify the other inputs whose feature decompositions are most similar to this
using Jaccard similarity. More specifically, in the left column, we consider the sparse autoencoder of
igure 4c|trained using centroids, and in the right column, we consider the sparse autoencoder of
1gure 4c|trained using latent activations. The central image of each plot represents the initial point
that is sampled from the input distribution, and the surrounding images are the identified inputs with
similar feature decompositions. Each row considers a specific input.

observe that attribution values have a low variance when a finite sample is used to approximate the
neighbourhood . In the right plot we observe that the percentile of a particular neuron within the
layer of the DN is stable across different neighbourhood sizes. This ensures that conclusions derived

from are robust.

L COMPUTATIONAL REQUIREMENTS.

A valid concern with exploring the CAH is the computational burden it introduces into the process of
interpretability, since it requires interrogating the Jacobians of a DN. Fortunately, this interrogation

only requires considering Jacobian vector products (see [Proposition 2.1), which are significantly
cheaper to compute in common computational frameworks. Furthermore, often the analysis of
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Figure 16: The neuron attribution metric of [Equation (1)|is a robust measure for interpreting the
neurons of a DN. Here we consider the robustness of [Equation ()| for the experiment in
More specifically, we test how the attribution values of the neurons changes as we consider increas-
ingly large neighbourhoods. The neighbourhoods we consider are of the form B, (x), where x is the
embedding of the last token of a prompt at the 31%' of GPT2-Large. We consider € normalized by the
norm of the centroid of x at this layer of the DN. To compute at each neuron of the layer,
we sample 256 embeddings from this neighbourhood. In the left plot we observe how the average
attribution value of each neuron changes across random samplings of this neighbourhood. In the right
plot we observe how the percentile value of the 892" changes across these random samplings. The
error bars represent one standard deviation in the observed values.

centroids is concentrated on a relatively small component of the DN. Thus, this computation would
appear relatively insignificant compared to processing the entire DN. In this section, we empirically
quantify the computational burden incurred by considering centroids rather than latents in our main

experiments of

DINO Feature Extraction. For this experiment, we compare the difference in computational time
to extract the latent activations and centroids from the feature model. After these vectors are extracted,
the computational pipeline is identical when using centroids or latent activations. We summarise the
results in where we see that extracting centroids only increases the computation time by
around 10%. Especially since this extraction phase only amounts to a small proportion of the entire
experiment, this difference is almost negligible.

GPT2 Circuit Discovery. Although there is no direct analogue of this experiment with latent
activations, we can still argue that the computational burden is relatively benign. In particular,
since we only compute centroids across the multi-layer perceptron block of the thirty-first layer, we
only need to consider the Jacobian vector product for this component. This can be done by storing
gradients of a forward pass across this block, which, in relation to performing a forward pass across
the model, is insignificant.

Llama-3.1-8B Probes. As in the DINO feature extraction experiments, the only difference in
computation times is in extracting the centroids from the model. shows that this difference is
relatively larger for centroids. However, in the grand scheme of saving the activations and loading the
model, this difference is still relatively minor.

MNIST Centroid Structure. For this experiment, we compare the time necessary to perform the
experiment with centroids or latent activations. More specifically, instead of considering the effective
dimensions of the centroids of neighbourhoods of points, we compute the effective dimensions of the
latent activations of neighbourhoods of points. We summarise the results in where we see
that using centroids instead of latent activations requires 14% more computation time.

21



Under review as a conference paper at ICLR 2026

Table 1: Here, we compare the computation times (in seconds) for using the centroids of a DN to

perform interpretability to using latent activations.

Experiment With Centroids ~ With Latent Activations

DINO Feature Extraction (Figure 4) 8.7 7.8
Llama-3.1-8B Probes (Figure 6) 2329 470
MNIST Centroid Structure (Figure 13)) 881 771
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