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Abstract

The one-hot representation, argmax operator, and its differentiable relaxation, soft-
max, are ubiquitous in machine learning. These building blocks lie at the heart
of everything from the cross-entropy loss and attention mechanism to differen-
tiable sampling. However, their k-hot counterparts are not as universal. In this
paper, we consolidate the literature on differentiable top-k, showing how the k-
capped simplex connects relaxed top-k operators and πps sampling to form an
intuitive generalization of one-hot sampling. In addition, we propose sigmoid
top-k, a scalable relaxation of the top-k operator that is fully differentiable and
defined for continuous k. We validate our approach empirically and demonstrate
its computational efficiency.

1 Introduction

A cornerstone of machine learning is the one-hot vector. In this work, we consider the more general
set of k-hot vectors, where k “hot” indices are allowed instead of just one,

{0, 1}n1 := {x ∈ {0, 1}n |
∑n

i=1 xi = 1} k-hot−−−→ {0, 1}nk := {x ∈ {0, 1}n |
∑n

i=1 xi = k}.
A fundamental operator related to one-hot vectors is the one-hot argmax, which outputs the one-hot
vector corresponding to the index of the input vector’s largest value1. The k-hot counterpart to argmax
is the top-k operator,

argmax : Rn → {0, 1}n1
k-hot−−−→ top-k : Rn → {0, 1}nk .

Unfortunately, these operators are non-differentiable. In the one-hot case, softmax is an established
differentiable relaxation of argmax. Softmax is widely used in classification networks, attention
mechanisms, reinforcement learning, and probabilistic models to parameterize categorical distribu-
tions. In this work, we cope with the non-differentiability of top-k by proposing an efficient and fully
differentiable relaxation. Then, we turn to the stochastic case, and combine the relaxation with πps
sampling (Tillé, 2006) for differentiable k-hot sampling.

2 Method

Generalized softmax. The codomain of softmax is the simplex. This set can be generalized to the
k-hot case as the k-cappped simplex (Wang and Lu, 2015; Ang et al., 2021),

∆n−1 := {π ∈ [0, 1]n |
∑n

i=1 πi = 1} k-hot−−−→ ∆n−1
k := {π ∈ [0, 1]n |

∑n
i=1 πi = k}.

Figure 1 shows the set in three dimensions for different values of k. We want a k-hot counterpart to
softmax with the k-capped simplex as its codomain,

1This argmax should not be confused with the argmax operator in optimization.
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softmax : Rn → ∆n−1 k-hot−−−→ σk : Rn → ∆n−1
k .

We propose the sigmoid top-k function as a differentiable relaxation of the top-k operator. For
x ∈ Rn and k ∈ (0, n) we define:

σk (x) := σ(x+ c1), where c ∈ R solves
∑n

i=1 σ(xi + c) = k.

We prove the existence and uniqueness of c in §A. The root is found numerically by scalar root-finding
(Kong et al., 2020). The time complexity is O(n) per root-finding iteration, of which only a handful
are typically required. Empirically, the number of root-finding iterations does not appear to grow with
n. Intuitively, c is a scalar regardless of n. The number of iterations is also independent of k, which
simply shifts the location of the root. This means σk can be computed efficiently in high dimensions,
see Figure 3. The sum-constraint implicitly defines c as a function of x and k, i.e., c(x, k). Using the
chain rule and implicit differentiation, we get:

dσk (x)

dx
=

∂σk (x)

∂x
+

∂σk (x)

∂c

∂c

∂x
= diag(σ′(x+ c))− σ′(x+ c)σ′(x+ c)⊤∑n

i=1 σ
′(xi + c)

,

dσk (x)

dk
=

∂σk (x)

∂c

∂c

∂k
=

σ′(x+ c)∑n
i=1 σ

′(xi + c)
,

where σ′(x) = σ(x)(1 − σ(x)). See §A for the derivation. By using implicit differentiation to
find derivatives of c, we avoid unrolling the steps of the root-finding algorithm and differentiating
through them. This uses less memory and computation than unrolling (Blondel et al., 2022). Note that
sigmoid top-k is also differentiable with respect to k, which can optionally be treated as learnable.

Proposition 1. Let x ∈ Rn, k ∈ (0, n), and τ ∈ R+, then the following properties hold:

a) Order-preservation. σk(x)i > σk(x)j if and only if xi > xj , for all i ̸= j.

b) Shift-invariance. σk(x+ α) = σk(x), for all α ∈ R.

c) Invertible up to an additive constant. σ−1(σk(x)) = x+ c.

d) Infinite temperature limit. limτ→∞ σk

(
x
τ

)
i
= k

n .

e) Zero temperature limit. limτ→0 σk

(
x
τ

)
= top-k(x) for distinct xi and k ∈ N.

Proof. The proposition follows by definition, see §A.

We list some important properties of sigmoid top-k in Proposition 1. All of the properties are
shared with softmax, or have softmax counterparts. Figure 2 shows a concrete example of tempering
sigmoid top-k. The temperature plays an important role in relaxed sampling, controlling the bias–
variance trade-off (Maddison et al., 2017; Jang et al., 2017). It can be fixed, annealed, or learned.
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Figure 1: The k-capped simplex.
The set of points in the k-capped
simplex ∆n−1

k is the intersection of
the unit hypercube and a hyperplane,
shown here in n = 3 dimensions for
different values of k.

Proposition 2. Let H(p) = −p log p− (1− p) log(1− p) be the
binary entropy function and x ∈ Rn. Sigmoid top-k solves the
optimization problem:

σk (x) = argmax
π∈∆n−1

k

x⊤π +

n∑
i=1

H(πi)

Proof. The proposition is derived from the Lagrangian, see §A.

The optimization problem in Proposition 2 is an instance of a
regularized prediction function (Blondel et al., 2019). Intuitively,
the optimization problem maximizes the similarity between the
input x and output probabilities π as measured by the inner
product. The projection is regularized by the elementwise binary
entropy, which is maximized at the center of ∆n−1

k for any k.
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Algorithm 1 Sample k-hot

Require: θ ∈ Rn, k ∈ N, 1 < k < n
1: π ← σk(θ)
2: Sample x ∈ {0, 1}nk such that p(xi) = πi

3: return x

Algorithm 2 Sample relaxed k-hot

Require: θ ∈ Rn, k ∈ N, 1 < k < n
1: Sample gi ∼ Gumbel(0, 1) for i = 1, . . . , n
2: x← σk(θ + g)
3: return x
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Figure 2: Temperature scaling. Just like the standard sigmoid and softmax functions, sigmoid top-k can be
tempered by dividing its input by a temperature τ ∈ R+. Its output approaches uniform (πi =

k
n

) as τ → ∞,
and its output approaches top-k as τ → 0.

Generalized categorical. The categorical distribution draws samples x ∈ {0, 1}n1 with parameters
π ∈ ∆n−1. These parameters define the inclusion probabilities,

p(xi) =
∑

x∈{0,1}n
1
p(x)1xi=1.

In other words, p(xi) = πi is the marginal probability that xi equals one. We want to generalize this
to the k-hot case. A natural choice is πps sampling (Tillé, 2006), which draws samples x ∈ {0, 1}nk
with parameters π ∈ ∆n−1

k .

Categorical
k-hot−−−→ πps sampling

However, there are many possible sampling designs that define different distributions given the same
parameters. Furthermore, the same sampling design can be implemented using different algorithms,
or sampling procedures. Importantly, some designs, like the one implemented by the Gumbel top-k
procedure (Kool et al., 2020), do not produce exact inclusion probabilities p(xi) = πi (Tillé, 2023).
We propose using designs parameterized, at least approximately, by their inclusion probabilities. See
§B for more details.

Gradient estimation. Straight-through estimation (Bengio et al., 2013) replaces the sample x by
its parameters π in the backward pass. Intuitively, this works because E[x] = π if p(xi) = πi. In
fact, the expected gradient is a first-order approximation for categorical samples (Liu et al., 2023).
By using πps sampling such that p(xi) = πi, we extend this proof to the k-hot case in Proposition 3.

Proposition 3. Let π ∈ ∆n−1
k be inclusion probabilities and x ∈ {0, 1}nk be samples drawn such

that p(xi) = πi. Then, the expected gradient of the straight-through estimator is a first-order
approximation of the true gradient.

Proof. The proposition is shown by extending the proof in Liu et al. (2023), see §C.

For score function estimators, we need to use a πps sampling design with a tractable score function.
Clearly, this is possible if we can compute p(x) and differentiate, as was done in Wijk et al. (2025).
Another approach is relaxed sampling. Xie and Ermon (2019) extended Gumbel–softmax (Maddison
et al., 2017; Jang et al., 2017) to the k-hot case. Here, the top-k relaxation used is critical. Using
sigmoid top-k, as shown in Algorithm 2, reduces the time complexity from O(nk) to O(n) and
improves experimental results.

3 Related work

Relaxed top-k. The relaxation in Xie and Ermon (2019) is based on applying softmax sequentially
k times. This is O(nk) and does not guarantee an output in ∆n−1

k . In Pervez et al. (2023), the
sigmoid output is rescaled directly. This relaxation is not shift-invariant, and non-differentiable
along the boundary of its piecewise definition. Multiple works on top-k relaxations are posed as
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Figure 3: Runtime. Left: Relaxed top-k wall-clock time comparison between sigmoid top-k and SOFT
top-k. The experimental setup is the same as for the root-finding benchmark in §A. Right: Differentiable
k-hot sampling wall-clock time comparison between Algorithm 1 and SIMPLE. SIMPLE is using warmed-up
torch.compile and loading precomputed values from disk. Both comparisons use the official implementations
and measure both forward and backward times.

optimization problems (Xie et al., 2020; Sander et al., 2023). Compared to these, the root-finding
problem in sigmoid top-k can be solved more efficiently Figure 3.

Differentiable k-hot sampling. Xie and Ermon (2019) proposed the top-k generalization of
Gumbel–softmax in Algorithm 2. As discussed earlier in this section, sigmoid top-k improves on the
top-k relaxation used in the original work. NCPSS (Pervez et al., 2023), on the other hand, is similar
to Algorithm 1 with straight-through estimation. As mentioned in the previous section, the rescaled
sigmoid is a top-k relaxation (although it is not presented as such), and iterative Poisson sampling2 is
an approximate approach to πps sampling that does not produce exactly k-hot samples. Our proposed
sigmoid top-k and exact sampling address improve these two components, respectively. SIMPLE
(Ahmed et al., 2023), in effect, computes the inclusion probabilities from their recursive definition3

and uses them as the gradient estimates. In other words, straight-through estimation. We find that
computing the inclusion probabilities using dynamic programming is less efficient than sampling
according to Algorithm 1 with straight-through estimation, see Figure 3. SFESS (Wijk et al., 2025),
like SIMPLE, considers conditional Poisson sampling and computes a score function estimator.

4 Experiments

We validate our approach to differentiable k-hot sampling in two settings: feature selection (Huijben
et al., 2019) and sparse representation learning (Kingma and Welling, 2014). We report results for
the MNIST and Fashion-MNIST datasets (LeCun et al., 1998; Xiao et al., 2017). See §D for more
details and results. As expected, Algorithm 1 with straight-through gradients performs similarly
to SIMPLE (Ahmed et al., 2023), since they essentially compute the same gradient estimate, but
Algorithm 1 is able to scale to larger instances. Algorithm 2 significantly improves on the original
relaxed top-k sampling of Xie and Ermon (2019) by using sigmoid top-k, achieving both better
results and scalability. We also evaluate the wall-clock time of our proposed methods in Figure 3 and
different root-finding methods for sigmoid top-k in §A.

5 Conclusion

In this work, we proposed a framework for differentiable top-k by generalizing from one-hot to k-hot.
By broadening the perspective to both relaxations and sampling, we identify top-k relaxations and
πps sampling as key components of multiple algorithms. These components, along with a principled
straight-through estimator, pave the way for future work on improved estimators. Finally, we proposed
sigmoid top-k, an efficient and fully differentiable generalization of softmax that scales to larger
problems. In total, our work establishes a foundation for more powerful and scalable differentiable
top-k.

2We note that the similar method of Grafström (2009) iterates until the sample is exactly k-hot instead.
3This was proposed earlier in the sampling literature, see Chen et al. (1994).
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A Sigmoid top-k

Proof of existence and uniqueness of c.

Proof. The existence of c ∈ R such that
n∑

i=1

σ(xi + c) = k, (1)

where x ∈ Rn and k ∈ (0, n) is easily seen using the intermediate value theorem. f(c) =∑n
i=1 σ(x+ c) is continuous, since it is a sum of continuous functions. As c→ −∞, f(c)→ 0, and

as c→∞, f(c)→ n. By the intermediate value theorem, there exists c such that f(c) = k, since
0 < k < n. The uniqueness of this solution follows from the fact that f(c) is strictly increasing,
which in turn follows from it being a sum of strictly increasing functions.

Derivation of derivatives. First, we use implicit differentiation to derive derivatives of c from the
sum-constraint.

n∑
i=1

σ(xi + c) = 0 (2)

We differentiate the sum-constraint with respect to xj :

∂

∂xj

∑n
i=1 σ(xi + c(x, k)) = 0 (3)∑n

i=1 σ
′(xi + c)

(
∂xi

∂xj
+ ∂c

∂xj

)
= 0. (4)

Here, ∂xi

∂xj
= 1 for i = j and 0 otherwise. The equation simplifies as

σ′(xj + c) + (
∑n

i=1 σ
′(xi + c))

∂c

∂xj
= 0 (5)

∂c

∂xj
= − σ′(xj + c)∑n

i=1 σ
′(xi + c)

(6)

We differentiate the sum-constraint with respect to k:

∂

∂k

∑n
i=1 σ(xi + c(x, k)) = 1 (7)

∂c

∂k

∑n
i=1 σ

′(xi + c) = 1 (8)

∂c

∂k
=

1∑n
i=1 σ

′(xi + c)
. (9)

Now, we move on to differentiating the function

σk(x) = σ(x+ c1). (10)

We differentiate with respect to xi. Using the chain rule:

dσk(x)i
dxj

= σ′(xi + c)

(
∂xi

∂xj
+

∂c

∂xj

)
. (11)

Again, ∂xi

∂xj
= 1 for i = j and 0 otherwise. We substitute our previously derived ∂c

∂xj
,

dσk(x)i
dxj

=


σ′(xi + c)− σ′(xi + c)

σ′(xi + c)∑n
l=1 σ

′(xl + c)
if i = j,

−σ′(xi + c)
σ′(xj + c)∑n
l=1 σ

′(xl + c)
if i ̸= j.

(12)

Or, using vector notation,

dσk(x)

dx
= diag(σ′(x+ c))− σ′(x+ c)σ′(x+ c)⊤∑n

i=1 σ
′(xi + c)

(13)

7



Finally, we differentiate with respect to k and substitute ∂c
∂k ,

dσk(x)

dk
= σ′(x+ c)

∂c

∂k
(14)

dσk(x)

dk
=

σ′(x+ c)∑n
i=1 σ

′(xi + c)
(15)

Proof of Proposition 1.

Proof. Properties a) to c) are easily seen:

a) Follows directly from σ(xi + c) being strictly increasing.

b) σk(x+ α) = σ(x+ α+ c) = σk(x).

c) σ−1(σk(x)) = σ−1(σ(x+ c)) = x+ c.

d) limτ→∞
xi

τ = 0 so the sum-constraint requires limτ→∞
xi+c
τ = σ−1(k/n).

Finally, for e) we know that

lim
τ→0

σ
(x
τ

)
=

{
1, x > 0

0, x < 0
(16)

Next, the sum-constraint
∑n

i=1 σ
(
xi+c
τ

)
= k, so limτ→0 σ

(
xi+c
τ

)
= 1 for exactly k indices.

Consider xi in sorted order

x1 > · · · > xk > xk+1 > · · · > xn,

Because the sigmoid function is increasing, the order is preserved for its outputs. It follows that all
limτ→0 σ

(
xi+c
τ

)
= 1 for i ≥ k and 0 otherwise.

σ

(
x1 + c

τ

)
> · · · > σ

(
xk + c

τ

)
︸ ︷︷ ︸

→1

> σ

(
xk+1 + c

τ

)
> · · · > σ

(
xn + c

τ

)
︸ ︷︷ ︸

→0

,

This is exactly top-k(x).

Proof of Proposition 2.

Proof. We consider the optimization problem

σk (x) = argmax
π∈∆n−1

k

xTπ +

n∑
i=1

H(πi) (17)

= argmin
π∈(0,1)n∑n
i=1 πi=k

n∑
i=1

log(1− πi) + πi log
πi

1− πi
− xiπi (18)

Here, we limited π to (0, 1)n for simplicity. First, we note that the feasible set is convex as it is the
intersection of two convex sets. For each i, the elementwise objective and its derivatives

fi(πi) = log(1− πi) + πi log
πi

1− πi
− xiπi (19)

f ′
i(πi) = log

πi

1− πi
− xi (20)

f ′′
i (πi) =

1

πi(1− πi)
(21)

f ′′
i (πi) > 0 over the feasible set, so fi(πi) is convex. The sum of convex functions is convex, so

the original objective’s derivative is convex. Since the feasible set and objective are convex, the
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optimization problem is convex. This implies that it has a unique solution. Next, we have the
Lagrangian for π ∈ (0, 1)n

L(π, c) =
n∑

i=1

(
log(1− πi) + πi log

πi

1− πi
− xiπi

)
+ c

(
n∑

i=1

πi − k

)
(22)

The elementwise stationarity condition ∂L
∂πi

= 0 is

σ−1(πi) = xi + c (23)
πi = σ(xi + c) (24)

which retrieves the scalar shift in sigmoid top-k. Finally, at the stationarity condition, the sum
constraint becomes

n∑
i=1

σ(xi + c)− k = 0, (25)

exactly the equation that defines c in sigmoid top-k. It has a unique solution, which we have already
proven in this appendix.

Root-finding. The root-finding problem can be solved using the bisection method, which guarantees
linear convergence. The root is bracketed by ±(maxi |xi|+ σ−1(1− ϵ)) for a small ϵ that saturates
the sigmoid. Finding an acceptable c can be impossible with single-precision floats, especially for
large n. We find that using double-precision just in the bisection resolves this issue at the cost of
slightly increased memory use and computational overhead. The resulting σ(x+ c) is cast back to
single-precision.

Faster convergence can be achieved using a hybrid method. Since the sigmoid is an autonomous
function, computing its derivatives is inexpensive. Newton’s method can be much faster than bisection
with quadratic convergence. However, Newton’s method can diverge. We can keep the bisection
method’s linear worst-case performance by combining it with Newton’s method. We found that
simply evaluating both steps and picking the one that reduces the error the most works well. Halley’s
method uses the second derivative to achieve cubic convergence. We note that the first derivative
is always positive, and the second is only zero if all xi are equal, in which case the root is trivial.
Higher-order Householder’s methods are possible, but we don’t see any improvement beyond Halley’s
method. Finally, Newton’s method benefits from a good starting guess. We pick a starting guess
based on two complementary heuristics. The logit-heuristic

c ≈ σ−1

(
k

n

)
− 1

n

n∑
i=1

xi,

is accruate when the xi are approximately equal to their mean. The quantile-heurisitc

c ≈ −x(n−k
n ),

where the subscript denotes the (n−k
n )-th quantile of x, is accraute when the xi are spread out.

Picking the one with the lowest error results in a robust starting guess. Figure 4 shows a comparison
of the root-finding approaches discussed above.

Comparison. Figure 5 shows a visual comparison of sigmoid top-k and some existing differentiable
relaxations of top-k for k = 1. The methods are: the rescaled sigmoid used in Pervez et al. (2023),
sparsemax (Martins and Astudillo, 2016), and SOFT top-k (Xie et al., 2020). Because k = 1, they
can also be compared against softmax.
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Figure 4: Root-finding benchmark. We solve a batch of 100 root-finding problems with n = 106 and tolerance
10−8. The instances are random with xi ∼ N (0, σ2) where σ is evenly spaced from 0.1 to 5 across the batches
and k ∼ U(1, n− 1) for each batch. The sigmoid function σ and standard deviation σ should not be confused.
The graph shows the maximum error across batches at each iteration.

Table 1: Grid search results. We evaluate different root-finding algorithms using the same experimental setup
as in Figure 4, except with n = 104. The table shows the mean and standard deviation of 100 repetitions with
different random batches, with the three fastest wall-clock times indicated on the right. Halley’s method and
choosing the best starting guess from both the logit and quantile heuristics gives both the fewest number of
iterations and the fastest wall-clock time.

Step Guess Iterations Time [ms]

Bisection – 43.0 ± 0.00 9.21 ± 1.58

Newton Zero 8.16 ± 0.44 5.62 ± 1.19
Quantile 7.27 ± 0.73 5.18 ± 2.54
Logit 7.34 ± 0.86 4.55 ± 1.04
Both 5.34 ± 0.47 3.90 ± 0.84 3rd

Halley Zero 5.82 ± 0.41 5.52 ± 1.63
Quantile 4.50 ± 0.56 4.29 ± 0.98
Logit 4.32 ± 0.53 3.66 ± 0.87 2nd
Both 3.15 ± 0.36 3.25 ± 0.79 1st
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Figure 5: Differentiable projections onto the 1D simplex. The value (top row) and gradient (bottom row) of
differentiable projections onto the simplex. In this special case of the k-capped simplex, when k = 1, we can
compare against softmax. However, softmax is not applicable to the general problem. Although the functions
are vector-valued, mapping x1 and x2 to π1 and π2, we only need to consider π1, since π2 = 1− π1.
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B Sampling

Sampling designs. Perhaps the most common design used in machine learning is weighted random
sampling (Yates and Grundy, 1953), which is often implemented as Gumbel top-k sampling (Kool
et al., 2019). Both the papers’ original authors and Tillé (2023) point out that its actual inclusion
probabilities do not equal its parameters, i.e.,

p(xi) = πi,

does not hold. Worse yet, the actual inclusion probabilities are intractable, which limits both
interpretability and modeling (you cannot, e.g., compute a KL-divergence with unknown probabilities).
Another design used in machine learning is conditional Poisson sampling. It is the independent
Bernoulli distribution4 conditioned on

∑n
i=1 xi = k. This design does not produce exact inclusion

probabilities either. However, the actual inclusion probabilities can be computed. New parameters
that produce the desired inclusion probabilities can be computed via numerical optimization or
approximated analytically to correct the design (Chen et al., 1994; Aires, 1999; Tillé, 2006; Lundquist,
2009). There are many other sampling designs that have seen little to no use in machine learning
thus far, some of which produce exact inclusion probabilities (Sampford, 1967; Brewer, 1975; Rosén,
1997).

Sampling procedures. A sampling procedure is an algorithm that implements a sampling design.
As mentioned previously, the same design may be implemented by multiple sampling procedures. In
a machine learning setting, we often require rapid sampling, making efficient procedures vital. We
summarize some common types of procedures. Draw-by-draw procedures add one element to the
sample at a time. They are often easy to implement, but have a time-complexity of O(nk) due to
drawing k samples sequentially. Rejection sampling procedures make repeated attempts to accept
samples based on certain criteria. For example, conditional Poisson sampling can be implemented by
drawing independent Bernoulli samples until the sample’s sum is k. The time complexity of these
algorithms depends on the expected number of iterations until acceptance, which in turn depends
on the parameter values. In a learning setting, these values change. We note that there may be
a substantial risk of encountering cases with low acceptance rates as a result. Order sampling
procedures sample ranking variables and pick the top-k of these. Assuming the ranking variables can
be computed efficiently, the algorithm is as fast as top-k. Gumbel top-k is an example of such an
algorithm. Not that there are many other procedures that do not fall into the categories above.

After considering these criteria, adjusted Pareto sampling (Rosén, 1997) appears to be a good option.
It is a high-entropy design (Grafström, 2010) with exact inclusion probabilities (if adjusted).

4Independent Bernoulli sampling is known as Poisson sampling in the sampling design literature.
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C Gradient estimation

Proof of Proposition 3.

Proof. We expand the proof in Liu et al. (2023) to the k-hot case. First, we write the true gradient as
a sum over all k-hot vectors:

∇ :=
∂

∂θ
E[f(x)] =

d

dθ

∑
x∈{0,1}n

k

f(x)p(x) =
∑

x∈{0,1}n
k

f(x)
dp(x)

dθ
.

We can rewrite this by adding and subtracting E[f(x)] and rearranging the sum

∇ =
∑

x∈{0,1}n
k

(f(x)− E[f(x)] + E[f(x)])
dp(x)

dθ

=
∑

x∈{0,1}n
k

(f(x)− E[f(x)])
dp(x)

dθ
+

∑
x∈{0,1}n

k

E[f(x)]
dp(x)

dθ︸ ︷︷ ︸
=0

Here, the second term is zero, since∑
x∈{0,1}n

k

E[f(x)]
dp(x)

dθ
= E[f(x)]

d

dθ

∑
x∈{0,1}n

k

p(x) = E[f(x)]
d1

dθ
= 0.

We continue by expanding the expectation

∇ =
∑

x∈{0,1}n
k

∑
y∈{0,1}n

k

p(y)(f(x)− f(y))
dp(x)

dθ

Next, define a first-order estimator by finite difference approximation, f(x)− f(y) ≈ df(y)
dy (x− y)

∇1st-order :=
∑

x∈{0,1}n
k

∑
y∈{0,1}n

k

p(y)
df(y)

dy
(x− y)

dp(x)

dθ

=
∑

y∈{0,1}n
k

p(y)
df(y)

dy

∑
x∈{0,1}n

k

x
dp(x)

dθ︸ ︷︷ ︸
=

dE[x]
dθ

−
∑

y∈{0,1}n
k

p(y)
df(y)

dy
y

∑
x∈{0,1}n

k

dp(x)

dθ︸ ︷︷ ︸
=0

=
∑

y∈{0,1}n
k

p(y)
df(y)

dy

dE[x]
dθ

= E
[
df(x)

dx

dE[x]
dθ

]
Which proves

E[∇ST] = ∇1st-order
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D Experiments

Hardware. Experiments were run using a single GPU, either an NVIDIA RTX 2080 Ti or an
NVIDIA A40. The wall-clock times reported in Figure 3 and §A were recorded using an NVIDIA
RTX 2080 Ti with 12 GB of VRAM.

Network architectures. For both the feature selection and VAE experiments, we use dense ReLU
networks with two hidden layers of size 512 and 256 (in reversed order for the decoder). The
decoder’s output is passed through a sigmoid, and we use binary cross-entropy as the reconstruction
loss.

Hyperparameters. We use the Adam optimizer (Kingma and Ba, 2015) with default parameters
(β1 = 0.9 and β2 = 0.999) and no weight decay. We use a learning rate of 10−3 for feature selection
and 10−4 for the VAE. We let all temperatures τ = 1.

Results. In the results tables πST refers to πps sampling with a straight-through gradient estimate
(Algorithm 1). Gumbel–σk refers to relaxed samplng with sigmoid top-k with hard samples and
relaxed gradients (Algorithm 2).

Table 2: Feature selection. Test loss for feature selection with n = 784 features and k = 50 selections. Results
are shown with one standard deviation computed from five different random seeds.

Method MNIST Fashion-MNIST

Xie and Ermon (2019) 0.113 ± 2.44e-03 0.300 ± 2.39e-03
NCPSS 0.134 ± 2.47e-03 0.317 ± 8.13e-03
SIMPLE 0.099 ± 9.03e-04 0.287 ± 4.08e-04

πST 0.102 ± 1.35e-03 0.291 ± 1.20e-03
Gumbel–σk 0.096 ± 5.06e-04 0.286 ± 4.89e-04

Table 3: Variational autoencoders. Test loss for a small VAE with a latent space of ten k-hot vectors (n = 10
and k = 5) and a large VAE with a single k-hot vector (n = 1000 and k = 500). Results are shown with one
standard deviation computed from five different random seeds.

n = 10 and k = 5 (×10) n = 1000 and k = 500 (×1)

Method MNIST Fashion-MNIST MNIST Fashion-MNIST

Xie and Ermon (2019) 98.26 ± 2.63e-00 234.94 ± 4.42e-01 – –
NCPSS 82.88 ± 1.87e-01 226.37 ± 3.27e-01 66.25 ± 2.12e-01 223.94 ± 1.71e-00
SIMPLE 81.73 ± 2.07e-01 225.16 ± 1.22e-01 – –

πST 82.78 ± 2.30e-01 226.29 ± 2.49e-01 66.04 ± 2.06e-01 222.38 ± 7.96e-01
Gumbel–σk 82.06 ± 2.12e-01 225.80 ± 2.06e-01 63.46 ± 1.73e-01 217.59 ± 2.74e-01
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