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Abstract
It is notoriously difficult to train Transformers on
small datasets; typically, large pre-trained models
are instead used as the starting point. We explore
the weights of such pre-trained Transformers (par-
ticularly for vision) to attempt to find reasons for
this discrepancy. Surprisingly, we find that simply
initializing the weights of self-attention layers so
that they “look” more like their pre-trained coun-
terparts allows us to train vanilla Transformers
faster and to higher final accuracies, particularly
on vision tasks such as CIFAR-10 and ImageNet
classification, where we see gains in accuracy of
over 5% and 4%, respectively. Our initialization
scheme is closed form, learning-free, and very
simple: we set the product of the query and key
weights to be approximately the identity, and the
product of the value and projection weights to ap-
proximately the negative identity. As this mimics
the patterns we saw in pre-trained Transformers,
we call the technique mimetic initialization.

1. Introduction
Despite their excellent performance in the regime of large-
scale pretraining, Transformers are notoriously hard to train
on small-scale datasets (Dosovitskiy et al., 2020). In this
setting, convolutional networks such as the ResNet tend to
massively outperform Vision Transformers, with the gap
only being closed by the addition of techniques such as
self-supervised pretraining, auxiliary losses, convolution-
inspired tokenizers, or the addition of other architectural
components that promote convolution-like inductive biases.
Similar effects are seen in language modeling, where classic
models such as LSTMs outperform vanilla Transformers
without extreme regularization and long-duration training.

In this work, we take a step towards bridging this gap via
a novel initialization technique for Transformers. We focus
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primarily on Vision Transformers (ViTs), though we also in-
vestigate our technique in the context of language modeling.
We note that in pretrained ViTs, the weights of self-attention
layers are often quite correlated, in that WQW

T
K ∝ I + ϵ

and WV Wproj ∝ ϵ− I . Our proposal is merely to initialize
the self-attention weights to mimick this observation, with
the added caveat of requiring standard sinusoidal position
embeddings. While we propose only one technique here,
we believe that this concept is worthy of future research, as
it may enhance the understanding of the inner-workings of
deep models and lead to cheaper training and better optima.
We propose to call this type of technique mimetic initial-
ization, as we initialize by mimicking the structures and
patterns observed in the weights of pretrained models. Im-
portantly, the sort of mimetic initialization we propose seeks
to mimic solely through hand-crafted, interpretable formu-
las: it involves absolutely no pretraining and is practically
compute-free; i.e., there is no learning procedure involved.

Fundamentally, we seek to investigate the question pro-
posed by Zhang et al. (2022): might some of the benefits
of pretraining actually just be a result of it serving as a
good initialization? Our approach is to attempt to find good
initializations that do not involve pretraining to begin to
explore this question.

Our initialization shows strong advantages for ViTs, allow-
ing gains of up to 5% when training on small datasets like
CIFAR-10, and up to 4% for larger datasets, i.e., ImageNet-
1k within a standard ResNet-style training pipeline. We also
see smaller performance gains on language modeling tasks
such as WikiText-103.

2. Related Work
It is conventional wisdom that CNNs have a stronger in-
ductive bias than ViTs. In practice, this means that CNNs
perform particularly well on small datasets, while ViTs
only surpass their performance when pretrained on very
large (e.g., ImageNet-21k- or JFT-300B-scale) datasets. To
remedy this situation, numerous works have proposed to
integrate convolutions explicitly into ViTs: Dai et al. (2021)
introduces CoAtNet, which directly integrates depthwise
convolution and self-attention. Wu et al. (2021) introduces
CvT, a Transformer modification involving convolutional to-
kenization and projections. Yuan et al. (2021) proposes the
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(a) WQW
T
K often has a noticeable positive diagonal. → Layers 1-12, ↓ Attention Heads 1-3

(b) WV Wproj often has a prominent negative diagonal. Here, we sum over heads.

Figure 1. Self-attention weights of an ImageNet-pretrained ViT-Tiny. Pictured are 3 heads for each of the 12 layers. Clipped to 64x64.

Convolution-enhanced Image Transformer (CeiT), which
makes various modifications to bring about CNN-like in-
ductive bias. These techniques are uniformly effective:
ViT/CNN hybrids tend to achieve higher accuracies with
less data than their vanilla ViT counterparts. In contrast
to these works, we seek to make ViTs more trainable with-
out the use of convolutions, guided by the observation that
pretrained ViTs eventually become effective without them
given sufficient training time.

There are relatively few works on initializing Transform-
ers; these works tend to be theoretical, focusing on elim-
inating normalization or skip connections. Huang et al.
(2020) investigates training Transformers without learning
rate warmup and normalization, and proposed a rescaling
of weights that allows these to be removed. He et al. (2023)
extends work on Deep Kernel Shaping to train Transformers
without normalization and skip connections. Rather than
initializing WQ,WK in a particularly structured or princi-
pled way, they ensure the product is zero and instead add
a controllable bias inside the softmax of the self-attention
layers. Similarly, Zhao et al. (2021) proposes to set the
query and key weights to zero and the identity, respectively;
however, the product of these weights remains zero.

In contrast, we attempt to better-initialize standard vanilla
Transformers, which use skip connections and normaliza-
tion. Moreover, we do so by controlling the behavior of the
query and key weights themselves, aiming to replicate the
behavior of pretrained models without any training.

Touvron et al. (2021b) proposes LayerScale, which multi-
plies the skip connections by a learnable diagonal matrix;
though this is an actual architectural change and not an
initialization, we will discuss the potential (albeit weak)

connection to our initialization in Sec. 6. Cordonnier et al.
(2019) and d’Ascoli et al. (2021) propose a scheme to initial-
ize self-attention to implement convolution; however, this
requires the use of relative positional embeddings and the
(gated) self-attention layers proposed must have a particular
number of heads to match the kernel size. In contrast, our
scheme makes no architectural changes to the Transformer
and still achieves comparable performance. Importantly,
we do not seek to make self-attention emulate convolution
explicitly, but rather emulate the behavior of self-attention
itself after large-scale pretraining.

An inspiration for our work, Zhang et al. (2022) proposed
a so-called “mimicking initialization” as an alternative to
large-scale pretraining for language models. However, this
technique actually trains self-attention layers to mimick the
behavior of a handcrafted, convolution-like target similar
to attention maps seen in trained models; in contrast, we
attempt to bring about desirable behavior of self-attention
entirely by hand, without any form of training. In that sense,
our method is vaguely similar in spirit to (Trockman et al.,
2022), who propose a learning-free, structured multivariate
initialization for convolutional filters.

Many works have modified Vision Transformers to more ef-
fectively train on small-scale datasets. Gani et al. (2022) pro-
poses to learn the weight initialization in a self-supervised
fashion, noting that ViTs are highly sensitive to initializa-
tion. This achieves good results on CIFAR-10 and other
small-scale datasets. Cao et al. (2022) proposes another
self-supervised technique for from-scratch training. Hassani
et al. (2021) proposes a Compact Convolutional Transformer
that can perform well on small datasets, which involves the
use of a convolutional tokenizer. Lee et al. (2021) improves
performance on small-scale datasets by introducing Shifted
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Patch Tokenization and Locality Self-Attention. Liu et al.
(2021) proposes a “dense relative localization” auxiliary
task which improves the performance of transformers on
small-scale datasets. In contrast to these works, which intro-
duce auxiliary tasks or novel components, we use standard
ResNet-style training and still achieve good results on small
datasets with completely vanilla Transformers.

3. Observations
Preliminaries We denote the query and key weight matri-
ces for a single head of self-attention by WQ,WK ∈ Rd×k,
where d is the dimension (or width) of the Transformer
and k = d/#heads is the head dimension. We con-
sider the value and projection matrices to be full-rank:
WV ,Wproj ∈ Rd×d. For inputs X ∈ Rn×d with additive
positional embeddings P ∈ Rn×d, we denote the “attention
map” as follows:

Softmax
(

1√
k
XWQW

T
KXT

)
.

Our initialization is based on mimicking the patterns we
observed in pre-trained vision transformers. In Fig. 1, we vi-
sualize said patterns for a ViT-Tiny, pretrained on ImageNet.
The diagonal of the product of WQ and WT

K is noticeably
positive in many cases. Similarly, and somewhat surpris-
ingly, the product of WV and Wproj tends to have a notice-
ably negative diagonal. This similarly holds for ViTs of
different sizes. This suggests that, in rough approximation,
WQ and WK may be the “same” low-rank random normal
matrix, as such matrices are approximately semi-orthogonal.
This is based on the fact that an appropriately-scaled random
normal matrix is approximately orthogonal. That is, if Z ∈
Rd×k and Z ∼ N (0, I/k), then ZZT ≈ I . On language
models (see Fig. 9), we see a similar, albeit not quite so clear
pattern. In contrast, the products WQ and WT

K are often neg-
ative instead of positive, and vice versa for WV and Wproj .

In Figure 2, we show the attention maps in a ViT-Tiny for
a variety of training settings, averaged over the three heads
and over a batch of CIFAR-10 inputs. Note the difference
between the untrained model (a) and the untrained one us-
ing our initialization (d). Further, there is some degree of
similarity between the ImageNet-pretrained model (c) and
our untrained one (d). After training our initialized ViT
on CIFAR-10, the early layers are similar to those of the
ImageNet-pretrained ViT while the later layers are more
like those of the only-CIFAR-trained ViT (b). The last lay-
ers of the ImageNet-pretrained ViT implement a kind of
broadcasting operation which we do not attempt to mimick.

4. Method
We note that there are two relatively simple choices for
modeling WQW

T
K and WV Wproj . The simplest technique

(a) (b) (c) (d) (e)

Figure 2. Attention maps computed from one CIFAR-10 batch
for ViT-Tiny (a) untrained (b) CIFAR-10 trained (c) ImageNet
pretrained (d) using our init (e) our init and then CIFAR-10 trained.
Rows: ↓ Layers #1, 4, 11

is to merely set the two matrices in the product to the same
random normal matrix, i.e., WQ = WK = N(0, I/k),
which is scaled by the Transformer head dimension k so
that the average magnitude of the diagonal is ≈ 1. In the
case of the value/projection matrices, whose diagonal we
want to be negative, this would be

Z := N(0, I/d),WV = Z,Wproj = −Z.

However, no matter how we scale the random normal matrix,
the ratio between the magnitude of the on-diagonal and the
off-diagonal noise remains the same.

To gain more flexibility in the prominence of the diagonal,
we instead propose to use a slightly more involved technique.
Here, we explicitly model the products as follows:

WQW
T
K ≈ α1Z1 + β1I (1)

WV W
T
proj ≈ α2Z2 − β2I (2)

where Zi ∼ N (0, 1
dI) and αi, βi ∈ [0, 1]. That is, we

explicitly control the tradeoff between the noise Zi and the
diagonal I by choosing the parameters αi, βi. In order to
recover the factors WV ,Wproj , we use the singular value
decomposition:

α1Z1 + β1I = U1Σ1V
T
1 (3)

WV := U1Σ1,Wproj := V1Σ
1/2
1 , (4)

and for the low-rank factors WQ,W
T
K , the reduced SVD:

α2Z2 + β2I = U2Σ2V
T
2 (5)

WQ := U2[:, : k]Σ2[: k, : k]
1/2 (6)

WK := V2[:, : k]Σ2[: k, : k]
1/2. (7)

3



Mimetic Initialization of Self-Attention Layers

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Reduced Rank (Normal)

0.00 0.25 0.50 0.75 1.00

Reduced Rank (SVD)

0.00 0.25 0.50 0.75 1.00

Full Rank

Figure 3. Possible α, β for different weight constructions.

Note that we resample Z2 for each head.

In Fig. 3, we show the different α, β that can be achieved
through the two methods proposed above. Using equal ran-
dom normal matrices, there is a linear relationship between
α and β, for both low-rank and full-rank matrices. Using
the SVD technique, we achieve a wider variety of selections
even in the low-rank case. Consequently, we use this in all
experiments.

Attention map structure In practice, our initialization
results in attention maps that with a strong diagonal compo-
nent which reflect the structure of the position embeddings,
which we denote by P ∈ Rn×d. We show this visually in
Fig. 2, though it is also possible to (roughly) compute their
expected value.

Assuming that X ∈ Rn×d and X ∼ N (0, I) (which is a
reasonable assumption due to the use of LayerNorm), and
assuming WQ,WK are full-rank and WQW

T
K = αZ + βI

due to our initilization, we can show E[(X + P )(αZ +
βI)(X + P )T ] = βdI + βPPT , as the only products with
non-zero mean are XXT ≈ I (on the diagonal) and PPT .
Thus, roughly speaking, our initialization results in expected
attention maps of the form

Softmax
(

1√
k
(β1dI + β1PPT )

)
. (8)

That is, our initialization may bias attention maps towards
mixing nearby tokens according to the structure of PPT ,
which can be seen in Fig. 2.

5. Experiments
5.1. CIFAR-10

Training vanilla ViTs from scratch on CIFAR-10 is notori-
ously difficult, requiring semi-supervised pretraining tech-
niques, additional inductive bias, or heavy data augmenta-
tion with long training times (Liu et al., 2021; Lee et al.,
2021; Gani et al., 2022; Hassani et al., 2021). In this section,
we demonstrate the substantial benefits of using our initial-
ization for vanilla ViTs on from-scratch CIFAR-10 training.

Table 1. 100 epoch CIFAR-10 classification (ViT-Tiny).

Width Depth Heads Acc.
(Base)

Acc.
(Init) ∆ Acc.

96 6 3 84.75 87.90 3.15
96 12 3 84.75 88.84 4.09
192 6 3 85.85 89.68 4.63
192 12 1 85.25 89.88 4.63
192 12 3 86.07 90.78 4.71
192 12 6 86.74 91.38 4.64
192 24 3 86.36 91.85 5.49
384 12 3 86.26 91.56 5.30
384 12 6 84.40 92.17 7.77
384 12 12 86.39 92.30 5.91

Setup We train all ViTs using a simple pipeline: we use
RandAugment and Cutout for augmentation, a batch size of
512, AdamW with 3×10−3 learning rate, 0.01 weight decay,
and 100 epochs. We use a vanilla ViT with embedding
dimension 192, depth 12, patch size 2, and input size 32
unless otherwise noted (ViT-Tiny). We use a class token and
sinusoidal position embeddings. We use α1 = β1 = 0.7
and α2 = β2 = 0.4 for all experiments.

Basic results In Table 4, we show our main results for
CIFAR-10. Across a variety of ViT design parameters, our
initialization results in substantial accuracy gains between
2.5-6%. While the benefit of our initialization is quite sig-
nificant in all cases, we note that it seems to have the most
benefit for larger models. For example, we see an improve-
ment of over 6% for a ViT with dimension (width) 384,
depth 12, and 6 heads (a ViT-Small), while we see a smaller
4.8% gain for a model with dimension 192 and 3 heads, and
a 4.1% gain for dimension 96.

Ablations In Table 2, we show some ablations of our
initialization technique. If we use the default normal initial-
ization for WQ,WK , we see a substantial loss of accuracy
of nearly 2%; similarly, if we use default initialization for
WV ,Wproj , we see an even greater hit to accuracy of around
3.5%. Using neither (just sinusoidal position embeddings),
we lose almost 4% accuracy. Further, setting the diagonal of
WV ,Wproj to be negative rather than positive is in fact quite
important, accounting for around 1.5% accuracy. These re-
sults suggest that all of the components of our initialization
work together, and all are very important. We note that in
Fig. 1 the prominence of the diagonal tends to fade with
depth; we saw no improvement from mimicking this.

GPSA comparison GPSA (Gated Positional Self-
Attention) was proposed for use in the ConViT model by
Cordonnier et al. (2019). This self-attention variation has
two attention maps, one of which is initialized with “soft”
convolutional inductive biases to emulate convolution. The
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Table 2. Ablations on CIFAR-10, ViT-Ti

Ablation Acc.

Our initialization 91.38

Random pos. embeddings 88.70
No init (only sinusoidal pos. embeddings) 87.39
Init only WQ,WK 89.17
Init only WV ,Wproj 87.23
WV Wproj ∝ −cI =⇒WV Wproj ∝ +cI 89.65

GPSA (8 heads) 90.03
GPSA (4 heads) 90.83

+ WV Wproj ∝ −cI 91.21

Pretrained
WK ,WQ,WV ,Wproj & pos. embed 91.15

effect of each attention map is determined by a learnable
gating parameter.

While our goal was to improve Transformers without ar-
chitectural modifications, this technique is the most similar
to our own. (Though it requires, e.g., a particular number
of heads and a new, custom layer.) We replaced all self-
attention layers with GPSA layers. With 4 heads (approxi-
mately 2x2 convolution), accuracy comes fairly close to our
own by around 0.6%. Interestingly, adding our WV Wproj

initialization to GPSA further narrows the gap by around
0.4%. This shows that our technique may even be useful
for self-attention variants. More importantly, it shows that
our technique is competitive even with those requiring more
extensive architectural changes or explicitly-constructed
convolutional biases.

Pretrained weights Our initialization technique only con-
siders position embeddings and the query, key, value, and
projection weights. Consequently, we consider transfering
just these weights from an ImageNet-pretrained ViT as a
baseline initialization technique. This achieves 91.15% ac-
curacy, which is marginally lower than our own initialization.
While this does not say anything about the initialization of
the patch embedding and MLP layers, this may provide
some evidence that our self-attention initialization is close
to optimal.

Position embeddings According to Table 2, the use
of sinusoidal position embeddings instead of randomly-
initialized ones is crucial for our initialization. Using ran-
dom rather than sinusoidal position embeddings with our
initialization is disastrous, resulting in a decrease of 3% in
accuracy. However, only initializing the position embed-
dings is not helpful either; ablating the rest of the init gives
a similar performance decrease. In other words, it is the
interaction of our initialization with the position embed-
dings which is useful. Consequently, with Eq. 8 in mind,

0 1 2 3 4
Position Embedding Scale

89

90

91

Te
st

 A
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y

Figure 4. Increasing the scale of the position embeddings improves
CIFAR-10 performance (ViT-Tiny).

Table 3. ImageNet Results

Arch. Patch
Size

Batch
Size

Input
Size

Acc.
(Base)

Acc.
(Init)

∆
Acc.

↓ ResNet-style Training Pipeline (150 epochs) ↓
Vit/Ti 16 640 224 70.28 73.08 2.8
Vit/Ti 16 1024 224 67.80 71.92 4.1

↓ DeiT-style Training Pipeline (300 epochs) ↓
Vit/Ti 16 1024 224 72.08 72.65 0.57
Vit/S 16 1024 224 79.83 80.36 0.53

we investigated the scale of the position embeddings, which
changes their importance relative to the inputs themselves.

Position embedding scale Adding a new hyperparameter,
we multiplied the embeddings by a factor γ, and tried several
choices as shown in Fig. 4. Increasing the scale from 1 to
≈ 2 substantially improves performance, by around 0.5%.

Internal resolution ViTs are typically trained using high-
resolution inputs and large patch sizes. In contrast, we
trained most of our models on CIFAR-10 using small 32×32
inputs and 2× 2 patches. Consequently, we investigate how
the choice of patch and input size affects performance. In
Appendix A, Table 7, we can see that our initialization is

(a)
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(b)
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Figure 5. Training curves for DeiT-Tiny in a (a) ResNet-style train-
ing pipeline and a (b) DeiT-style pipeline. In the ResNet pipeline,
we see a 4.1% improvement, compared to a 0.5% improvement in
the DeiT pipeline.

5



Mimetic Initialization of Self-Attention Layers

0 10000 20000 30000 40000 50000
# Data Points

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10 Data Efficiency

Initialization
None
Ours

Figure 6. Adjusting the number of training points on CIFAR-10.

quite beneficial for many such combinations.

Data efficiency We hypothesize that our initialization
leads ViTs to have an inductive bias more suitable for im-
ages, and thus would expect the initialiation to be associated
with especially high performance gains on small datasets.
Consequently, we trained on a variety of subsets of CIFAR-
10 (see Fig. 6). Surprisingly, we did not see performance
gains inversely proportional to the size of the dataset. More
research, e.g., on larger datasets, would be necessary to
understand how our initialization changes the data require-
ments of ViTs.

Other Transformer initializations While the motiva-
tion of our initialization is substantially different from
that of other Transformer initialization techniques, we pro-
vide some comparisons in Table 5. T-Fixup (Huang et al.,
2020) and ZerO (Zhao et al., 2021) focus on initializing the
whole network rather than just the self-attention layers. For
ZerO initialization, we only apply the initialization to self-
attention layers. For T-Fixup, we apply the initialization to
both self-attention and MLPs. Nonetheless, T-Fixup harms
performance relative to the baseline, and ZerO offers only a
small improvement.

Tuning hyperparameters It is infeasible for us to search
over all combinations of αi and βi, so we first fixed α1 and
β1 according to a guess of (0.6, 0.3), and then tuned α2

and β2. From this, we chose α2, β2. Then, holding this
fixed, we tuned α1, β1. Our grid search was performed for
100-epoch CIFAR-10 training on a ViT-Tiny. We visualize
this search in Appendix A, Fig. 10.

5.2. ImageNet

Here, we show that our initialization benefits training ViTs
from scratch on another relatively “small” dataset (for Trans-
formers): ImageNet-1k. We test two settings: a ResNet-
style (Wightman et al., 2021) training pipeline with 150
epochs and standard cross-entropy loss (i.e., the technique
of Trockman & Kolter (2022)), and the 300-epoch DeiT
training pipeline from Touvron et al. (2021a). In both cases,

Table 4. Our initialization on other datasets (ViT-Tiny, 100
epochs).

Dataset Acc.
(Base)

Acc.
(Init) ∆ Acc.

Tiny ImageNet 45.24 50.87 5.63
CIFAR-100 60.94 67.33 6.39
SVHN 96.40 96.79 0.39

we see significant improvements for using our initialization,
with gains between 2.8-4.1% for a ViT-Tiny in the ResNet-
style pipeline and around 0.5% in the DeiT pipeline. We
find it surprising that we see relatively high gains even for
very-long training times. Notably, we used the same hyper-
parameters as found for the CIFAR-10 experiments, though
with a position embedding scale of 1.

The large performance in the ResNet-style training pipeline
is particularly notable. One of the main contributions of
Touvron et al. (2021a) was to propose a particular training
pipeline which was effective for training ViTs on ImageNet-
scale datasets, as ViTs did not work well in ResNet-style
training pipelines. However, our initialization provides a
major boost in accuracy for ViT-Tiny in this setting, suggest-
ing that it begins to bridge the gap between ViT and ResNet
training.

In Fig. 5, we show training progress for both ViT training
pipelines; the difference is smaller for the DeiT pipeline,
which has a larger batch size and more epochs.

5.3. Other Datasets

To further show that our initialization is not overfit to
CIFAR-10 or ImageNet in particular, we present results for
CIFAR-100, SVHN, and Tiny ImageNet using our initial-
ization. We use the same settings as before with a ViT-Tiny,
though with 4 × 4 patches for TinyImageNet. In Table 4,
we see that our initialization leads to improvements in test
accuracy over 5% for Tiny ImageNet and CIFAR-100, but
only 0.39% for the perhaps-easier SVHN dataset.

6. Why does this initialization work?
We have shown that our mimetic initialization is quite ef-
fective for enhancing visual recognition on small datasets.
Here, we propose some additional explanations for why our
method is effective. The first section concerns the query and
key weights, while the next two investigate the somewhat-
more-mysterious negative diagonal of the value and projec-
tion product.

Near-identity attention maps. In Fig. 2 and Eq. 8, we
see that our initialization, much like pretraining, makes the
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Table 5. Other initializations

T-Fixup ZerO LayerScale
Original

LayerScale
Our Version

Our
Initialization

85.38 87.41 89.90 88.68 91.38

attention maps somewhat similar to identity matrices, par-
ticularly in earlier layers. The resemblance of our attention
maps using our initialization to those in pretrained models
is notable in itself. He et al. (2023) notes that forcing at-
tention maps to be the identity avoids rank collapse, which
can otherwise prevent trainability. However, they note that
exact-identity attention cannot pass gradients to the query
and key parameters, meaning it is not actually a viable ini-
tialization technique. We hypothesize that our initialization
strikes a balance between untrained attention maps (as in
Fig. 2a) and identity attention maps.

LayerScale analogy In Touvron et al. (2021b), a simple
technique called LayerScale is proposed to train deeper
Transformers more effectively, in which the layer at a skip
connection is multiplied by a learnable diagonal scaling
matrix D:

X ′
l = Xl +D · SelfAttn(η(Xl)) (9)

where η denotes LayerNorm. Here, we show that the way
we initialize WV ,Wproj has a relatively weak resemblance
to this technique. Considering Eq. 8, we approximate the
attention maps after our initialization as being close to the
identity, and assume that η(Xl) ≈ Xl:

X ′
l = Xl + SelfAttn(η(Xl)) (10)
≈ Xl + Iη(Xl)WV Wproj (11)
≈ Xl + Iη(Xl)(αZ − βI) (due to our init) (12)
≈ (I − β)Xl + αη(Xl)Z (13)

Scaling Xl by (I − β) is similar in spirit to LayerScale,
except in our case we are multiplying the left-hand instead
of the right-hand term in the skip connection. This motivates
us to compare our technique for setting to WV Wproj to
using LayerScale, or our variant of LayerScale above.

We searched ten choices of initialization for the diagonal
elements in [0, 1] for both LayerScale techniques, replacing
our WV Wproj initialization, and report the best results in
Table 5. Note we leave our WQW

T
K initialization unchanged.

Neither method achieves the performance of ours (with a
difference of about 1.5%) though LayerScale comes closest.
We conclude that the benefits of our initialization extend
beyond its possible similarity to LayerScale.

Convolution analogy. Many works which successfuly
train ViTs on small datasets do so by adding aspects of
convolution, whether implicitly or explicitly. Here, we ex-
plore adding locality to self-attention through convolutional
biases:

Softmax
(
XWQW

T
KXT + γC

)
, (14)

where C is a doubly-block circulant convolution matrix
and γ is a learnable scalar. Here, C is reminiscent of the
PPT term in Eq. 8. This achieves 87.5% accuracy on
CIFAR-10 within our usual training pipeline (without our
init). For comparison, plain self-attention with no special
initialization achieves 88.1% accuracy. Next, we move the
convolution outside the softmax:

Softmax
(
XWQW

T
KXT

)
+ γC, (15)

This has a more considerable advantange, resulting in 89.9%
accuracy. Then, if we instead use C ′ = Softmax(γC) to
restrict C ′ to be all-positive, we achieve 75% accuracy. That
is, it appears that the negative component of the convolution
matrix is necessary.

Thus, we hypothesize that initializing WV Wproj to have a
negative diagonal is perhaps beneficial for the same reason:
this allows for some degree of “negative” or edge-detector-
like spatial mixing to occur, a potentially useful starting
point for the purpose of visual recognition.

7. Language Modeling
While our method was primarily inspired by pretrained Vi-
sion Transformers, in this section we investigate its potential
for use in language models. As noted in Sec. 3 and seen
in Fig. 9, we do not see precisely the same pattern in a pre-
trained GPT-2 model as we do in a ViT. Nonetheless, we
use the same technique here without modification; we saw
no improvement from, e.g., attempting to model the positive
diagonals of WV Wproj .

Small-scale Generally, it is hard to train Transformers
from scratch on small language tasks (Dai et al., 2019);
it requires substantial regularization, e.g., in the form of
dropout. For word-level modeling on Penn TreeBank (PTB),
we thus add one regularization tweak: word-level embed-
ding dropout (i.e., dropout of entire embedding vectors).
This allows us to achieve sub-100 perplexity.

We use a training setup identical to that of Bai et al. (2018),
training for 100 epochs and reducing the learning rate when
it plateaus. We used a vanilla Transformer with sinusoidal
position embeddings, with embedding dimension 384, 12
layers, 8 attention heads, and weight-tied embeddings.

First, on char-level PTB we did a small-scale hyperpa-
rameter search for those αi, βi yielding the best validation
BPC. We chose α1 = 0, β1 = 0.5, and α2 = β2 = 0.2. We
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(a) WQW
T
K has a wider array of diagonal magnitudes (first 3 heads shown). → Layers 1-12, ↓ Attention Heads 1-3 of 12

(b) WV Wproj becomes positive in deeper layers.

Figure 7. A pretrained GPT-2 shows considerably different patterns in the products of WQW
T
K and WV Wproj , compared to ViTs.

used these parameters on subsequent word-level modeling
tasks. On char-level PTB, we see a small but significant
reduction in BPC from 1.233 to 1.210 through using
our initialization. Similarly, we see a small reduction in
perplexity on word-level PTB, from 84.84 to 82.34. (For
both tasks, smaller is better.)

While our initialization does not make a large amount of
difference for these small-scale language tasks as it does for
vision tasks, it does show a small amount of improvement.
We suspect that it may be the case that a mimetic initializa-
tion scheme more finely-tuned to the language setting may
show still better performance.

Medium-scale Next, we tried our initialization on a larger-
scale task, WikiText-103. Here, we used an embedding
dimension of 410 with 16 layers, 10 heads, and sinusoidal
embeddings, with the same hyperparameters as for the pre-
vious task. As this dataset is around 110 times larger than
PTB, we trained for only 50 epochs. Here, we see a more
significant performance gain from using our initialization,
reducing the test perplexity from 28.87 to 28.21 (see Ta-
ble 6). While this is not a massive improvement, this is
consistent with our observation on vision tasks that the im-
provement from our technique may be more significant for
larger models. Further, we also note that in this case the
number of parameters being initialized is quite small relative
to the total number of parameters of the language model due
to the word embedding weights, something which does not
occur with vision models.

Table 6. Language results

Task Metric Base Init

Char-level PTB bpc 1.233 1.210
Word-level PTB ppl 84.84 82.34
WikiText-103 ppl 28.87 28.21

8. Conclusion
Our proposed initialization technique for Transformers is
particularly effective at improving performance on small-
scale image recognition tasks, leading to an increase of over
5% accuracy in some cases. In other words, we address
the problem that Vision Transformers are hard to train in
ResNet-style pipelines solely through a structured initial-
ization of the weights, without need for any kind of pre-
training or architectural modifications. To a lesser extent,
we demonstrated that our initialization leads to non-trivial
gains on WikiText-103, showing that it also has potential
to similarly improve language modeling on relatively small
datasets. More broadly, we proposed a class of techniques
we call mimetic initialization, in which we attempt to gain
some benefits of pretraining by mimicking the surface-level
qualities of pretrained models. We speculate that it may
be possible to use domain knowledge to “program” models
before training in order to reach more desirable optima that
may have been out of reach with a completely random ini-
tialization. With better structured initialization techniques
like our own, perhaps Transformers really are the universal
architecture.
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A. Additional results
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(a) Untrained
(b) CIFAR-10
trained

(c) ImageNet pre-
trained (d) Our init

(e) Our init CIFAR-
10 trained

Figure 8. Attention maps computed from one CIFAR-10 batch for ViT-Tiny (plain, pretrained on ImageNet, using our init, and trained
on ImageNet using our init). Interestingly, we see that the broadcasting or pooling behavior seen in the uniformly-initialized pretrained
model does not occur as clearly in the pretrained model that used our init.
Rows: ↓ Layers #1, 3, 5, 7, 9, 11
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(a) WQW
T
K does not have such prominent positive diagonals as in an ImageNet-pretrained model. → Layers 1-12, ↓ Attention Heads 1-3

of 12

(b) WV Wproj has more faint negative diagonals than in a pretrained model.

Figure 9. Training a ViT-Tiny from scratch without our initialization on CIFAR-10 does not show such prominent diagonals in weight
products.

(a) Tuning WV Wproj
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Figure 10. Grid search of α, β for both WV Wproj and WQW
T
K on CIFAR-10, 100 epochs on DeiT-Ti.
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Table 7. Different internal resolutions

Patch
Size

Input
Size

Acc.
(Base)

Acc.
(Init) ∆ Acc.

2 32 85.79 90.46 4.67
4 64 90.24 92.38 2.14
8 128 90.03 92.49 2.46
16 256 88.85 92.74 3.89

4 32 88.43 90.47 2.03
8 64 88.00 90.96 2.96
16 128 87.90 91.90 4.00
32 256 86.27 90.15 3.88
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