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ABSTRACT

SWARM parallelism is a framework that enhances pipeline parallelism in dis-
tributed training by incorporating fault tolerance. However, the synchronous na-
ture of this approach introduces inefficiencies that can hinder performance and
scalability. We analyze these inefficiencies and propose an asynchronous modifi-
cation to the framework that enables nodes to perform local updates and periodi-
cally average their states. Our results demonstrate that this modified asynchronous
SWARM achieves higher throughput without sacrificing model convergence.

1 INTRODUCTION

Collaborative training enables large neural networks to be trained using distributed computational
resources. Frameworks like DiLoCo Douillard et al. (2023) and DiPaCo Douillard et al. (2024)
support this across geographically dispersed nodes but are limited to data parallelism. SWARM
Parallelism Ryabinin et al. (2023) extends this by incorporating pipeline parallelism Huang et al.
(2019), allowing contributors with consumer-grade accelerators to participate while maintaining
node elasticity.

To preserve centralized training dynamics, SWARM accumulates gradients within pipeline stages
and performs periodic all-reduce operations. However, this introduces synchronization bottlenecks
that worsen as the number of stages increases. Asynchronous execution could improve efficiency but
introduces gradient staleness, disrupting training dynamics and degrading convergence. This paper
analyzes gradient staleness in the asynchronous setting of SWARM and proposes a weight correction
technique using Nesterov Accelerated Gradient (NAG) Nesterov (1983; 2013). Experimental results
demonstrate its effectiveness in improving training stability and efficiency.

2 METHOD

Introducing asynchronous execution in SWARM can be approached along two axes: (1) enabling
nodes within a stage to perform local updates, and (2) performing state averaging within a stage
without halting the training loop. In this work, we focus on the first approach and leave the latter for
future research. Allowing local updates inevitably introduces gradient staleness, a well-documented
issue in asynchronous pipeline-parallel training Narayanan et al. (2019); Yang et al. (2021). In
the SWARM framework, which supports heterogeneous environments, an additional dimension of
staleness arises as nodes with lower backward-pass throughput accumulate compounding delays.
The gradient staleness in an asynchronous pipeline-parallel setup can be formally expressed as:

wt+1
i = wt

i − η∇fi(w
t−τi
i ) (1)

where τi represents the delay in gradient updates, which increases with the stage depth in the
pipeline. In the case of SWARM parallelism in a heterogeneous setting, stochastic rewiring—a
key mechanism for optimizing bandwidth utilization—introduces an additional stochastic staleness
factor τi, as mini-batches traverse the network in a non-deterministic manner. Large language mod-
els (LLMs) Brown et al. (2020) are typically trained using AdamW Loshchilov (2017), but in this
work, we explore an alternative approach based on Nesterov Accelerated Gradient (NAG):

dt = γt(wt −wt−1) , (2)
wt+1 = wt + dt − η∇f(wt + dt)
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Unlike standard momentum, which applies a velocity term to past gradients, NAG adjusts the update
direction before computing the gradient, reducing overshooting and improving stability Nesterov
(1983; 2013). In our context, the velocity component dt acts as a weight correction term, compen-
sating for gradient staleness by anticipating the future weight position. This allows NAG to mitigate
stale updates by dynamically adjusting the weight trajectory based on past updates and estimated
future gradients.

3 RESULTS

(a) Lower Warmup (b) Batch Size (c) Added Delay

Figure 1: Training trajectory comparisons of SWARM and its asynchronous variants. Our method
significantly outperforms competing baselines across various ablations and significantly stabilizes
training dynamics.

For our SWARM experiments, we use an 8-stage pipeline with two worker nodes per stage, train-
ing on the WikiText dataset. The asynchronous variant of SWARM relaxes strict synchronization
constraints, allowing local updates per microbatch with periodic stage-wise weight synchronization.
Further details on our setup are provided in Appendix A. We evaluate three configurations: (1)
standard synchronous SWARM, (2) asynchronous SWARM with periodic weight synchronization
(SWARM-Async), and (3) our NAG-adapted SWARM-Async.

As shown in Fig. 1, our method consistently outperforms both baseline variants across different con-
ditions. Fig. 1a highlights that SWARM-Async struggles to converge when warmup time is halved
to 500 iterations, whereas our NAG-adapted approach remains stable under this setting. Similarly,
Fig. 1b illustrates that SWARM-Async converges at a slower rate when compared to our method,
which tolerates more aggressive local updates. In Fig. 1c, we introduce artificial delays (0.5s and
1.0s) in one node per stage, forcing stochastic routing to favor non-delayed nodes and increasing gra-
dient staleness. Our NAG-adapted approach proves more resilient to these disruptions, significantly
outperforming the baselines in terms of stability and convergence. Additionally, Tab. 1 compares
relative wall-clock times between synchronous and asynchronous SWARM, where we observe a
noticeable improvement in relative wallclock time in asynchronous SWARM.

4 CONCLUSION

Wallclock

Rel. Improvment
Batch Size 64 45.9%
Batch Size 128 32.6%
Batch Size 256 23.4%

Table 1: The relative improvement in wall-clock
time for each method across 5000 iterations for
different weight synchronization batch sizes be-
tween synchronous and asynchronous SWARM

We explore the asynchronous setting of
SWARM parallelism and introduce a novel
variant of Nesterov Accelerated Gradient
(NAG) to counteract gradient staleness and sta-
bilize training. Our approach requires only a
simple optimizer switch and a minor hyper-
parameter adjustment, making it easily adopt-
able with immediate benefits in robustness
and convergence. Empirically, it consistently
outperforms competing baselines, maintaining
strong performance in decentralized SWARM
settings. This work highlights the potential of
lightweight optimization adjustments to improve asynchronous training, paving the way for more
efficient and scalable collaborative learning frameworks.
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A SWARM SETTINGS

We adopt the SWARM baseline from Ryabinin et al. (2023) for our decentralized training frame-
work. The model used across all baselines is a Transformer language model with an architecture
similar to prior work Brown et al. (2020); Wang & Komatsuzaki (2021).

Our SWARM setup consists of 2 worker nodes per stage, totaling 16 worker nodes, each equipped
with an NVIDIA L4 GPU. Additionally, we allocate 16 trainer nodes to manage the full pipeline,
where each trainer node features a 4-core Intel Cascade Lake CPU (2.2 GHz base clock) and 32 GB
of RAM.

For all baselines, we use the following model configuration:

• Embedding dimension: 768
• Number of attention heads: 6
• Feedforward layer dimension: 3072
• Number of layers: 8 (each assigned to a separate pipeline stage)
• Microbatch size: 8
• Sequence length: 2048

We set the base learning rate to 1e-4 for all baselines including our Nesterov-based approach. By
default, all models use a linear warmup schedule up to 1k steps. Our Nesterov-based approach uses
a momentum coefficient β1 set to 0.99 with a learning rate of 1e-4. All models are trained for 5k
iterations, using a stage-wise all-reduce batch sizes of 64, 128 and 256.

B ADDITIONAL RESULTS

(a) Lower Warmup (b) Batch Size (c) Added Delay

Figure 2: Validation trajectory comparisons of SWARM and its asynchronous variants. Our method
significantly outperforms competing baselines across various ablations
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