
Exploring Task Affinities through NTK Alignment and
Early Training Dynamics in Multi-Task Learning

Yoann Morello
Data Analytics Laboratory
Vrije Universiteit Brussel
yoann.morello@vub.be

Emilie Grégoire
Data Analytics Laboratory
Vrije Universiteit Brussel

emilie.gregoire@vub.be

Sam Verboven
Data Analytics Laboratory
Vrije Universiteit Brussel
sam.verboven@vub.be

Abstract

Multi-task learning (MTL) aims to leverage shared representations among tasks to
improve generalization and training efficiency. However, the challenge of negative
transfer between tasks remains a significant obstacle. In this work, we explore
modifications to gradient-based measures for task similarity to identify effective
task groupings early in training. We highlight key connections between existing
measures through the Neural Tangent Kernel (NTK). Our analysis reveals that
computing these measures during the initial training stages, averaged over multiple
runs, provides a robust estimation of task affinities. We demonstrate the method’s
effectiveness on synthetic data, capturing both linear and non-linear relationships,
and suggest its potential applicability to more complex datasets.

1 Introduction

Multi-task learning (MTL) [Caruana, 1997] aims to enhance generalization and efficiency by training
multiple tasks simultaneously using a shared representation. Although this strategy can reduce data
requirements and improve training efficiency, it often suffers from negative transfer [Standley et al.,
2020], wherein gradients from different tasks interfere, leading to worse performance compared to
training tasks independently. In hard-parameter-sharing, which is the focus of this work, a shared
representation is learned among the tasks. Given such an architecture and a set of tasks to be learned,
an important question arises: how should we partition these tasks across models to maximize positive
transfer? This problem has received significant attention in recent research [Fifty et al., 2021, Standley
et al., 2020, Sherif et al., 2024, Wang et al., 2024].

A key aspect of task partitioning is the definition of an affinity measure between tasks, which
helps determine the task groupings that yield the greatest transfer benefits. Existing heuristic-based
approaches for defining such measures include expert opinion [Zhang and Yang, 2021], meta-learning
techniques [Song et al., 2022], and the use of data maps that track the confidence and variability of
predictions for each data point during training [Sherif et al., 2024]. More mathematically grounded
approaches, such as gradient-based methods [Fifty et al., 2021, Wang et al., 2024], have also been
proposed. However, these methods come with a significant computational cost, as they require training
a full multi-task learning (MTL) model while periodically interrupting the training to compute a
gradient step for various combinations of losses across subsets of tasks.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

This work illuminates the theoretical connections between existing task-affinity measures (Section 2)
and aims to leverage these insights to simplify their computation, thereby reducing computational
demands. Two key simplification strategies are proposed. The first involves adopting specific linear
approximations, categorized into two types: approximations based on linearity in the weights (Section
2) and approximations based on linearity in the input (Section 3). The second strategy explores the
possibility of approximating the average task-affinity measure across the full learning trajectory by
averaging the measure over the early stages of training, using multiple stochastic initializations of the
model. Experimental analyses of the proposed methods are presented in Section 4.

The key contributions of our work are summarized below:

• We highlight the connections between existing gradient-based methods for measuring task-
affinities works through the use of the Neural Tangent Kernel (NTK).

• Based on strong assumptions, we derive a simplified version of existing measures that can
be computed without training the model. We apply this architecture-dependent measure to
simple models and show it provides meaningful insights when applied to CIFAR-10.

• We provide some empirical analysis of the alignment measures and highlight their stochastic
behavior during early training.

• Based on theoretical and empirical insights, we propose to average the variables used to
compute the task-alignment over different initializations and show this yields an effective
way to capture non-linear relationships in data.

2 Relating existing measures of task affinity through the NTK

In this section, we analyze the measures defined in Fifty et al. [2021], Wang et al. [2024] and
Paul et al. [2021]. We demonstrate that these measures share significant similarities and show that
the unnormalized alignment between the off-diagonal blocks of the NTK (Appendix A1) and the
corresponding off-diagonal matrices of a deviation tensor, G — which we introduce along the way —
are key quantities in the formulas derived for task similarities.

2.1 Background

We start by introducing two important gradient-based task-affinity measures from the literature.

Firstly, Fifty et al. [2021] propose to quantify the affinity between a taska and a task b at time step t
using the asymmetric measure Zt

a7→b defined as,

Zt
a7→b = 1− Lb(X;ϕt+1

a ; θtb)

Lb(X;ϕt; θtb)
≈ η

(∇ϕLb)
⊤∇ϕLa

Lb(ϕt, θtb)
, (1)

where La and Lb represent the losses for tasks a and b respectively, ϕt+1
i represents the updated

shared parameters after a gradient step with respect to task i, θi corresponds to the task-i-specific
parameters, and ∇ϕLi represent the gradients of the losses for tasks i with respect to the shared
parameters ϕ (with i ∈ {a, b}). The approximation results from a first-order Taylor expansion on a
batch X (as shown in Appendix A1).

Next,Wang et al. [2024] introduced another measure, St
a7→b,

St
a7→b = 1−

Lb(ϕ
t+1
{a,b}, θ

t+1
b)

Lb(ϕ
t+1
{b} , θ

t+1
b)

, (2)

as an enhancement of Zt
a 7→b, resolving the need for the strong convexity assumption used by Fifty

et al. [2021].

2.2 Relating existing measures

Based on a simple assumption below, we show that the task-affinity measures defined by equations
(1) and (2), are intrinsically very similar. Specifically, we make the following assumption:
Assumption 1. During a full epoch of training, the network weights, ϕ and θ, remain constant and
the learning rate η is small.

2

This assumption simplifies the analysis while retaining essential characteristics of most training
dynamics [Elkabetz and Cohen, 2021] With assumption 1, one finds that:

St
a→b ≈ η

(∇ϕ,θbLb)
⊤∇ϕ,θaLa

Lb(ϕt, θtb)
= η

(∇ϕLb)
⊤∇ϕLa + (∇θbLb)

⊤∇θaLa

Lb(ϕt, θtb)
≈ Zt

a7→b, (3)

which demonstrates that, under 1, the two popular task-affinity measures are approximately the
same, raising questions about the empirical differences claimed by Wang et al. [2024]. We can
rewrite the resulting expression in terms of the Neural Tangent Kernel (NTK). In particular, taking
the cross-entropy as the loss function, one obtains:

St
a→b ≈ Zt

a7→b ≈ η
(f b(X)− yb)⊤Kba(fa(X)− yb)

N2Lb(t)
, (4)

where Kba is the corresponding NTK matrix, where each entry represents the scalar product of the
derivatives of the outputs ya and yb. We provide the detailed derivations in Appendix A2.

2.3 Connecting task affinity with data pruning

We note an interesting connection between the task-affinity scores and results from data-pruning
literature. Essentially, Paul et al. [2021] analyze scores to estimate the impact of individual datapoints
on the training performance, focusing on approximating or bounding the effect of a datapoint on
the gradient of the loss of any other point. Extending this definition to the multi-task setting is
straightforward: by taking means, we can similarly define the impact that training on the task-specific
loss La will have on the gradient of the loss on task Lb. Calling the resulting measure P , we derive

P t
a→b ≈ η

(f b(X)− yb)⊤Kba(fa(X)− ya)

N2
, (5)

The primary distinction between the existing measures defined in equation (2) lies in the denominator.
This difference effectively makes St

a→b more sensitive to loss reductions when the loss is smaller. As
a result, this highlights that the numerator of St

a→b is the critical component for the computation of
the task-affinity score, while the denominator serves primarily as a normalization factor.
Based on these insights, we rewrite the numerators appearing both in equations (2) and (5) in a more
convenient way:

(f b(X)− yb)⊤Kba(fa(X)− ya) = Tr(Kba(f
b(X)− yb)(fa(X)− ya)⊤) (6)

= Tr(KbaGba) (7)

where we defined the rank-four deviation tensor G as:

Gkl[i, j] = (fk(Xi)− yk
i)(f

l(Xj)− yl
j)

⊤.

The expression in equation (7) represents the unnormalized alignment of the NTK matrix Kba and
Gba. In this context, we refer to the matrices Gkk (where k = l) as the diagonal blocks, and the
matrices where k ̸= l as the off-diagonal blocks. Looking at the definitions of the task affinity
measures in equations (3) and (5) suggest that the alignment of the off-diagonal blocks of K with
those of G plays a crucial role in measuring task affinity, while the denominator Lb acts merely as a
weighting factor. We experimentally analyze the evolution of the alignment between the off-diagonal
matrices of K and G in section 4.

3 Architecture-dependent task affinities

A major drawback of the existing task-affinity scores, as defined in equations (1) and (2) is their
computational inefficiency. In this section, we propose a strategy to avoid the need of the explicit
training of the multi-task models to obtain task-affinity scores. While relying on strong assumptions,
we show that this method is able to account for the dependency on the specific network architecture,
which is essential for the task-grouping problem, as highlighted by Standley et al. [2020]. Applying
this method to two basic architectures, we observe that one of them leads to some matrix alignment
measure commonly used in statistics.

3

Paul et al. [2021] demonstrate that scores, which typically need to be computed throughout the entire
training process to be informative, can also be estimated in the first few epochs by averaging them
over several stochastic initializations. In this section, we further generalize this view, assuming that
the expectation of our affinity measure at epoch 0, computed over multiple initializations, is indicative
of its average over a full training trajectory from epoch 0 to T .

To apply this idea to the concept of cumulative task affinity, which is defined by equation (2),

Sa→b =

T∑
t=1

St
a→b, (8)

we take the expected value of the task-affinity score at epoch 0 over different weight initialization
W ∼ D,

Sa→b = EW∼D

[
S0
a→b|W

]
. (9)

3.1 Explicit expressions for linear networks

We apply the formula in equation (9), along with some Taylor approximations, to two basic archi-
tectures based on two-layer linear networks. Again relying on assumption 1, we derive explicit
expressions for EW∼D[Sa 7→b].
Proposition 1. For a 2-layer linear network with a sigmoid applied to the logits, small initialization
weights and c classification tasks with the binary cross-entropy as the multi-task loss function defined
as:

Loss = − 1

N

N∑
i=1

c∑
j=1

[
yji log(ŷ

j
i) + (1− yji) log(1− ŷji)

]
,

and the task-specific weights θa,b, being set equal at initialization, we have:

E[S0
a→b] ∝ d⊤

b XX⊤da, (10)

where dj ≡ 2yj − 1N for class c and 1N is a N -dimensional vector containing ones.

The detailed derivations are available in Appendix B1. Next, we derive an expression that takes
into account the balance of positive and negative samples in the classification tasks (derivation in
Appendix B2).
Proposition 2. With the same setting as in proposition 1 but with the cross-entropy loss adapted to
balance the positive and negative samples:

Lossj = 1/N

N∑
i=1

[
(c− 1)yji log(σ(z

j
i)) + (1− yji) log(1− σ(zji))

]
and

Loss =
c∑

j=1

Lossj ,

we have:
E[S0

a→b] ∝ δ⊤b XX⊤δa, (11)

where, δj ≡
(
yj − 1

c1
)
.

Several key observations can be made about equations (10) and (11). First, note that the use of the
term "proportional to" is justified in our context, since the coefficients in front of our expressions are
identical across all pairs of tasks. This allows us to focus on comparing tasks relative to one another,
rather than being concerned with the specific coefficients themselves. Second, in equation 11, one
recognizes the unnormalized Central Kernel Alignment (CKA) Tr(XX⊤δbδ

⊤
a) (see Appendix B3),

assuming the input matrix X is centered. An intuitive way to understand this expression is as a
correlation of the correlation matrices for X and for y (the correlations being taken between the
datapoints rather than the features). Building on this interpretation of the Gram matrices as a form
of correlation matrices, it becomes evident that such an affinity measure will only be capable of
capturing linear relationships, as correlation matrices lack higher-order information. This is not

4

surprising, since we are dealing with a linear network, and the same limitation would apply when
extending equations (10) and (11) to more complex models using a Taylor approximation of their
output. This limitation highlights the main drawback of the approach in this section: while capturing
the dependency on different architectures, these task-affinity metrics inherently lack the expressive
power of non-linear functions, resulting in (non-linear) feature blindness.

Despite these limitations, we show that the expression in equation (11) is nevertheless sufficient to
provide excellent semantic clustering on CIFAR10 as seen on Figure 1a. Specifically, the task-affinity
measure is able to group tasks in a way consistent with the semantic clustering of living and non-living
clustering, as suggested by the brighter squares in the middle and corners. It is worth noting that, in
the absence of exhaustive benchmarks, it is common practice in papers on task grouping to compare
the results of a heuristic to a semantic grouping [Sherif et al., 2024]. This capacity, combined with
its linear limitations, makes δ⊤b XX⊤δa a suitable baseline for comparison with the measure we
introduce in the next chapter.

(a) A simple measure based on a 2-layer network
shows perfect semantic clustering.

(b) The same measure on synthetic data rightly shows
a weaker interraction between task 4 and task 1,2,3 but
misses that task 1 is more similar to 2 than to 3

Figure 1: Heatmaps for task affinities computed based on Proposition 2

4 Empirical analysis of NTK-based task-affinity formulas

Linearization in the inputs (Section 2) significantly lessens the computational cost of S and Z, but it
fails to capture the full expressive power of neural networks. In contrast, work on telescoping Jeffares
et al. [2024] has shown that linearization in the weights accurately approximates the dynamics of the
next step in neural network training. To better capture the non-linear dynamics present in multi-task
learning, we propose using the linearization in the weights defined in Equation (7).

We study the alignment properties of its two components, the NTK and G, which was shown to be
key to understanding task-affinity measures in Section 2.3. As linearization in the weights presents
a significant computational challenge, we suggest directions for leveraging alignment properties to
reduce the computational cost.

Based on the resulting observations, we also explore whether averaging over initializations can
shorten the training time required to observe expected non-linear similarities.

4.1 Empirical analysis of NTK–G alignment

In this section, we empirically analyze the evolution of alignment between the Neural Tangent Kernel
(K) and the Gram matrices (G), as defined in Equation (7). Atanasov et al. [2021] and Shan and
Bordelon [2021] identified a phenomenon termed silent alignment, which can be understood as
the anisotropic learning of the Neural Tangent Kernel (NTK) while it adapts to features, followed
by isotropic growth in norm after achieving alignment between the NTK diagonal block Kaa and
the Gram matrix of the target YaY

T
a . This behavior bears notable similarities to the expression in

5

Equation 7, with the distinction that the latter pertains to off-diagonal blocks and involves replacing
the target Gram matrices with the Gram matrices of deviations (Gab).

This phenomenon is intriguing in its own right, but it could also lead to significant reductions in
computational cost. If, as in the case of silent alignment, such alignment occurs early in training, one
could compute S (or Z) only up to the point of alignment and then switch to an approximation. This
approximation would involve calculating only the norms of the NTK and G, potentially resulting in
substantially reduced computation.

Experimental setup. We train a four-layer dense neural network on a synthetic dataset containing
four classification tasks, designed as follows:

1. Tasks 1 and 2 share the quadratic feature (x2
1 + x2

2),

2. Task 3 is partially related to Tasks 1 and 2 through (x2
2), and

3. Task 4 is unrelated to the other tasks.

The dataset is structured so that Tasks 1, 2, and 3 exhibit equal affinities toward each other based on
the measure defined in Equation (11). Detailed experimental settings can be found in Appendix C.

(a) Alignment of the diagonal blocks on synthetic data. (b) Diagonal vs. off-diagonal matrices.

(c) The alignment between a single run and the mean
NTK over 5 runs.

Figure 2: In Figure 2a, the red lines represent the alignment of K with the target Gram matrix, while
the blue lines represent the alignment of K with G. Alignment between the diagonal blocks of K and
the target Gram matrix increases slightly at the beginning of training before stabilizing. However, the
alignment between K and G is substantially higher from the start and remains relatively stable, with
minor fluctuations. In Figure 2b, the gray dotted lines indicate alignment with the diagonal blocks,
and the colored lines correspond to the off-diagonal blocks. Alignment for off-diagonal blocks is
chaotic and stabilizes over a longer period compared to diagonal blocks, highlighting the distinct
dynamical behavior of off-diagonal components. In Figure 2c, we observe a relative convergence
of the NTK computed from a single run toward the mean NTK over 5 runs. Diagonal blocks of the
NTK quickly align with the mean NTK computed over 5 runs, while off-diagonal blocks achieve
alignment levels exceeding 0.8 after 60 epochs, even for the most erratic blocks.

Key observations. Our analysis identifies three significant alignment properties:

6

1. Diagonal block alignment: The alignment between the diagonal blocks of K and G is
comparable to—or even greater than—the alignment between K and the Gram matrix of y.

2. Off-diagonal block alignment: The alignment of off-diagonal blocks exhibits greater
instability and evolves over a longer timescale compared to the diagonal blocks, indicating
distinct dynamics.

3. Cross-model consistency: The Gab matrices across different initializations demonstrate
strong alignment throughout training. In contrast, the Kab matrices begin with significant
divergence but align strongly after sufficient training.

Observation 1 aligns with findings from Shan and Bordelon [2021] and Atanasov et al. [2021], though
the effect observed here is even more pronounced. This result is encouraging, as it suggests that after
an initial phase of feature learning, the numerator in our measures may depend primarily on the norms
of K and G. These norms could potentially be approximated using computationally cheaper methods
than calculating the full NTK. Observation 3 suggests that averaging across model initializations can
mitigate stochasticity, particularly for the off-diagonal blocks of K and G. However, Observation
2 highlights that relying solely on alignment predictability may not yield significant computational
savings if alignment occurs late in training or its timing is uncertain. To address these limitations,
we propose a method for computing S that averages the NTK and G matrices across multiple runs.
Preliminary results on synthetic data suggest that this method becomes sensitive to non-linear features
after approximately 50 epochs.

4.2 Reducing stochasticity through the mean over initialization.

Based on the observed fluctuations in the alignment of the off-diagonal blocks, we propose to reduce
this stochasticity of the alignment by averaging K and G across several models. Two key observations
support this decision:

1. Figures 2b and 2c indicate that the blocks of the NTK nearly converge across different
runs when given sufficient training time. However, a high degree of stochasticity at the
beginning of training obscures the information that might be present in the final NTK. The
same examination of G reveals that the alignment between any two runs is nearly perfect
(well above 0.9) from the very start of training. Based on these observations, we propose that
averaging over multiple runs for both G and the NTK could help mitigate the stochasticity
introduced by initialization.

2. The diagonal matrices of G, when squared element-wise and summed together, form a
square matrix whose diagonal elements are

∑c
k=1(f

k(xi)− yki)
2 = ||f(xi)− yi||2. This

expression is identical to the EL2N scores defined in Paul et al. [2021], where it was
observed that these scores do not provide meaningful information for pruning if measured
only at the beginning of training. However, they become informative when averaged over
10 different initializations. This observation suggests that averaging can mitigate some of
the randomness from initialization, prompting the question of whether the same effect might
occur with the full tensor G.

Figure 3: The tasks affinity computed at various epochs through the mean over 5 runs of K and G

We experimented with this approach by training five models, each with different initializations, on
our synthetic data. As shown in Figure 3, the strong affinity between tasks 1 and 2 becomes apparent
from epoch 50, while the other affinities align with our expectations. It is important to note that
negative values of S or P do not indicate negative transfer between tasks; instead, these measures

7

are intended solely for comparing task pairs relative to each other. This leads us to propose that
computing the measure from Equation 3 over a few epochs at the beginning of training, across
several runs, could be an effective way to estimate Sa 7→b. However, further investigation is required
to fully understand the potential savings and to assess its applicability to more complex datasets.

5 Conclusion

Our goal was to analyze and potentially accelerate the computation of gradient-based task similarity
measures (such as S or Z), which are traditionally calculated over the entire training trajectory. To
this end, we explored two forms of linearization to simplify the learning dynamics of neural networks.

The first, linearization in the input space, allows us to derive simple formulas for S or Z that
are architecture dependent. One of these formulas connects the CKA to a 2 layers network for
classification. However, this approach is fundamentally limited by its linear nature, rendering it
unable to capture the non-linear relationships inherent in neural networks.

The second, more informative approach, involves linearization in the weight space. From a theoretical
perspective, this revealed the equivalence of two widely used task-affinity measures and highlighted
the importance of a key quantity: the alignment between the off-diagonal blocks of the NTK matrix
(K) and the tensor G.

We empirically investigated the alignment properties between the block matrices of K and G and
described three significant alignment properties. Additionally, we proposed a method to reduce the
initial stochasticity of alignment in the off-diagonal blocks by averaging the NTK and G matrices
over several stochastic initializations. On our synthetic data, this method successfully identified
non-linear task similarities after 50 epochs of training.

More work is necessary to determine whether NTK-based methods can lead to more efficient
computations of task-affinity measures. In particular, future research should investigate the impact
of computing the NTK on subsets of data points of varying sizes, the speed of alignment across
different architectures and datasets, and the regularity of the NTK norm evolution after alignment.
These directions could further enhance the practicality of NTK-related methods for task grouping in
multi-task learning.

References
Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The

silent alignment effect. arXiv preprint arXiv:2111.00034, 2021.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on
centered alignment. The Journal of Machine Learning Research, 13:795–828, 2012.

Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks.
Advances in Neural Information Processing Systems, 34:4947–4960, 2021.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 27503–27516. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper_files/paper/2021/file/e77910ebb93b511588557806310f78f1-Paper.pdf.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Alan Jeffares, Alicia Curth, and Mihaela van der Schaar. Deep learning through a telescoping lens: A
simple model provides empirical insights on grokking, gradient boosting & beyond. arXiv preprint
arXiv:2411.00247, 2024.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

8

https://proceedings.neurips.cc/paper_files/paper/2021/file/e77910ebb93b511588557806310f78f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e77910ebb93b511588557806310f78f1-Paper.pdf

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on
training. arXiv preprint arXiv:2105.14301, 2021.

Ammar Sherif, Abubakar Abid, Mustafa Elattar, and Mohamed ElHelw. Stg-mtl: scalable task
grouping for multi-task learning using data maps. Machine Learning: Science and Technology, 5
(2):025068, 2024.

Xiaozhuang Song, Shun Zheng, Wei Cao, James Yu, and Jiang Bian. Efficient and effective multi-task
grouping via meta learning on task combinations. Advances in Neural Information Processing
Systems, 35:37647–37659, 2022.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 9120–9132. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/standley20a.html.

Chenguang Wang, Xuanhao Pan, and Tianshu Yu. Towards principled task grouping for multi-task
learning. arXiv preprint arXiv:2402.15328, 2024.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

A Theoretical derivations

A1 The Neural Tangent Kernel NTK

The NTK, introduced by Jacot et al. [2018], is defined as:

Kkl[xi, xj] = ∇θf
k(xi)

T∇θf
l(xj),

where fk(xi) represents the k-th output of the model for input xi, and θ denotes the vector of network
parameters. The NTK captures the relationship between changes in model parameters and output
function changes, providing a way to study the model’s behavior during training. The NTK naturally
appears when linearizing the neural network’s trajectory with respect to its weights during training
via gradient descent with step η.

df(xi)

dt
= ∇θf(xi)

T dθ

dt
= −η

∑
j

K[xi, xj]
∂L

∂f(xj)
.

A key result from Jacot et al. [2018] is that, in the infinite width limit of neural networks, the NTK
becomes deterministic and remains constant throughout training. In practice, the NTK’s behavior in
finite-width networks is more complex, evolving over time.

A2 Taylor approximation for Z

As under the assumption 1 the weights stay constant during a full epoch, we compute the update on
a full epoch. The Taylor approximation gives:

Lb(X;ϕt+1
a ; θtb)− Lb(X;ϕt; θtb) = (∇ϕtLb)T (ϕt+1

a − ϕt
a),

where ϕt+1
a are the share weights after training a full epoch on the loss a only. Using gradient descent,

ϕt+1
a = ϕt

a − η∇ϕL
a(ϕt).

we get

Zt
a 7→b ≈ η

(∇ϕLb)
⊤∇ϕLa

Lb(ϕt, θtb)

where it is important to note that the gradients are computed only in relation to the shared weights.

9

https://proceedings.mlr.press/v119/standley20a.html

A3 Taylor approximation for S

Derivation of S
Lb
b(t+ 1)− Lb

a,b(t+ 1) = (∇ϕ,θbL
b)T (∆W|b −∆W|a,b),

where ∆W|b and ∆W|a,b represent the parameter updates when training only on class b and jointly
on classes a and b, respectively.

Using gradient descent, update on any set of classes S is

W t+1
S = W t − η

∑
j∈S

∇ϕ,θjL
b(W t).

We compute the difference:

∆W|b −∆W|a,b = (W t+1
|b −W t)− (W t+1

|a,b −W t).

which gives:

St
a 7→b =

Lb
b(t+ 1)− Lb

a,b(t+ 1)

Lb
b(t)

= η
(∇ϕ,θbL

b)T∇ϕ,θaL
a

Lb
b(t)

.

where
∇ϕ,θbLb =

1

N

∑
x∈X

∇ϕ,θbLb(x;ϕ, θb).

Substituting this into our earlier expression for St
a7→b, we get:

St
a7→b = η

(
1
N

∑
x∈X ∇ϕ,θbLb(x;ϕ, θb)

)T (1
N

∑
x∈X ∇ϕ,θaLa(x;ϕ, θa)

)
1
N

∑
x∈X Lb(x;ϕ, θb)

.

Given that we use cross-entropy as the loss function, we apply the chain rule to further refine the
expression.

∇ϕ,θbLb =
1

N

∑
x∈X

∂Lb(x)

∂fb(x)
∇ϕ,θbfb(x) =

1

N

∑
x∈X

(fb(x)− yb(x))∇ϕ,θbfb(x).

Similarly, for ∇ϕ,θaLa:

∇ϕ,θaLa =
1

N

∑
x∈X

(fa(x)− ya(x))∇ϕ,θafa(x).

Let db ∈ RN and da ∈ RN be the vectors of deviations:

db =

 fb(x1)− yb(x1)
...

fb(xN)− yb(xN)

 , da =

 fa(x1)− ya(x1)
...

fa(xN)− ya(xN)

 .

Let Kba ∈ RN×N be the NTK matrix with entries Kba(xi, xj).

The numerator can then be written as:

Numerator =
1

N2
d⊤
b Kbada.

Substituting this back into St
a7→b, we have:

St
a 7→b = η

1
N2d

⊤
b Kbada

1
N

∑
x∈X Lb(x;ϕ, θb)

= η
d⊤
b Kbada

N
∑

x∈X Lb(x;ϕ, θb)
.

10

B

B1 Derivation for proposition 1

We now consider a 2-layer neural network with sigmoid activation at each output and a binary
cross-entropy (CE) loss summed over all classes. The input data is X ∈ RN×d, with first layer
weights W1 ∈ Rh×d and second layer weights W2 ∈ Rc×h. The hidden layer activations are
H = XW1⊤ ∈ RN×h, and the logits are O = HW2⊤ ∈ RN×c. Labels for each class are denoted
by ya,yb ∈ RN×1. The loss function is given by:

Loss = − 1

N

N∑
i=1

c∑
j=1

[yij log(ŷij) + (1− yij) log(1− ŷij)] .

We want to compute:

E[S0
a→b] = E[

∆Lb

L
{b}
b

].

where ∆Lb is the difference in losses between training on both classes {a, b} and training only on
class b. In the following derivation, as well as in B2, we approximate the denominator L{b}

b by the loss
at initialization, L(W), leveraging the assumption of small step sizes. Furthermore, L(W) is assumed
to be approximately constant across different random initializations of the network weights. This
assumption is justified based on the concentration of measure phenomenon for Lipschitz functions
of Gaussian random variables and our small weights initialization assumption. We develop this
argument in the following points:

1. Lipschitz continuity of the loss function:

The loss function L(W) depends on the weights W through the network outputs and the loss
computation. We aim to show that L(W) is Lipschitz continuous with respect to W .

1a. Sigmoid activation function:

The sigmoid function σ(z) = 1
1+e−z has the derivative:

σ′(z) = σ(z)(1− σ(z)) ≤ 1

4
,

since σ(z)(1− σ(z)) reaches its maximum value of 1
4 at z = 0. Therefore, the sigmoid function is

Lipschitz continuous with Lipschitz constant Lσ = 1
4 :

|σ(z1)− σ(z2)| ≤ Lσ|z1 − z2|.

1b. Network outputs:

The pre-activation outputs (logits) Zij are linear functions of W . Since W has small entries, Zij are
also small, and thus σ(Zij) ≈ 0.5.

1c. Cross-entropy loss function:

For the binary cross-entropy loss, the loss for one sample and one class is:

Lij(W) = − [yij log(ŷij) + (1− yij) log(1− ŷij)] ,

where ŷij = σ(Zij).

Since ŷij ≈ 0.5, ŷij is bounded away from 0 and 1. The logarithmic functions log(ŷij) and
log(1 − ŷij) are Lipschitz continuous on the interval [δ, 1 − δ] for some δ > 0, with Lipschitz
constants Llog depending on δ.

1d. Combined Lipschitz constant:

Each Lij(W) is Lipschitz continuous with respect to W . Since

11

L(W) =
1

N

N∑
i=1

c∑
j=1

Lij(W)

is a finite sum of Lipschitz functions, it is Lipschitz continuous with Lipschitz constant LL, which is
proportional to the constants from the activation and loss functions.

2. Concentration inequality:

Let f : Rd → R be an Lf -Lipschitz function, and let Z ∈ Rd be a random vector with independent
Gaussian entries Zi ∼ N (0, σ2). Then, from standard concentration inequalities for Lipschitz
functions of Gaussian variables, we have:

P (|f(Z)− E[f(Z)]| ≥ t) ≤ 2 exp

(
− t2

2L2
fσ

2

)
.

Applying this to L(W) with Lipschitz constant LL, we get:

P (|L(W)− E[L(W)]| ≥ t) ≤ 2 exp

(
− t2

2L2
Lσ

2

)
.

By choosing σ sufficiently small (as part of our small weights initialization assumption), we can
make L2

Lσ
2 arbitrarily small. Consequently, for any fixed t > 0, the probability

P (|L(W)− E[L(W)]| ≥ t)

becomes negligibly small.

Therefore, L(W) concentrates sharply around its mean E[L(W)], and we can approximate L(W) ≈
E[L(W)] across different initializations.

This justifies our assumption that the loss at initialization is effectively independent of the weights,
allowing us to treat L as constant in our derivations.

From here we focus on computing the numerator. The gradient of the loss with respect to the first
layer weights, W1, is:

∂Loss
∂W1

=
1

N

((
W2

)T (
σ(W2W1XT)−YT

))
X.

Similarly, the gradient with respect to the second layer weights, W2, is:

∂Loss
∂W2

=
1

N

(
σ(W2W1XT)−YT

)
X(W1)T .

Using the first-order Taylor approximation for the sigmoid function, σ(x) ≈ 1
2 + 1

4x, we obtain:

∂Loss
∂W1

=
1

N

((
W2

)T (1

2
1T
Nc +

1

4
(W2W1XT)−YT

))
X,

∂Loss
∂W2

=
1

N

(
1

2
1T
Nc +

1

4
(W2W1XT)−YT

)
X(W1)T .

To compute the effect of training on both classes a and b, the loss denominator corresponds to training
on the full dataset while considering only the loss from class b. This requires modifying Y to retain
only the entries in column b. For the numerator, we retain both columns a and b as non-zero.

The difference in gradients between training on both classes {a, b} and training only on class b is
given by:

12

∆

(
∂Loss
∂W1

)
=

1

N
w2⊤

a

(
1

2
1N − ya +

1

4
Oa

)
X.

Note that the change in w2
b is the same whether training on b only or on a and b, therefore the

difference in logits for class b after training on classes {a, b} versus training only on b is:

O
{a,b}
b −O

{b}
b = −ηX

(
∆

(
∂Loss
∂W1

)⊤
)
w2⊤

b .

Substituting the expression for ∆
(
∂Loss
∂W1

)
:

O
{a,b}
b −O

{b}
b = −ηX

(
X⊤

(
1

2
1N − ya +

1

4
Oa

)
w2

a

)
w2⊤

b .

Assuming w2
a = w2

b (this is necessary as otherwise all terms average to 0 when taking the mean), the
scalar product s = w2

aw
2⊤

b becomes s = ∥w2
a∥2, simplifying the difference in logits:

O
{a,b}
b −O

{b}
b = −ηsXX⊤

(
1

2
1N − ya +

1

4
Oa

)
.

Finally, the change in the loss is:

∆Lb =
1

2N
d⊤
b

(
O

{a,b}
b −O

{b}
b

)
,

where db = 2yb − 1N . Substituting the expression for O{a,b}
b −O

{b}
b :

∆Lb = − ηs

2N
d⊤
b XX⊤

(
1

2
1N − ya +

1

4
Oa

)
.

Assuming w2
a = w2

b at initialization, the dot product s = ∥w2
a∥2 becomes deterministic, and the

expected transfer gain S0
a→b can be expressed as:

E[S0
a→b] =

E[∆Lb]

L
{b}
b

.

Supposing that the initialization is Gaussian i.i.d., i.e., wi ∼ N (0, σ2), we need to compute :

E[∆Lb] = − η

2N
E
[(
w⊤

a wa

)
d⊤
b XX⊤

(
1

2
1N − ya +

1

4
Oa

)]
.

Term 1:

− η

2N
E
[(
w⊤

a wa

)
d⊤
b XX⊤

(
1

2
1N − ya

)]
Since wa has entries wa,k ∼ N (0, σ2), we have:

E
[
w⊤w

]
= hσ2,

where h is the number of hidden units.

Term 2:

− η

2N
E
[(
w⊤

a wa

)
d⊤
b XX⊤ 1

4
Oa

]
.

When expanding encounter cubic terms like w2
a,kwa,k and w2

a,kwi for i ̸= k.

13

For Gaussian variables with zero mean, odd moments are zero:

E[w3
a,k] = 0.

For i ̸= k:

E[w2
a,kwa,i] = E[w2

a,k]E[wa,i] = 0.

Note here that without our assumption that wa = wb the expectation would have been 0. Instead, we
get:

E[∆Lb] = −ηhσ2

2N
E
[
d⊤
b XX⊤

(
1

2
1N − ya

)]
.

As the purpose of the measure is to compare pairs of tasks between themselves, and making the
approximation that the loss at initialization is always the same, we can drop the coefficients and get:

E[S0
a→b] ∝ d⊤

b XX⊤da

B2 Derivation for proposition 2

We consider c balanced tasks and a modified loss function adapted so that negative samples have the
same impact as positive ones. For class j, the loss is defined as:

Lossj =
N∑
i=1

[
(c− 1)yji log(σ(o

j
i)) + (1− yji) log(1− σ(oji))

]
,

where σ(oji) = ŷji is the sigmoid of the logit oji .

The derivative of the loss with respect to oji is:

∂Li

∂oji
= (c− 1)yji (1− σ(oji))− (1− yji)σ(o

j
i).

Building on the observation in Appendix B2 that the terms in O will average out, we drop them now
to simplify and we approximate σ(oji) ≈ 0.5. Substituting this approximation gives:

∂Li

∂oji
≈ 1

2

(
(c− 1)yji − (1− yji)

)
.

This simplifies to:

δji =
1

2

(
cyji − 1

)
.

In vector form, the gradient δj ∈ RN can be expressed as:

δj =
1

2
(cyj − 1) ,

where yj is the vector of labels for class j and 1 is a vector of ones.

The gradient with respect to W1 is:

∂Lossj
∂W1

=

N∑
i=1

δji
∂hj

i

∂W1
.

14

Since oji = W2jhi and hi = W1xi, where W2j is a row vector, we have:

∂oji
∂W1

= W⊤
2jx

⊤
i .

With a learning rate η, the update to W1 due to training on both classes is:

∆W1 = −η

(
∂Loss
∂W1

)
{a,b}

.

The difference in W1 after training on both classes versus only class b is:

−η∆

(
∂Loss
∂W1

)
= − η

N
w2⊤

a δ⊤a X.

From here we repeat the reasoning of Appendix B2 to get

E[S0
a→b] ∝ δ⊤b XX⊤δa

B3 Centered Kernel Alignment (CKA)

The concept of CKA was introduced in Cortes et al. [2012] and is defined for two kernel matrices K
and K′ as follows:

CKA(K,K′) =
⟨Kc,K

′
c⟩F

∥Kc∥F ∥K′
c∥F

,

where Kc and K′
c are the centered versions of K and K′, corresponding to centering the data in the

feature space. Here, ⟨·, ·⟩F denotes the Frobenius inner product, and ∥ · ∥F is the Frobenius norm.

Specializing this definition to our case of interest implies centering both Y and X before computing
their Gram matrices, which is precisely what the − 1

c1 does if the classes are balanced and non-
overlapping.

The CKA has been used in various studies to compare the representations learned across different
neural networks, providing insights into the similarity and alignment of these representations.

C Data and models

C1 Data

In our experiments, we use a synthetic dataset designed to study task affinities under controlled
conditions. The dataset consists of multiple tasks, each associated with a specific geometric structure
in feature space. Specifically, tasks 1, 2, and 3 are constructed to have identical linear correlations as
measured by the matrix product XX⊤yy⊤ between any pair of these tasks. This ensures that linear
measures of similarity cannot distinguish between these tasks, allowing us to investigate the ability of
non-linear measures to capture deeper relationships.

The dataset is generated as follows:

Feature space The feature matrix X ∈ RN×d consists of N samples with d features. For visualiza-
tion and construction purposes, we focus on the first five features (x1, x2, x3, x4, x5).

Task 1: Cylindrical structure Task 1 is defined such that the positive samples form a space
between two concentric cylinders aligned along the x3 axis. Mathematically, the samples satisfy:

.65 ≤
√

x2
1 + x2

2 ≤ .7,

where r1 and r2 are the inner and outer radii of the cylinders, respectively. This creates a hollow
cylindrical shell in the x1-x2 plane extended along x3.

15

Task 2: Conical structure Task 2 is defined such that the positive samples satisfy:

0.4 < x2
1 + x2

2 − x3 < 0.5.

This equation represents a cylinder in three-dimensional space, where the cross-section in the x1-x2

plane is a circle shifted along the x3 axis. The inequality specifies a thin shell between two parallel
circular surfaces, creating a hollow conic region.

Task 3: Spherical structure Task 3 is defined such that the positive samples form a space between
two spheres centered at the origin (which is the shared center with Tasks 1 and 2). The samples
satisfy:

.4 ≤
√
x2
1 + x2

2 + x2
3 ≤ .5,

where s1 and s2 are the inner and outer radii of the spheres. This creates a spherical shell in the 3D
space of x1, x2, and x3.

Task 4 Task 4 designed to be unrelated to the first three tasks, serving as baseline.

C2 Ensuring identical linear correlations

By constructing the tasks as described, we ensure that the linear correlations between any pair of
Tasks 1, 2, and 3, as measured by XX⊤yy⊤, are the same. This is because the tasks share the same
center and their positive samples occupy regions that are symmetric and equidistant in the feature
space.

Purpose of the design The design of the synthetic dataset serves to test the ability of task similarity
measures to capture non-linear relationships. Since linear correlations cannot distinguish among
Tasks 1, 2, and 3, a measure sensitive to non-linear features is required to correctly identify the
underlying similarities and differences among these tasks.

C3 Model and training details

Our model is a neural network designed for multi-class classification with the following structure:

Network architecture

• Input Layer: The input shape is (batch_size, d), where d is the input dimensionality (set to
10 in our experiments).

• First Hidden Layer: A dense layer with hidden_width units (set to 256), weights initialized
with a standard deviation of W first

std = 1 and biases with bfirst
std = 0.05. This layer is followed

by Layer Normalization and a ReLU activation function.
• Subsequent Hidden Layers: We use num_layers − 1 additional dense layers, each with

hidden_width units. The weights and biases are initialized with standard deviations of
W other

std = 0.6 and bother
std = 0.05, respectively. Each layer is followed by Layer Normalization

and a ReLU activation function. In our experiments, num_layers is set to 4.
• Output Layer: A dense layer with nclasses units, where nclasses = 4. The weights and

biases of this layer are initialized with W other
std = 0.6 and bother

std = 0.05. A sigmoid activation
function is applied to each output unit for independent multi-class predictions.

Training and loss function. The network is trained using stochastic gradient descent (SGD) with
a learning rate of 1 (in jax which scales down the output of each layer by 1

sqrtwidth). The training
process uses a batch size of 128. The binary cross-entropy (BCE) loss function is employed with
class weighting to address class imbalance:

wi =

{
nclasses − 1 if yi = 1,

1 otherwise.
(12)

16

The BCE loss for a sample is computed as:

L = −
∑
i

wi [yi log(pi) + (1− yi) log(1− pi)] , (13)

where pi is the predicted probability for the i-th sample. The use of class weights ensures that
positive labels are emphasized during training. The training spans 300 epochs with alignment metrics
computed every 4 epochs.

Hyperparameters. The key hyperparameters used in our model and training process are summa-
rized as follows:

• Number of Classes (nclasses): 4
• Input Dimension (d): 10
• Number of Layers (num_layers): 4
• Hidden Width (hidden_width): 256
• First Layer Weight Std (W first

std): 1

• First Layer Bias Std (bfirst
std): 0.05

• Other Layers Weight Std (W other
std): 0.6

• Other Layers Bias Std (bother
std): 0.05

• Batch Size: 128
• Learning Rate: 1
• Number of Epochs: 300
• Subsampling per Class: 50 datapoints

This setup forms the basis of our model, training, and evaluation strategy for the multi-class classifi-
cation task.

D Code availability

The code for reproducing the experiments and results presented in this paper will be made available
at the following GitHub repository:

https://github.com/yoannmorello/NTK-MTL.git

17

https://github.com/yoannmorello/NTK-MTL.git

	Introduction
	Relating existing measures of task affinity through the NTK
	Background
	Relating existing measures
	Connecting task affinity with data pruning

	Architecture-dependent task affinities
	Explicit expressions for linear networks

	Empirical analysis of NTK-based task-affinity formulas
	Empirical analysis of NTK–G alignment
	Reducing stochasticity through the mean over initialization.

	Conclusion
	Theoretical derivations
	The Neural Tangent Kernel NTK
	Taylor approximation for Z
	Taylor approximation for S

	
	Derivation for proposition 1
	Derivation for proposition 2
	Centered Kernel Alignment (CKA)

	Data and models
	Data
	Ensuring identical linear correlations
	Model and training details

	Code availability

