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Abstract

The growing scale of Large Language Models (LLMs)
has necessitated the development of parameter-efficient
fine-tuning techniques. Low-Rank Adaptation (LoRA) has
emerged as a promising approach, reducing the number of
trainable parameters by applying low-rank updates to pre-
trained weights. While standard LoRA learns both update
factors directly, several recent variants first initialize those
matrices via an SVD of the pretrained weights—an opera-
tion that can be expensive on large models and yields sin-
gular vectors that are not always easy to interpret. In this
work, we extract an orthonormal basis from the pretrained
weight matrix using QR decomposition with column pivot-
ing, and then express the LoRA update as a linear combi-
nation of these basis vectors—training only the scalar co-
efficients, which imposes clear structure on adaptation and
drastically reduces parameter count. Experiments across
GLUE tasks show that QR-LoRA matches or exceeds the
performance of full fine-tuning, standard LoRA, and SVD-
LoRA (LoRA with update matrices initialized via singular
value decomposition) with as few as 601 parameters—a
reduction of over 1000× compared to full fine-tuning and
77× fewer than typical LoRA setups.

1. Introduction

The rapid proliferation of Large Language Models (LLMs)
has revolutionized NLP, enabling breakthroughs in tasks
from machine translation to question answering. However,
fine-tuning these models end-to-end requires updating hun-
dreds of millions, or even billions, of parameters, incur-
ring substantial computational, storage, and environmental
costs. Resource-constrained settings such as on-device per-
sonalization motivate methods that adapt large models with
minimal parameter overhead while preserving accuracy.

Existing parameter-efficient adapters such as Low-Rank
Adaptation (LoRA) decompose each weight update ∆W
into a product BA, reducing trainable parameters from

O(d2) to O(rd) [9]. SVD-based variants further compress
by selecting singular vectors, but require expensive decom-
positions per matrix and produce bases without an inherent
notion of importance ordering. Consequently, even state-of-
the-art adapters often demand tens of thousands of parame-
ters to match full fine-tuning performance.

In this work, we propose QR-LoRA, a novel adapter that
constructs an orthonormal basis via pivoted QR decomposi-
tion of each frozen weight matrix. Pivoting naturally orders
basis vectors by the magnitudes of the diagonal entries of
R, yielding an interpretable ranking of directions. We then
parameterize the update as

∆W =

r∑
i=1

λi QiR
T
i ,

training only the scalar coefficients {λi}. This approach
fixes the basis Q and upper-triangular factors R, requir-
ing as few as 601 trainable parameters for a RoBERTa-base
model while retaining rich representational capacity.

We evaluate multiple QR-LoRA configurations on eight
tasks from the GLUE benchmark [19], comparing against
full fine-tuning, standard LoRA, and SVD-LoRA. The
smallest variant (which trains only 601 parameters) matches
or outperforms full fine-tuning on four tasks and standard
LoRA on five tasks, while training 1000× fewer parame-
ters than full fine-tuning and 77× fewer than LoRA. These
results demonstrate that pivoted QR bases enable highly
parameter-efficient adaptation without sacrificing accuracy.

In Appendix A, we provide some related work on LoRA
and matrix decomposition.

2. Background
In this section, we review the two main ingredients under-
lying QR-LoRA: low-rank adapters (LoRA) and the QR de-
composition with thresholding.

2.1. Low-Rank Adapters (LoRA)
LoRA [9] injects trainable low-rank update matrices into
transformer weight layers while keeping the majority of the



pre-trained parameters frozen. Concretely, for a weight ma-
trix W ∈ Rd×d, LoRA parameterizes the update as

∆W = BA, B ∈ Rd×r, A ∈ Rr×d, r ≪ d,

where only A and B are learned. This reduces the number
of trainable parameters from O(d2) to O(r d), often recov-
ering most of the full fine-tuning performance at a small
fraction of the cost. Subsequent work has explored alterna-
tive factorization schemes (e.g. SVD-LoRA, QLoRA) and
adaptive rank selection (AdaLoRA).

2.2. QR Decomposition with Thresholding
The QR decomposition factorizes a matrix W ∈ Rd×d into
an orthonormal factor Q and an upper-triangular factor R:

W = QR. (1)

When combined with column-pivoting or magnitude-based
thresholding, QR yields a truncated basis that retains the
most “energetic” directions of W . Given a threshold τ ∈
(0, 1), one can select the smallest k such that

∑k
i=1|Rii| ≥

τ
∑d

j=1|Rjj |, and use only the first k columns of Q (and
corresponding rows of R) for downstream updates. This
produces an adaptive low-rank approximation that is both
orthonormal and interpretable, and can be computed effi-
ciently even on large weight matrices.

3. Methodology: QR-LoRA
3.1. Low-Rank Update via Orthonormal Basis
We propose modifying LoRA by introducing a QR-based
adaptation mechanism. Given a pretrained weight matrix
W0 ∈ RL×M , we first compute its reduced QR decomposi-
tion [17]:

W0 = QR, (2)

where Q ∈ RL×L is an orthonormal matrix and R ∈ RL×M

is upper triangular. We propose to use QR decomposition
with column pivoting [6], so it reorders the columns dur-
ing the decomposition process so that the magnitudes of the
diagonal entries of R are arranged in non-increasing order,
thereby aligning the “importance” of components with their
order in the decomposition. That is, the diagonal elements
satisfy R11 ≥ R22 ≥ · · · ≥ RMM .

We define the low-rank update as:

∆W =

r∑
i=1

λiQiR
T
i , (3)

where Qi is the i-th column of Q, RT
i is the column vector

obtained by transposing the i-th row of R, and λi are train-
able scalars. This construction ensures that ∆W maintains
the same dimensions as W0, while dramatically reducing
the number of trainable parameters.

We can compute the cumulative energy (e.g., the sum
of squared diagonal entries) and choose the smallest r such
that [4] ∑r

i=1 R
2
ii∑M

i=1 R
2
ii

≥ τ, (4)

where τ is a threshold (say, 90–95%). This way, r is se-
lected based on how much of the “information” in W0 is
captured. For example, in RoBERTa-Base, M = 768.
When we used τ = 0.5 and apply QR-LoRA for Wq in
the last transformer layer, we have r = 150.

3.2. Theoretical Motivation and Impact of Or-
thonormality

The use of an orthonormal basis Q as the foundation for
adaptation provides several important theoretical and practi-
cal benefits. First, orthonormal columns in Q guarantee that
each learned direction is independent and non-redundant,
improving numerical conditioning and ensuring stable gra-
dients [18].

Moreover, by limiting ∆W to a low-dimensional, fixed
orthonormal subspace acts as a strong regularizer, poten-
tially reducing overfitting. This connects to recent work
on the intrinsic dimension of fine-tuning [1, 12], where re-
stricting parameter updates to a small subspace was shown
to improve generalization, especially in data-rich regimes.
Additionally, the magnitude of each Rii provides a clear
interpretation of the importance of each basis direction, fa-
cilitating principled rank selection and offering insights into
the underlying structure of W0.

While SVD produces singular vectors ordered by singu-
lar values (optimal for matrix approximation in the least-
squares sense), QR with column pivoting provides a com-
putationally efficient, interpretable alternative for orthonor-
mal basis construction. QR is particularly attractive for very
large matrices where full SVD is prohibitive, and has seen
wide use in numerical linear algebra and signal process-
ing [6, 17].

Taken together, these properties endow QR-LoRA with
both strong theoretical grounding and significant practical
advantages for efficient, robust adaptation of large-scale
neural networks.

4. Experiments
4.1. Experiment Setup
We evaluate our approach on a subset of the GLUE bench-
mark [19], specifically using the tasks MNLI, MRPC, SST-
2, CoLA, QNLI, QQP, RTE, and STS-B. For each task, we
train on up to min(10000, |train|) examples, ensuring con-
sistency in data scale across experiments.

All methods use RoBERTa-base (125M parameters) as
the starting point, which is first warm-up fine-tuned for
three epochs. For the baseline comparisons, we include full



Category Configuration # of Trainable P Accuracy-1 (%) Accuracy-2 (%)

Fine-tuning 3 + 5 epochs 125M 81.99 82.17
Original LoRA ∆W = BA, r = 2 92,160 81.96 82.22
SVD-LoRA r = 2, k = 1, α = 2 46,080 80.14 80.48

QR-LoRA τ = 0.5, all 12 layers Wo 1,702 82.05 82.29
τ = 0.7, all 12 layers Wo 3,142 82.04 82.25
τ = 0.8, all 12 layers Wo 4,053 82.07 82.28

QR-LoRA τ = 0.5, last 4 layers Wo 614 81.99 82.19
τ = 0.5, last 4 layers Wq , Wv 1,311 81.98 82.22
τ = 0.5, all 12 layers Wo 1,702 82.05 82.29

Table 1. Overview of experimental runs on MNLI

Category Configuration # of Trainable P Accuracy (%) F1 (%)

Fine-tuning 3 + 5 epochs 125M 87.99 91.42
Original LoRA ∆W = BA, r = 2 92,160 88.97 87.00
SVD-LoRA r = 2, k = 1, α = 2 46,080 87.75 91.20

QR-LoRA (τ sweep) τ = 0.5, all 12 layers Wo 1,702 88.73 91.96
τ = 0.7, all 12 layers Wo 3,142 88.73 91.96
τ = 0.8, all 12 layers Wo 4,053 88.73 91.96

QR-LoRA (layer sweep) τ = 0.5, last 4 layers, Wo 614 88.97 92.15
τ = 0.5, last 4 layers, Wq , Wv 1,311 88.73 91.96
τ = 0.5, all 12 layers, Wo 1,702 88.73 91.96

Table 2. Overview of experimental runs on MRPC

fine-tuning (FT), in which all parameters are updated, and
standard LoRA, where we freeze the transformer and learn
a low-rank update ∆W = BA with B ∈ Rd×r, A ∈ Rr×d,
and r = 2. We also implement SVD-LoRA, which main-
tains the same rank (r = 2), but initializes B and A using
the top-k singular vectors of each weight matrix, with scal-
ing by α/r.

QR-LoRA configurations. QR-LoRA treats the back-
bone encoder as frozen and injects a low-rank adapter
into selected attention projections. For each weight matrix
W ∈ {Wq,Wk,Wv,Wo} chosen for adaptation, we com-
pute a pivoted-QR decomposition W = QR. Let r be the
number of diagonal entries of R whose magnitude exceeds
τ R11; we keep the corresponding r columns of Q as an or-
thonormal basis B and learn a diagonal coefficient matrix
A ∈ Rr×r, updating W ←W +BA. All other parameters
of the transformer remain frozen.

We explore three axes of variation:

1. Threshold: τ ∈ {0.5, 0.7, 0.8}, controlling the retained
rank r.

2. Adapter scope: adapters inserted in (i) the final four at-
tention blocks or (ii) all twelve blocks of RoBERTa-base.

3. Projection set: adapting (a) output projections Wo only,
(b) the pair (Wq,Wv), or (c) all three (Wq,Wv,Wo).
Layers and projection matrices not selected for adapta-

tion are left unchanged.

4.2. QR-LoRA Performance
In Tables 1 and 2, we summarize the performance of our
experiments for MNLI and MRPC respectively. In Table 1,
Accuracy-1 is “Matched Accuracy” which refers to evalua-
tion on the same genre as the training data. For example, if
the training data includes fiction, government, and travel,
the matched set contains test examples from these same
genres. Accuracy-2 is the “Mismatched Accuracy” which
refers to evaluation on different genres than those seen dur-
ing training.

Results on MNLI and MRPC. Across the configurations
we explored, QR-LoRA attains up to 82.07 % matched /
82.29 % mismatched accuracy on MNLI and 92.15 % F1
on MRPC while requiring at most 1311 trainable parame-
ters (roughly 10−3 % of the model). These numbers are
within 0.1–0.3 pp of, and in several cases slightly above,
the 125M-parameter full-tuning baseline (Table 1, Table 2).



Method # of Trainable P MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

QR-LoRA1 1,311 82.10 94.84 88.73 59.57 92.75 91.36 73.29 89.53
QR-LoRA2 601 82.09 94.72 88.73 59.82 92.77 91.36 72.56 89.47
SVD-LoRA 46,080 80.31 91.97 87.75 61.58 87.73 85.07 67.51 90.15
LoRA 92,160 82.09 94.84 89.71 58.59 92.66 91.40 72.20 89.87
FT 125M 81.67 93.12 87.99 57.35 92.79 91.66 78.34 90.94

Table 3. Performance Comparison Across Different Methods: QR-LoRA1: (Wq, Wv, last 4, τ = 0.5), QR-LoRA2: (Wq only, last 4,
τ = 0.5), SVD-LoRA: (r = 2, k = 1, α = 2), LoRA: (∆W = BA, r = 2), and Fine-tuning (FT).

In Appendix, Figure 1 visualizes the resulting parame-
ter–performance trade-off where QR-LoRA has the lowest
parameter count—among the methods evaluated. Similarly,
on MRPC, QR-LoRA not only matches the overall accu-
racy of full fine-tuning (87.99%) but also surpasses it by
obtaining a top F1 score of 92.15% with only 614 parame-
ters—a clear improvement over the 91.42% F1 achieved by
fine-tuning and the results from other lightweight variants.
In Figure 1, we clearly see how QR-LoRA outperforms full
fine-tuning, original LoRA, and SVD-LoRA in both accu-
racy and F1 score. We can also notice that beyond 600 pa-
rameters, adding more (e.g. adapting Wv or Wo) yields no
additional gains.

We also evaluated two QR-LoRA configurations across
all 8 GLUE tasks and compared them to standard fine-
tuning and SVD-LoRA baselines (see results in table 3).
QR-LoRA1 tunes Wq and Wv in the last 4 attention lay-
ers (with τ = 0.5, and 1311 total parameters), while QR-
LoRA2 tunes only Wq in the last 4 attention layers (with
τ = 0.5, and 601 total parameters).

QR-LoRA1 improves on standard fine-tuning on a vari-
ety of the additional GLUE tasks tested. In particular, QR-
LoRA1 outperforms standard fine-tuning by 1.72 points on
SST-2 (94.84 vs. 93.12), 1.72 points on MRPC (88.73 vs.
87.99), and 2.22 points on CoLA (59.57 vs. 57.35). Even
on the subset of tasks where QR-LoRA1 does not do better
than standard fine-tuning (QNLI, QQP, and SST-2) for the
most part it is consistently competitive, coming within 1.5
points on each of these tasks.

QR-LoRA2 is able to remain competitive with QR-
LoRA1, coming within 0.7 points of QR-LoRA1’s per-
formance on all tasks. It is also able to outperform both
SVD-LoRA (≈ 46, 000 parameters) and standard LoRA
(≈ 92, 000 parameters) on some tasks, despite the large pa-
rameter discrepancy (≈ 77× fewer than SVD-LoRA, and
≈ 153× fewer than LoRA).

One notable discrepancy however, was in the results for
the RTE task, for which standard fine-tuning did far bet-
ter than all 4 of the other methods tested (QR-LoRA1, QR-
LoRA2, SVD-LoRA, and LoRA), with over a 5 point gap to
the second best technique, which was not observed for each
of the other tasks, which saw far tighter clustering among

the top techniques. We hypothesize that this is due to both
the inherent difficulty of the RTE task (which necessitates
quantifying entailment between two short sentences across
a variety of domains) and the small number of examples
afforded (at 2.5K training examples, this was, by some dis-
tance, the smallest of the 8 tasks we looked at).

In Appendix B, we provide more experimental results on
training-set size ablation study.

5. Conclusions and Future Work

In this paper, we propose a novel QR-LoRA method with
high efficiency in terms of the number of trainable param-
eters. We update only scalar coefficients λi on a fixed or-
thonormal basis, allowing us to achieve an extremely low
number of trainable parameters compared to Fine-Tuning
(FT), LoRA, and SVD-LoRA (LoRA with update matri-
ces initialized via singular value decomposition) while also
improving interpretability. Parameter-efficient fine-tuning
with QR decomposition shows strong scalability across data
regimes. Many areas remain of interest for future work.

One limitation is that we only tested on the GLUE bench-
mark, which limits the impact of our results (in particular,
assessing how well the observed performance gains from
QR-LoRA generalize beyond these settings). Future work
could be extended to evaluate on more challenging bench-
marks, such as SuperGLUE or generation-oriented datasets,
as well as assessing different architectures (ex. decoder-
only models like GPT-3 or multimodal transformers).

Additionally, we only applied QR-LoRA to the attention
projection matrices (Wq,Wk,Wv). In principle, the same
QR-based adaptation could be extended to other layer types
(feed-forward network weight matrices, embedding layers,
and output heads), representing a potential future work.

Across both MNLI and MRPC, we observed that
changes in key hyperparameters, such as the threshold
τ , number of layers tuned, and the weights adapted
(Wo,Wq,Wv) lead to only marginal differences in perfor-
mance (see Table 1 and Table 2). While this could suggest
that QR-LoRA is robust to hyperparameter choices, it might
also mean that our current evaluation setup lacks the reso-
lution to capture meaningful differences.
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A. Related Work

Adapter and Low-Rank Fine-Tuning. Parameter-
efficient fine-tuning has rapidly advanced in response to
the growing scale of large language models, with a central
theme being the development of adapter-based and low-
rank techniques. LoRA pioneered an efficient fine-tuning
approach by freezing most of a pre-trained model’s param-
eters and learning compact, low-rank updates represented
as a product of small matrices ∆W = BA, significantly
reducing computational overhead while maintaining high
performance [9]. This foundational idea has inspired
numerous variants and extensions. For example, QLoRA
introduced quantization into the LoRA framework by first
compressing model weights into a 4-bit representation and
then applying low-rank adaptations directly within this
quantized parameter space, pushing the limits of memory
efficiency for adaptation [5]. AdaLoRA further improved
on the original formulation by introducing dynamic rank al-
location, adjusting the rank of updates across layers during
training in response to singular value magnitudes, which
increased both parameter efficiency and flexibility [20].
NLoRA leveraged Nyström method-inspired sketches to
provide more efficient initializations, thus improving scal-
ability and reducing the computational burden of adapter
modules [7].

Beyond these, recent work has improved both efficiency
and expressivity. ALORA, LoRA-XS, and OLoRA intro-
duce adaptive allocation, extreme sparsity, and orthonormal
update bases, respectively, to better manage capacity and
cost [2, 3, 15]. DoRA separates weight magnitude from
direction via decomposed updates, improving parameter ef-
ficiency and training stability [14]. Tracking-LoRA intro-
duces dynamic subspace tracking from numerical linear al-
gebra, continually updating the low-rank space during train-
ing for faster convergence and better scalability on large
models [13]. SparseAdapter enforces structured sparsity
within adapters, reducing active parameters without degrad-
ing performance [8].

Matrix Decomposition for Compression. Low-rank
adapters leverage the finding that task-specific updates lie
in low-dimensional subspaces [1, 12]. Classical techniques
like SVD and PCA exploit this by truncating to leading
components, offering theoretical guarantees but incurring
high costs for large models [4, 17]. QR-LoRA reduces this
overhead using thresholded QR decomposition with column
pivoting to extract an ordered orthonormal basis, where the
diagonal of R ranks direction importance [6, 18]. Rather
than tuning basis vectors, we fine-tune linear combinations
of top-ranked directions via a global threshold, framing QR
as a lightweight tool for basis extraction. Beyond ma-
trix methods, tensor decompositions such as Tucker and

CP offer complementary compression strategies for future
subspace-adaptive designs [10, 11, 16].

B. More Experimental Results
B.1. Parameter-Performance Trade-off
Figure 1 visualizes the resulting parameter–performance
trade-off: QR-LoRA occupies the upper-left cor-
ner—highest accuracy at the lowest parameter
count—among the methods evaluated.

B.2. Training-Set Size Ablation
When does QR-LoRA help? To better understand the
performance characteristics of QR-LoRA, particularly in
light of its underperformance on RTE (a low-resource, out-
of-distribution task), we conducted a training set ablation
study using the MNLI dataset. Our goal was to assess how
QR-LoRA compares to standard LoRA and full fine-tuning
(FT) under varying amounts of training data. Specifically,
we evaluated all three methods on subsets of the MNLI
training set with 2000, 10000, and 50000 examples. The
results are shown in Table 4.

We observe a pronounced shift in performance dynamics
across the data regimes:

2000 examples: FT exceeds both LoRA variants by
roughly four percentage points.

10000 examples: QR-LoRA and FT perform indistin-
guishably.

50000 examples: QR-LoRA achieves the best matched
and mismatched accuracies.

These results indicate that QR-LoRA is most advanta-
geous in moderate- to high-resource settings where param-
eter efficiency is desired, while FT remains preferable in
the extreme low-resource regime. We hypothesize that this
is due to the fact that, with little data, the few trainable co-
efficients in QR-LoRA may under-fit, whereas FT can still
exploit its larger adjustment space; once the dataset passes
≈ 10, 000 examples, the stronger implicit regularization of
QR-LoRA allows it to overtake FT. Extending this analysis
to additional datasets and to tasks with substantial distribu-
tion shift (e.g. RTE) is left to future work.
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Figure 1. Effect of trainable parameter count on downstream performance. Top row: MNLI matched (left) and mismatched (right) accuracy;
bottom row: MRPC accuracy (left) and F1 (right), for Fine-tune, Original LoRA, SVD-LoRA and QR-LoRA variants.

Configuration # of Trainable P Training Data Size Accuracy-1 (%) Accuracy-2 (%)

LoRA 92,160 2,000 72.34 73.09
QR-LoRA 1,311 2,000 72.39 73.50
FT 125M 2,000 76.92 76.95

LoRA 92,160 10,000 81.96 82.22
QR-LoRA 1,311 10,000 81.98 82.23
FT 125M 10,000 81.99 82.17

LoRA 92,160 50,000 84.88 84.68
QR-LoRA 1,311 50,000 84.91 84.71
FT 125M 50,000 84.42 84.26

Table 4. Overall accuracy-1 (matched accuracy) and accuracy-2 (mismatched accuracy) for MNLI with LoRA variants under varying
training data sizes. LoRA: (∆W = BA, r = 2), QR-LoRA: (last 4 layers, Wq,Wv , τ = 0.5), FT: Fine Tuning.
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