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b)	VLM-TAMP:	VLM	Subgoals	+	TAMP	(ours)
For	each	subgoal	VLM	suggests,	TAMP	fill	in	actions	to	clear	
away	collisions	resulted	from	articulated	&	movable	obstacles.	

a)	TAMP	Alone
Need	goal	formula;

Need	domain	knowledge;
Fail	due	to	a	large	state	space.

c)	VLM	Actions	
+	motion	planning

Fail	due	to	obstacles.

Initial	State	
Subgoal:	In(Chicken, Pot)

TAMP	Generated	Actions
1.	pick(RightArm, Lid)

2.	place(Chicken, Pot)

Initial	State	
Subgoal:	closed(CabinetDoor)

TAMP	Generated	Actions
1.	place(Salter, Counter)

2.	close(CabinetDoor)

Initial	State	
VLM	Action:	pick(Lid)

Motion	planning	fail	since	
the	pot	gets	in	the	way

Initial	State	
VLM	Action:	pick(Salter)

Motion	planning	fail	since	
there’s	no	empty	hand

Initial	State	
Goal:	Exist(ChickenSoup)

Action	4

Action	10	

Action	6	

Action	22	

TAMP	needs	to	generate	30+	
actions	at	once,	on	21	objects.

Fig. 1: Our approach VLM-TAMP overcomes the pitfalls of using TAMP alone and VLM task then motion planning when solving
long-horizon robot manipulation problems. a) Pure TAMP fails when there are large state spaces and a long-horizon goals. c) VLMs fail
at geometric reasoning by predicting actions that cannot be safely refined with motion planning. b) VLM-TAMP uses VLM to take in a
natural language goal, generate subgoals, solve a sequence of smaller problems that respect all geometric constraints using TAMP.

Abstract— Vision-Language Models (VLM) can generate
plausible high-level plans when prompted with a goal, the
context, an image of the scene, and any planning constraints.
However, there is no guarantee that the predicted actions are
geometrically and kinematically feasible for a particular robot
embodiment. As a result, many prerequisite steps such as
opening drawers to access objects are often omitted in their
plans. Robot task and motion planners can generate motion
trajectories that respect the geometric feasibility of actions
and insert physically necessary actions, but do not scale to
everyday problems that require common-sense knowledge and
involve large state spaces comprised of many variables. We
propose VLM-TAMP, a hierarchical planning algorithm that
leverages a VLM to generate both semantically-meaningful and
horizon-reducing intermediate subgoals that guide a task and
motion planner. When a subgoal or action cannot be refined,
the VLM is queried again for replanning. We evaluate VLM-
TAMP on kitchen tasks where a robot must accomplish cooking
goals that require performing 30-50 actions in sequence and
interacting with up to 21 objects. VLM-TAMP substantially
outperforms baselines that rigidly and independently execute
VLM-generated action sequences, both in terms of success
rates (50 to 100% versus 0%) and average task completion
percentage (72 to 100% versus 15 to 45%). See project site
https://zt-yang.github.io/vlm-tamp-robot/ for more information.

∗Research performed partly during an internship at NVIDIA.

I. INTRODUCTION

Large Language Models (LLMs) contain an enormous
amount of common-sense and cultural knowledge through
training on internet-scale datasets [1], [2]. They can suggest
high-level courses of action for solving almost any problem,
ranging from selling your house to making a meal. Vision
Language Models (VLMs) extend the capabilities of LLMs,
by conditioning on an input image, allowing problems to be
described both textually and via one or more pictures.

However, neither method is capable of detailed geomet-
ric reasoning: they don’t understand whether a particular
robot with particular kinematics can reach something or
whether it’s possible to fit two particular pans into the oven
simultaneously. Furthermore, because they are trained on
human-generated text, which usually only contains the most
important aspects of a plan but leaves unstated many steps
that are obvious to a human (you have to open the fridge
to get the eggs, it’s a good idea to close it again, you
should extract the egg from the shell before adding it to
your cake, etc.) The plans they generate are error-prone and
partial. Besides, the same plan may be feasible for some
robot embodiment but not the others depending on the robot

https://zt-yang.github.io/vlm-tamp-robot/


(a) Dual-arm Rummy di-
rectly picks and places the
cabbage as its arms are
long enough to reach far.

(b) Dual-arm PR2 first
closes the drawer to
make space for reach-
ing the pot.

(c) Single-arm PR2
first puts the cabbages
aside before closing
the drawer.

Fig. 2: Example trajectories of different robots achieving the same
goal of having the cabbage in the pot, where the cabbage is placed
in a drawer and the pot is hard to reach. While the VLM may not
be able to generate feasible action plans based on text and image
description of the scene, TAMP can find the shortest feasible task
plans that move obstacles if necessary and respect the kinematic
constraints of the robot and other articulated objects.

reachability, as shown in an example in Figure 2.
In the robotics research community, task and motion

planning (TAMP) [3] methods can solve complex long-
horizon manipulation problems. These planners are sound
and (semi) complete: that is, given an accurate model of
the domain, and a problem to be solved that satisfies some
common assumptions, they are guaranteed to eventually
produce a detailed plan, at the level of robot joint commands,
that achieve the goal, if such a plan exists. Two weakness
of TAMP approaches are how they 1) handle open-world
semantics, they can only address the geometric and kinematic
aspects of the problem (they can plan to put a chicken in a
pot, but don’t know what it means to make tasty soup), and
2) scale computationally, the solution time explodes with
complexity of the problem (the number of objects that need
to be manipulated and the length of the solution plan).

In this paper, we present VLM-TAMP, a system that
combines the great strengths of VLMs and TAMP (Figure 1).
It uses a VLM to suggest a sequence of subgoals such
that achieving them in order could achieve a higher-level
common-sense goal (like making tasty soup). These subgoals
are then solved by a TAMP algorithm, which can fill in
missing geometric details, insert new steps (e.g., opening
a cupboard) if needed, and approximately detect infeasi-
bility. The system executes the actions after solving each
subgoal. In case one subgoal suggested by the VLM cannot
be grounded in the planning domain or is geometrically
infeasible, VLM-TAMP reprompts the VLM to generate a
new subgoal sequence given the current state of the world
and objects that are collided in simulation during the last
failed planning process.

We evaluate VLM-TAMP on two robot embodiments,
solving cooking problems in procedurally generated kitchen
scenes. The problems consist of making chicken soup with
different scene initial conditions, requiring task plans that

range from 30 to 50 actions. We compare VLM-TAMP
extensively to a more common strategy, in which the VLM
is asked to produce a sequence of actions, which are then
directly refined by sampling the necessary continuous pa-
rameters, and executed in the world. We find that the ability
of VLM-TAMP to make up for deficiencies in the high-level
plan makes it much superior. Our experiments show that, in a
challenging set of very long-horizon problems, VLM-TAMP
succeeds 50 to 100% of the time, where as the baseline, a
naive VLM predicting actions + motion planning approach
never succeeds. When we count task progress, the baseline
completes on average only 15 to 45% of the subproblems
before failing to refine an action the VLM suggested, even
given chances to reprompt VLM with collision information.
In comparison, ours, which asks VLM for subgoals, visibly
benefit from reprompting, with task success increasing by 47
to 55% on the hardest problems with 21 planning objects in
a layout that resembles real-world kitchens.

II. RELATED WORK

LLMs and VLMs have been used to translate natural
language task description to formal languages [4], [5], [6],
which a model-based planner can consume and solve. They
have been prompted to generate high-level action sequences
that are then implemented by pre-trained skill policies [7],
[8]. They have also been used to generate code for calling
robot motion primitives [9], [10] and guiding trajectory
generation [11]. These methods do not explicitly handle the
problem of geometrically infeasible action sequences.

To correct the infeasible task plans generated by LLMs due
to obstacles or partial observability, [12], [13], [14], and [15]
provide replanning abilities by prompting the VLM to adapt
robot actions when the initial plan fails to achieve the desired
goal. These methods showed improved success rate on small-
scale table-top rearrangement tasks. But using the VLM or
LLM for geometric reasoning assumes that the infeasibility
can be described with a given text template “some object
is blocking the goal object”, which does not really scale to
larger environments, especially involving mobile manipula-
tors. For example, when the goal is to pick up a pepper shaker
from a small cabinet and the robot has only one arm, the
actions to resolve the geometric infeasibility would involve
putting down the object in the hand and opening both cabinet
doors. While a VLM is unlikely to come up with all these
actions, a TAMP planner can.

[16] prevents LLMs from proposing actions that violate
geometric constraints by querying the LLMs to generate
the constraints, such as that the robot is holding an ob-
ject and thus unable to pick up another object. Designing
such queries is equivalent to providing the planning domain
knowledge for checking violations. To incorporate geometric
feasibility reasoning directly into LLM and VLM planning,
[17] proposed a shooting-based strategy, where the LLM
proposes K task plans, then geometric feasibility planning
is carried out to find continuous parameters, the sequences’
success probability and predicted future states. Their method
considers the geometric dependencies spanning the whole



Fig. 3: An example input image to the VLM, which are annotated
with object names and bounding boxes. The top image marks
movable objects and articulated joints, while the bottom image
marks movable objects and placement surfaces.

action sequence, but the planner depends on Q-functions
that are specific to the robot embodiment and scene layout.
Furthermore, the method doesn’t enable local geometric
(in)feasibility to guide which task plans to try next.

Our work differs from all these methods in that we use an
LLM to generate intermediate goals instead of actions [18],
and deploy TAMP planner to achieve them. This enables
VLM-TAMP to substantially modify an LLM’s suggested
partial plan by adding steps and by solving continuous
parameters that ensure geometric and kinematic feasibility.

III. METHOD

We present VLM-TAMP, a planning algorithm that uses a
VLM to break down a long-horizon manipulation planning
problem (defined in Section III-A) into a sequence of smaller
ones (Section III-C), which a TAMP planner solves in se-
quence to satisfy geometric feasibility (Section III-D). VLM-
TAMP also contains a replanning mechanism that deals with
mistakes in VLM goal translation, infeasible task plans, and
TAMP planning failures (Section III-E).

A. Problem Formulation

We assume that problems are represented as correct 3D
geometric model of the world plus the robot and a natural
language goal, e.g. “make chicken soup”. Because the geo-
metric model of the world cannot be fully communicated to a
VLM with image renders of the scene alone, we provide the
VLM a text description of the scene that lists the objects and
the relations they satisfy. For example, Figure 3 is generated
by rendering the scene in the PyBullet [19] simulator and
labeling the observable objects using ground-truth semantic
segmentation. This can also be generated with semantic
segmentation models for real-world experiments.

The system outputs a sequence of robot commands (joint
angle trajectories) to satisfy each subproblem identified by

Plan a short sequence of [OUTPUT] that accomplishes
↪→ the following {goal}.

[RESPOND_WITH] where <obj>, <surface>, <joint>, <
↪→ button>, <handle> must be items from the
↪→ following {planning_objects}.

Currently, you can see {object_relations}. The
↪→ accompanying image ... {img}

{action_history} {failed_action} {collided_objects}

a) The initial ques-
tion to the VLM.
Text formatted using
[RED] differs when
asking for subgoals
versus actions.

Open the fridge door to access the
↪→ chicken leg.

Pick up the chicken leg from the fridge
↪→ shelf ...

Translate the above intermediate goals into a formal
↪→ language defined by the following subgoals.

subgoals = [’On(<movable>, <surface>)’: the result of
↪→ picking up <movable> then placing it on <
↪→ surface>, ...] % 13 in total

Please answer with objects in the respective types: {
↪→ objects_by_types}

b) The VLM response and our next
question when asking for subgoals.

Opened(fridge door),
Picked(chicken leg), ...

Translate the each of the listed actions in English
↪→ into a formal language defined by the
↪→ following primitive actions. Each action in
↪→ English may correspond to multiple actions:

actions =[’pick(<obj>)’: it contains one argument.
↪→ The robot must have an empty hand to pick up
↪→ an object. ...] % 12 in total

Please answer with objects in the respective types: {
↪→ objects_by_types}

c) The VLM response and our next
question when asking for actions.

open(fridge door),
pick(chicken leg), ...

Fig. 4: Conversation Template for querying VLMs and example responses
used by VLM-TAMP (ab) and baseline VLM + Motion Planning (ac). The
same templates are used during reprompting, with text formatted using
{Purple} representing updated information.

the VLM and verified by the TAMP planner. The resulting
state after achieving a subgoal is the initial state for planning
and execution of the next subgoal.

B. Approach

Figure 5 shows an overview of our approach, and Algo-
rithm 1 shows the corresponding pseudocode. There are two
distinct modes of operation of the system depending on what
the VLM is prompted to produce:

• Predicting subgoals: the VLM produces subgoals in
PDDL format, using on a list of provided predicates

• Predicting actions: the VLM produces a sequence of
high-level actions, drawing from a set of legal actions.

After checking the semantic consistency of the subgoals or
the actions, a problem is constructed for the TAMP planner.
In the subgoal setting, the TAMP planner must construct
a detailed motion plan that may involve moving multiple
objects, opening cabinets, etc. In the action setting, the
TAMP planner still needs to convert the high-level action
to actual robot commands with continuous parameters for
grasps, paths, etc. There may be failures at several points in
this process which are addressed by reprompting the VLM.



Algorithm 1 VLM-TAMP
Input: O, I,Geng, flaga(actions), Nreprompt, NTAMP

1: π ← [ ]
2: I, Img← OBSERVE-STATE-AND-IMAGE()
3: VLM ← QUERY-FN-GEN(O,Geng, flaga, Nreprompt)
4: G ← VLM-QUERY(I, Img, π)
5: while LEN(G) > 0 do
6: Gk ← G.pop()
7: O′,Oc ← REDUCE-OBJECT(O, I,Gk)
8: r ← CHECK-SEMANTICS(Gk)
9: if r = SUCCCESS then

10: r, πk, τk,Oc ← TAMP(O′, I,Gk, NTAMP)
11: if r = SUCCESS then
12: π.extend(πk)
13: I ← EXECUTE(τk)
14: I, Img← OBSERVE-STATE-AND-IMAGE()

15: if r = FAILURE then
16: G ← VLM(I, Img, π,Oc)

C. Using VLM for Subgoal or Action Sequencing

Each VLM query has two phases. First, the VLM takes
in an English description of the goal Geng , all the objects in
the scene Oeng , and their spatial relations Ieng . It outputs a
sequence of intermediate subgoals {Geng

i }Ki=1 or actions π̂eng

in English, as shown in Figure 4a. Next, it takes a description
of the possible subgoals or actions to translate the English
answer into. It outputs a sequence of intermediate subgoals
{Gi}Ki=1 (Figure 4b) or actions π̂ (Figure 4c) in PDDL format
that the TAMP planner consumes.

a) Predicting Subgoals: After predicting subgoals in
English {Geng

i }Ki=1, the VLM is prompted to translate them
into a sequence of goal tuples {Gi}Ki=1 (a single grounded
predicate), given a pre-defined list of predicates P along with
the types of objects allowed for each position*. We currently
use a single goal tuple for each subgoal, but this could be
extended to a conjunction of goal literals.

b) Predicting Actions: After predicting actions in En-
glish, the VLM translates the plan skeleton π̂eng into a se-
quence of actions {âi}Ki=1, given a pre-defined list of actions
A†, along with English descriptions of the preconditions of
applying the action. Figure 4c) lists an example precondition
that a “hand should be empty before picking an object”.
These preconditions are used when prompting the VLM in
order to improve reasoning accuracy.

The VLM may produce goal literals or actions with
semantic errors, e.g. using objects with the wrong type or
objects that don’t exist in the world, or using the wrong
number of arguments. Each entry in the VLM output is
verified with pure symbolic planning in a simplified PDDL
formulation that only specifies the discrete arguments for
predicates and actions. When one entry is found to be
impossible, an error message is fed back to VLM to generate
subgoals or actions again. The algorithm returns failure when
a maximum number of queries Nreprompt is reached.

*For example, On⟨object, surface⟩, Sprinkled⟨object,
object⟩, Opened⟨joint⟩, and TurnedOn⟨joint⟩.

†For example, pick⟨object⟩, place⟨object, region⟩,
sprinkle⟨object, region⟩, and open⟨joint⟩.

VLM

Goal, Objects; 
Object 

Relations, Img A sequence of 
subgoals

TAMP

The next sub-
problem

TP
Translated	
subgoals	are	
grounded	in	
domain?

A sequence of actions 
and corresponding 
trajectories, a set of 

collided objects

PM Solved?
T

F

T

F

Trajectories

Env

Goal, Objects, Object Relations, Img; Action History; (Collided Objects)

Object Relations; Collided Objects

Fig. 5: Our VLM-TAMP Algorithm. PM means Problem Manager,
which formulates the next TAMP sub-problem to solve. TP means
Task Planning, which checks the semantics of subgoals.

D. Using TAMP to Refine Subgoals or Action Sequences

Given a sequence of subgoal or actions, the TAMP system
refines each one in order, generating a sequence of grounded
action plans and corresponding motion trajectories.

a) TAMP problems: We represent TAMP problems
using an extension of the Planning Domain Definition Lan-
guage (PDDL) [20], a logic-based action language, that
supports planning with continuous values [21]. We define
a TAMP domain D = ⟨P,A⟩ by a set of predicates P
and actions A. Predicates and actions can be represented as
tuples consisting of a name and a list of typed arguments. The
arguments may be (1) discrete, such as object and part names,
or (2) continuous, such as object poses, object grasps, robot
configurations, object joint angles, and robot trajectories.

We define a TAMP problem ⟨O, I,G,D⟩ using a set
of objects O (constants specific to the problem), a set of
initial literals I, a conjunctive set of goal literals G, and
the planning domain D. A literal is a predicate with an
assignment of values to its arguments. The set of initial
literals defines a state of the world. Each grounded action
defines a deterministic transition of the world state.

A solution π is a finite sequence of grounded action
instances that, when sequentially applied to the initial state I,
produces a terminal state where the goal literals G all hold. A
plan skeleton π̂ is a sequence of partially grounded actions,
where the discrete parameters are bound but the continuous
parameters are unbound.

b) Planning for Subgoals: For each goal literal Gk, a
subproblem ⟨Ok, Ik,Gk⟩ is generated, which TAMP takes
in then returns solution ⟨πk, τk,Oc⟩ if successful and ⟨r =
FAILURE,Oc⟩. Ik is the current state and involves all objects.
Ok is a small subset of objects to be considered for ground-
ing predicates and actions during planning. Reducing the
universe of objects reduces the size of the action space (and
thus branching factor) of this subproblem. First, planning
is attempted with only the objects that are mentioned in
the goal or apart of the robot state (i.e. currently grasped).
During planning, the system records Oc, the movable or
articulated objects that collide with the robot in some future
state (e.g. while sampling object grasps, solving inverse
kinematics, or planning motion). If planning with the goal-
relevant objects fails, the often sparse subset of objects that



contributed to collisions is added to the set of objects and
the TAMP planner is called again. The subgoal is declared
unreachable after NTAMP unsuccessful calls to the TAMP
planner. When planning is successful, the system execute
the motion trajectories τk and extend grounded plan πk to
the whole history of actions executed. It then observe the
environment and obtain updated Ik+1.

In this formulation, omitting objects from O generally
reduces the set of changes the robot can make in the domain
but does not, for example, remove objects from the world
that might cause collisions. Limiting the relevant objects is
most effective when the goal predicates are designed to be the
effects of actions in the domain. For example, Heat⟨object⟩
is uninformative as it leaves out arguments like the heating
surface and appliance handle; planning without those objects
will fail. To avoid this, all predicates we ask the VLM to
generate are on the spatial and motion level, which specify
the directly relevant entities, such as PlaceOn⟨object,
surface⟩ and TurnHandle⟨joint⟩.

c) Refining Actions: Given a partially grounded action
ak, which includes only discrete parameters such as objects
and robot arms, the system first finds its symbolic effects
and uses them as Gk. Given a subproblem ⟨Ok, Ik,Gk⟩, the
TAMP planner is called in a manner where it is constrained
to use the partial plan skeleton π̂k = [ak]. This forces the
planner to find a plan that uses that action; however, the
planner still needs to refine the action by choosing values
for its continuous parameters, and the planner may need to
add additional actions, for example a base motion to reach
the target action. This variant also uses reduced objects and
is allowed multiple trials, as in general subgoal planning.

E. VLM Replanning after TAMP Failure

When the TAMP planner fails to solve a subgoal or
action after NTAMP trials, the VLM is prompted again as
described in Algorithm 5 and Figure 5. It takes in an updated
description of the scene, the sequence of actions already
executed, and collision objects detected during failed runs.
The VLM reprompting is carried out at most Nreprompt times
before the system declares failure. Our approach assumes
that there are no long-term low-level dependencies among
the subgoals that can only be addressed by making one long
detailed plan for the entire problem. In other words, as long
as it is not possible to become irreversibly stuck after taking
some actions, we can factor the whole problem into smaller
ones, counting on plans for the later subgoals to resolve
geometric difficulties caused by the previous ones.

IV. EXPERIMENTS

We run experiments to answer the following questions:
1) Which mode of VLM sequencing gives better task com-

pletion performance: predicting subgoals or actions?
2) What’s the extent to which reprompting improves per-

formance? Does increasing the compute budgets in-
crease the number of problems VLM-TAMP can solve?

A. Baselines and Ablations

We compare two approaches, each with three variants that
allow VLM reprompting for Nreprompt ∈ {0, 1, 2} times:

• VLM Subgoal Sequencing + TAMP refinement (ours)
uses VLMs to generate a sequence of subgoals which
a TAMP planner solves.

• VLM Action Sequencing + limited TAMP refinement
uses VLMs to generate actions which a TAMP planner
refines, but where no additional actions can be added
other than moving the robot’s base. This baseline is
representative of [12], [13], [14], [15].

B. Task Suite and Robot Embodiment

We consider the task of making chicken soup in a kitchen
with 5 movable objects (e.g. food and seasoning), 8 surfaces
(e.g. counter, stove burners, sink, pot), 2 spaces (enclosed
in doors or a drawer), and 6 articulated objects (e.g. doors,
knobs). In the Easy case, all doors are initially open and the
pot lid is on the counter. In the More Obstacles case, all
doors are initially closed and the pot lid is covering the pot
body. To ensure that generated problems are feasible, we set
objects to fixed initial poses and doors to slightly different
open positions. Note that the subsequent object poses and
joint positions are randomly sampled during planning, so the
induced subproblems vary drastically after the initial state.

The robot can change the pose of objects via pick and
place actions as well as change the joint positions of articu-
lated joints through pulling, pushing, and rotating its wrist.
In the Single-Arm case, the robot is allowed to use only its
left arm, while the Dual-Arm case allows it to use both arms.
Note that this kitchen environment is quite challenging, e.g.,
the sink is small and the fridge door and faucet allow a very
limited range for the base and arm to position the pot in the
sink without collision.

Altogether, we compare six methods on four variations of
the task. Each method is run for 30 random trials. For each
task, we ask the VLM for five plans and we sample randomly
from those for each of the 30 repetitions. We measure the
following performance metrics:

• Task Success. The algorithm successfully refines all sub-
goals or actions generated by the VLM into collision-
free motion trajectories.

• Task Completion Percentage. The number of sub-
problems solved out of all subproblems generated by the
VLM and the Problem Manager, including completed
problems and unfinished problems from the last query.

C. Implementation Details

We use gpt-4o-mini as our VLM [2], with tem-
perature = 0.2. For TAMP, we use the diverse planning
mode of PDDLStream (as in [22] but without the task plan
feasibility predictor) with a maximum number of considered
plan skeletons equal to 12. For action refinement, we use the
same planner but constrain it to include only the predicted
action and moving the base in the plan skeleton. We use
NTAMP = 3 as the number of planning runs allowed for
each subproblem, with increasing number of world objects



Fig. 6: Our experimental results show that that 1) predicting subgoals (VLM-TAMP) outperforms predicting actions, 2) reprompting helps
when subgoals (VLM-TAMP) as number of reprompt tries increases but not when predicting actions. All six methods are run for 30
random trials on four problem difficulties, with increasing numbers controllable robot arms and manipulable obstacles.

included in planning. In other words, if the planner fails in
the first two runs due to a sampling failure or not including
a sufficient set of world objects but succeeds the last time,
we still count the subproblem as a success.

D. Results

a) Predicting Subgoals Significantly Outperforms Pre-
dicting Actions: Compared to to using the VLM for predict-
ing actions that has zero success rate across all variations of
the problems, VLM-TAMP succeeds 50 to 100% of the time
as shown in Figure 6a). The full TAMP planner successfully
fills in the actions to resolve geometric infeasibility by
moving articulated or movable obstacles (using on average
1 to 2 actions as shown in Figure 6f). When comparing
task completion percentage, it also significantly outperforms
baselines (72 to 100% versus 15 to 45%). More subproblems
are solved (Figure 6d) out of similar length of subproblem
sequences proposed (Figure 6c) and the resulting plans have
more actions (Figure 6e). See the supplementary video for
example execution traces generated by VLM-TAMP.

VLM-TAMP visibly benefit from VLM reprompting, with
task success increasing by 47 to 55% on the harder problems,
as shown in Figure 6a. As the number of reprompting runs
increases, the performance of the subgoal variants increases
as it gives TAMP more tries to solve the geometrically
difficult subproblems and it may inject intermediate subgoals
that make it easier to achieve the failed subgoal. As seen from
individual run statistics, reprompting reduced the variance
in the completion percentage. In comparison, reprompting
didn’t help the variant that generates actions, even though
the prompt includes action history, collision summary, and
description of which robot arms are holding which objects.
This shows that the VLM cannot be relied upon to consider
long-horizon history, complex world description, and geo-
metric infeasibility when predicting actions.

V. FAILURE ANALYSIS

We overview several system failure modes. In particular,
VLMs are fairly experimental and routinely make inaccurate
predictions, although we expect them to improve over time.

A. VLM Failures

a) Subgoal/Action translation to PDDL: The second
phase of VLM query process asks the VLM to translate
English answers to formal PDDL language of goal or action
tuples. The VLM may 1) miss certain subgoals or actions
when one sense contains multiple subgoals or actions, and
2) generate a tuple with the wrong number of arguments or
misspell the object name.

b) Infeasible actions: The subproblem may not be
solvable because there exist movable or articulated objects
(e.g., robot is asked to turn on the stove but the pot is placed
in a location that blocks any path to grasp the knob handle),
or because the precondition is not met (e.g. robot asked to
close a door but the robot’s only arm is holding an object)‡.

B. TAMP Failures

a) Didn’t find a feasible plan skeleton: The planner is
allowed to try 12 plan skeletons in order of increasing task
length. For a subproblem that involves six planning objects
and two obstacles to clear out, the correct plan skeleton may
not be ranked in the first 12 allowed.

b) Found feasible plan skeletons but failed to refine
them within the compute budget: Each low-level samplers
(e.g., pose sampler, grasp sampler, inverse-kinematic solver)

‡Although the VLM is given a rule in the prompt that says “You
must have at least one empty hand before you can pick up
an object or open or close a joint”, it still sometimes generates
an English goal “Close the cabinet left door with the hand
that was holding the salt shaker” and then translates it into
“closed-door(cabinet left door)” which is infeasible.



is allowed a limited number of attempts. During refinement,
they are attempted in sequence and need all be successful in
order to refine the plan skeleton.

VI. DISCUSSION

We present VLM-TAMP, a system for solving long-
horizon manipulation planning problems by marrying the
strengths of VLM’s language understanding and common-
sense reasoning abilities, to the strengths of TAMP’s ability
to find feasible task skeletons and generate collision-free tra-
jectories that respect all geometric constraints. The combined
system effectively overcomes the shortcomings of 1) VLM’s
lack of geometric and long-horizon reasoning abilities by
letting TAMP fill in required actions and parameter values
and 2) TAMP’s explosive computational complexity by lever-
aging a VLM to break down the problem along with allowing
it to correct for failures on a short horizon via reprompting.

Future work involves training dexterous dual-arm manip-
ulation policies to achieve subgoals given visual inputs.
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