
Comparing Rewinding and Fine-tuning in Neural Network
Pruning Reproducibility Challenge 2021

Anonymous Author(s)
Affiliation
email

Reproduction Summary1

Scope of Reproducibility2

We are reproducing Comparing Rewinding and Fine-tuning in Neural Networks, by Renda et al. [2020]. In this work3

the authors compare three different approaches to retraining neural networks after pruning: 1) fine-tuning, 2) rewinding4

weights as in Frankle and Carbin [2019] and 3) a new, original method involving learning rate rewinding, building upon5

Frankle and Carbin [2019]. We reproduce the results of all three approaches, but we focus on verifying their approach,6

learning rate rewinding, since it is newly proposed and is described as a universal alternative to other methods.7

We used CIFAR10 for most reproductions along with additional experiments on the larger CIFAR100, which extends8

the results originally provided by the authors. We have also extended the list of tested network architectures to include9

Wide ResNets (Zagoruyko and Komodakis [2016]). The new experiments led us to discover the limitations of learning10

rate rewinding which can worsen pruning results on large architectures.11

Methodology12

We implemented the code ourselves in Python with TensorFlow 2, basing our implementation of the paper alone and13

without consulting the source code provided by the authors. We ran two sets of experiments. In the reproduction set, we14

have striven to exactly reproduce the experimental conditions of Renda et al. [2020]. We have also conducted additional15

experiments, which use other network architectures, effectively showing results previously unreported by the authors.16

We did not cover all originally reported experiments – we covered as many as needed to state the validity of claims. We17

used Google Cloud resources and a local machine with 2x RTX 3080 GPUs.18

Results19

We were able to reproduce the exact results reported by the authors in all originally reported scenarios. However,20

extended results on larger Wide Residual Networks have demonstrated the limitations of the newly proposed learning21

rate rewinding – we observed a previously unreported accuracy degradation for low sparsity ranges. Nevertheless, the22

general conclusion of the paper still holds and was indeed reproduced.23

What was easy24

Re-implementation of the pruning and retraining methods was technically easy, as it is based on a popular and simple25

pruning criterion – magnitude pruning. Original work was descriptive enough to reproduce the results with satisfying26

results without consulting the code.27

What was difficult28

Not every design choice was mentioned in the paper, thus reproducing the exact results was rather difficult and required29

a meticulous choice of hyper-parameters. Experiments on ImageNet and WMT16 datasets were time consuming and30

required extensive resources, thus we did not verify them.31

Communication with original authors32

We did not consult the original authors, as there was no need to33

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction34

Neural network pruning is an algorithm leading to decrease the size of a network, usually by removing its connections35

or setting their weights to 0. This procedure generally allows obtaining smaller and more efficient models. It often turns36

out that these smaller networks are as accurate as their bigger counterparts or the accuracy loss is negligible. A common37

way to obtain such high quality sparse network is to prune it after the training has finished (Liu et al. [2019], Frankle38

and Carbin [2019]). Networks that have already converged are easier to prune than randomly initialized networks (Liu39

et al. [2019], Lee et al. [2018]). After pruning, more training is usually required to restore the lost accuracy. Although40

there are a few ways to retrain the network, finetuning might be the easiest and most often chosen by researchers and41

practitioners. (Liu et al. [2019], Renda et al. [2020]).42

Lottery Ticket Hypothesis from Frankle and Carbin [2019] formulates a hypothesis that for every dense neural network,43

there exists a smaller subnetwork that matches or exceeds results of the original. The algorithm originally used to44

obtain examples of such networks is iterative magnitude pruning with weight rewinding, and it is one of the methods of45

retraining after pruning compared in this work.46

2 Scope of reproducibility47

Renda et al. [2020] formulated the following claims:48

Claim 1: Widely used method of training after pruning: finetuning yields worse results than rewinding based methods49

(supported by figures 1, 2, 3, 4 and table 5)50

Claim 2: Newly introduced learning rate rewinding works as good or better as weight rewinding in all scenarios51

(supported by figures 1, 2, 3, 4 and table 5, but not supported by figure 5)52

Claim 3: Iterative pruning with learning rate rewinding matches state-of-the-art pruning methods53

(supported by figures 1, 2, 3, 4 and table 5, but not supported by figure 5)54

3 Methodology55

We aimed to compare three retraining approaches: 1) finetuning, 2) weight rewinding and 3) learning rate rewinding.56

Our general strategy that repeated across all experiments was as follows:57

1. train a dense network to convergence,58

2. prune the network using magnitude criterion: remove weights with smallest L1 norm,59

3. retrain the network using selected retraining approach.60

In the case of structured pruning: in step 2, we removed structures (rows or convolutional channels) with the smallest61

average L1 norm (Crowley et al. [2018]), rather than removing separate connections.62

In the case of iterative pruning: the network in step 1 was not randomly initialized, but instead: weights from a model63

from a previous iterative pruning step were loaded as the starting point.64

We trained all our networks using Stochastic Gradient Descent with Nesterov Momentum. The learning rate was65

decreased in a piecewise manner during the training, but momentum coefficient was constant and equal to 0.9.66

3.1 Model descriptions67

In this report, we were focusing on an image recognition task using convolutional neural networks (LeCun [1988]). For68

most of our experiments, we chose to use identical architectures as Renda et al. [2020] to better validate their claims69

and double-check their results, rather than provide additional ones. Therefore, most of the used networks are residual70

networks, which were originally proposed in He et al. [2016a]. Additionally, to verify the general usefulness of pruning71

and retraining methods proposed in Renda et al. [2020] we extend the list of tested network architectures to much larger72

wide residual networks from Zagoruyko and Komodakis [2016].73

3.1.1 Residual networks (ResNet)74

Just as Renda et al. [2020], we chose to use the original version of ResNet as described in He et al. [2016a] rather than75

the more widely used, improved version (with preactivated blocks) from He et al. [2016b]. We created the models76

2



ourselves, using TensorFlow (Abadi et al. [2015]) and Keras. We strove to replicate the exact architectures used by77

Renda et al. [2020] and He et al. [2016a] and train them from scratch.78

Model Trainable parameters Kernel parameters CIFAR-10 CIFAR-100

ResNet-20 272 282 270 896 92.46% –

ResNet-56 855 578 851 504 93.71% 71.90%

ResNet-110 1 730 522 1 722 416 94.29% 72.21%

Table 1: ResNets architecture description, including baseline accuracy across datasets.

Hyper-parameters79

Learning rate started with 0.1 and was multiplied by 0.1 twice, after 36 000 and 54 000 iterations. One training cycle
was 72 000 iterations in total. For all batch normalization layers, we set the batch norm decay to 0.997, following Renda
et al. [2020] which was also used in the original TensorFlow implementation1. We initialize network’s weights with
what is known as He uniform initialization from He et al. [2015]. We regularize ResNets, during both training and
finetuning, using L2 penalty with 10−4 coefficient. In other words, the loss function (from which we calculate the
gradients) looks as follows:

FinalLoss = CategoricalCrossentropy(GroundTruth, Prediction) + 10−4 ×
∑
i∈W

w2
i

3.1.2 Wide Residual Networks (Wide ResNet, WRN)80

WRN networks were introduced in Zagoruyko and Komodakis [2016]. They are networks created by simply increasing81

the number of filters in preactivated ResNet networks (He et al. [2016b]).82

Model Trainable parameters Kernel parameters CIFAR-10

WRN-16-8 10 961 370 10 954 160 95.72%

Table 2: Wide ResNet architecture description.

Hyper-parameters83

As Wide ResNets are newer and much larger than ResNets, hyper-parameters are slightly different. To choose them, we
follow Zagoruyko and Komodakis [2016]. Learning rate starts with 0.1 and multiplied by 0.2 thrice: after 32 000, 48 000
and 64 000 iterations. Training lasts for 80 000 iterations. For all batch normalization layers, we use hyper-parameters
from the newer TensorFlow implementation2 with batch norm decay set to 0.9. Following Zagoruyko and Komodakis
[2016], we use larger L2 penalty for this network: 2× 10−4. Finally, the loss function is as follows:

FinalLoss = CategoricalCrossentropy(GroundTruth, Prediction) + 2× 10−4 ×
∑
i∈W

w2
i

3.2 Datasets84

CIFAR-10 and CIFAR-100 are image classification datasets introduced in Krizhevsky et al.. Following Renda et al.85

[2020], we use all (50 000) training examples to train the model.86

1https://github.com/tensorflow/models/blob/r1.13.0/official/resnet/resnet_model.py
2https://github.com/tensorflow/models/blob/r2.5.0/official/vision/image_classification/resnet/

resnet_model.py

3

https://github.com/tensorflow/models/blob/r1.13.0/official/resnet/resnet_model.py
https://github.com/tensorflow/models/blob/r2.5.0/official/vision/image_classification/resnet/resnet_model.py
https://github.com/tensorflow/models/blob/r2.5.0/official/vision/image_classification/resnet/resnet_model.py


Dataset Training examples Validation examples Classes Resolution

CIFAR-10 50 000 10 000 10 32×32

CIFAR-100 50 000 10 000 100 32×32

Table 3: CIFAR datasets description.

3.2.1 Postprocessing87

We used a standard postprocessing for both CIFAR-10 and CIFAR-100 datasets (Renda et al. [2020], Frankle and88

Carbin [2019], Zagoruyko and Komodakis [2016]). During training and just before passing data to the model, we:89

1. standardized the input by subtracting the mean and dividing by the std of RGB channels (calculated on training90

dataset),91

2. randomly flipped in horizontal axis,92

3. added a four pixel reflection padding,93

4. randomly cropped the image to its original size.94

During the validation, we did only the first step of the above.95

3.3 Experimental setup and code96

Our ready-to-use code, which includes experiment definitions, can be found at https://anonymous.4open.97

science/r/reproducing-comparing-rewinding-and-finetuning-1C5A. It’s written using TensorFlow98

(Abadi et al. [2015]) version 2.4.2 in Python. More details are included in the repository.99

3.4 Computational requirements100

Recreating the experiments required a modern GPU, training all models on CPU was virtually impossible. Training101

time varies depending on a lot of factors: network version and size, exact version of the deep learning library, and even102

the operating system. In our case, using TensorFlow 2.4.2 on Ubuntu and a single RTX 3080 GPU, the smallest of the103

used models, ResNet-20, takes about 20 minutes to train on CIFAR-10 dataset. To replicate our experiments, training at104

least a single baseline network and then, separately, a single pruned network, is required. To reduce computational105

requirements, we reused one dense baseline for multiple compression ratios. Approximated training time requirements106

can be seen in the table below.107

Model Dataset Number of iterations Iterations per second Time for training cycle

ResNet-20 CIFAR-10 72 000 59.0 22 min

ResNet-56 CIFAR-10 72 000 28.6 43 min

ResNet-110 CIFAR-10 72 000 15.9 77 min

WRN-16-8 CIFAR-10 80 000 17.4 78 min

Table 4: Time requirements for replicating or running experiments from this report. Reported times are obtained using a
single RTX 3080 GPU in Linux environment, using TensorFlow in version 2.4.2.

For all our experiments in total, we used around 536 GPU hours.108

4 Method description109

We compare three methods of retraining after pruning. For all of them, the starting point is a network that was already110

trained to convergence, then pruned to a desired sparsity. The difference between the three retraining methods is what111

follows after it.112

4

https://anonymous.4open.science/r/reproducing-comparing-rewinding-and-finetuning-1C5A
https://anonymous.4open.science/r/reproducing-comparing-rewinding-and-finetuning-1C5A
https://anonymous.4open.science/r/reproducing-comparing-rewinding-and-finetuning-1C5A


4.1 Fine-tuning113

Fine-tuning is retraining with a small, constant learning rate – in our case, whenever fine-tuning was used, the learning114

rate was set to 0.001 as in Renda et al. [2020]. We finetune the network for the same number of iterations as the baseline115

– 72 000 iterations in the case of the original ResNet architecture. In this method, such long retraining would not be116

necessary in practical applications, since the network converges much faster.117

4.2 Weight rewinding118

Weight rewinding restores the network’s weights from a previous point (possibly beginning) in the training history and119

then continues training from this point using the original training schedule – in our case a piecewise constant decaying120

learning rate schedule. When rewinding a network to iteration K that originally trained for N iterations: first prune121

the dense network that was trained for N iterations. Then, for connections that survived, restore their values to K-th122

iteration from the training history. Then train to the convergence for the remaining N −K iterations.123

4.3 Learning rate rewinding124

Learning rate rewinding continues training with weights that have already converged, but restores the learning rate125

schedule to the beginning, just as if we were training from scratch, and then trains to the convergence once again. This126

reminds the cyclical learning rates from Smith [2017]. Learning rate rewinding really is weight rewinding for K = N ,127

but the final retraining is always for N iterations.128

5 Results129

In most of our experiment, just as Renda et al. [2020], we investigate how does the trade-off between prediction accuracy130

and compression ratio look like. In one of the experiments (table 5) we verify only one compression ratio, but for the131

rest, we verify multiple. We report a median result out of 2 up to 12 trials for each compression ratio. To better utilize132

our compute capabilities, we decided to spend more training cycles in situations where there is no clear winner between133

the compared methods. On each plot, we include error bars showing 80% confidence intervals.134

5.1 Results reproducing original paper135

In this section, we include experiments that we successfully reproduced. They match the original ones within 1% error136

margin.137

Across all scenarios where finetuning was tested, it was by far the worst of the three methods, which directly supports138

claim 1 (section 2). Weight rewinding and learning rate rewinding most often are equally matched, but in some cases139

learning rate rewinding works a little better.140

ResNets on CIFAR-10 dataset141

1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio

-3%

-2%

-1%

0%

1%

 A
cc

ur
ac

y

ResNet-20 one-shot

1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio

-4%

-3%

-2%

-1%

0%

1%

 A
cc

ur
ac

y

ResNet-20 iterative

weight rewinding LR rewinding finetuning

Figure 1: Results of ResNet-20 (table 1) on CIFAR-10 (table 3) with unstructured, magnitude pruning in versions:
one-shot and iterative. Results show varying compression ratios. Maximal compression ratio (9.35×) means that there
are only 29 000 non-zero kernel parameters left. This experiment supports claims 1, 2, 3 (section 2).

5



1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio

-2%

-1%

0%

1%

 A
cc

ur
ac

y
ResNet-56 one-shot

1.0× 2.18× 4.77× 10.41× 22.73×
Compression ratio

-3%

-2%

-1%

0%

1%

 A
cc

ur
ac

y

ResNet-56 iterative

weight rewinding LR rewinding finetuning

Figure 2: Results of ResNet-56 (table 1) on CIFAR-10 (table 3) with unstructured, magnitude pruning in versions:
one-shot and iterative. Results with varying compression ratios. Maximal compression ratio means (22.73×) that there
are only 37 600 non-zero kernel parameters left. This experiment supports claims 1, 2, 3 (section 2).

Network Dataset Retraining Sparsity Test Accuracy

ResNet-110 CIFAR-10 None 0% 94.29%

ResNet-110 CIFAR-10 LR rewinding 89.3% 93.74%

ResNet-110 CIFAR-10 weight rewinding 89.3% 93.73%

ResNet-110 CIFAR-10 finetuning 89.3% 93.32%

Table 5: Results of ResNet-110 (table 1) trained on CIFAR-10 (table 3) with unstructured, one-shot magnitude pruning.
Sparsity 89.3% corresponds to 9.35× compression ratio. This experiment supports claims 1, 2, 3 (section 2).

1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

 A
cc

ur
ac

y

ResNet-20 structured

weight rewinding LR rewinding finetuning

Figure 3: Results of ResNet-20 (table 1) on CIFAR-10 (table 3) with structured, one-shot, magnitude pruning. Results
show varying compression ratios. Maximal compression ratio (9.35×) means that there are only 29 000 non-zero kernel
parameters left in ResNet-20.

6



5.2 Results beyond original paper142

ResNets on CIFAR-100 dataset143

1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio

-7%
-6%
-5%
-4%
-3%
-2%
-1%
0%
1%
2%

 A
cc

ur
ac

y
ResNet-56 unstructured

weight rewinding LR rewinding finetuning

Figure 4: Results of ResNet-56 (table 1) on CIFAR-100 (table 3) with unstructured, one-shot, magnitude pruning.
Results with varying compression ratios. Maximal compression ratio (9.35×) means that there are only 91 500 non-zero
kernel parameters left. This experiment supports claims 1, 2, 3 (section 2) even though this scenario wasn’t originally
tested in Renda et al. [2020].

WRN-16-8 on CIFAR-10 dataset144

WRN-16-8 shows consistent behaviour – accuracy in the low sparsity regime is reduced in comparison to the baseline.145

In the case of iterative pruning, where each step is another pruning in the low sparsity regime, it leads to a large146

difference between the two retraining methods. Since for WRN-16-8 one-shot, low sparsity pruning shows a small147

regression in comparison to the baseline, this regression accumulates when pruning multiple times, as we do in iterative148

pruning. This can be seen in figure 5.149

1.0× 2.51× 6.32× 15.91× 40.0×
Compression ratio

-2%

-1%

0%

 A
cc

ur
ac

y

WRN-16-8 one-shot

1.0× 3.16× 10.0× 31.62× 100.0×
Compression ratio

-9%
-8%
-7%
-6%
-5%
-4%
-3%
-2%
-1%
0%

 A
cc

ur
ac

y

WRN-16-8 iterative

weight rewinding LR rewinding (0.3 step)

Figure 5: Results of WRN-16-8 (table 2) on CIFAR-10 (table 3) with unstructured, magnitude pruning in versions:
one-shot and iterative. Results with varying compression ratios. Maximal compression ratio (100×) leaves 109 500
non-zero kernel parameters while achieving around 94% accuracy or around 95% when leaving 153 400 non-zero
parameters. One can see catastrophic effects of low-sparsity pruning when using learning rate rewinding procedure.

7



For iterative pruning (figures 1, 2) we used a nonstandard step size of 30% per iterative pruning iteration, which was150

a way to reduce the computational requirements. We provide a comparison of our step size to the more commonly151

used 20%. We show that there is virtually no difference between both versions and the aforementioned catastrophic152

degradation occurs in both cases, as long as the step size is in the low sparsity regime.153

1.0× 2.04× 4.15× 8.46× 17.24×
Compression ratio

-5%

-4%

-3%

-2%

-1%

0%
 A

cc
ur

ac
y

WRN-16-8 iterative

LR rewinding (0.3 step) LR rewinding (0.2 step)

Figure 6: Results of WRN-16-8 (table 2) on CIFAR-10 (table 3) with unstructured, iterative, magnitude pruning with
two different step sizes. Results show varying compression ratios and accuracy.

6 Discussion154

We were able to confirm the general conclusion of Renda et al. [2020]. Fine-tuning can mostly be replaced by other155

retraining techniques, e.g., by weight rewinding as done by Frankle and Carbin [2019]. However, we have also shown156

in figure 5 that the newly proposed learning rate rewinding was a poor choice when we were pruning larger networks –157

in our case that was WRN-16-8. We believe this should be further examined as there might exist a simple workaround158

to this problem – a retraining procedure in between weight rewinding and learning rate rewinding which would work in159

all cases. Furthermore, it would be interesting to see where exactly learning rate rewinding starts losing accuracy in160

comparison to weight rewinding and why this catastrophic accuracy degradation occurs. Perhaps, the reason for it not161

occurring with the original ResNet architecture is the degree to which the larger networks overtrain – larger networks162

tend to overtrain more. Such an overtrained network might not be a good starting point for the retraining.163

Acknowledgements164

The authors thank Polish National Science Center for funding under the OPUS-18 2019/35/B/ST6/04379 grant and the165

PlGrid consortium for computational resources.166

References167

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing Rewinding and Fine-tuning in Neural Network Pruning.168

2020. URL http://arxiv.org/abs/2003.02389. arXiv: 2003.02389.169

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. 7th170

International Conference on Learning Representations, ICLR 2019, page 1–42, 2019. arXiv: 1803.03635 Citation171

Key: Frankle2019.172

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard C. Wilson and William173

A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press,174

September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.30.87. URL https://dx.doi.org/10.5244/C.30.87.175

8

http://arxiv.org/abs/2003.02389
https://dx.doi.org/10.5244/C.30.87


Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network pruning. 7th176

International Conference on Learning Representations, ICLR 2019, page 1–21, 2019. arXiv: 1810.05270 Citation177

Key: Liu2019a.178

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: single-shot network pruning based on connection179

sensitivity. CoRR, abs/1810.02340, 2018. URL http://arxiv.org/abs/1810.02340.180

Elliot J. Crowley, Jack Turner, Amos Storkey, and Michael O’Boyle. A closer look at structured pruning for neural181

network compression. 10:1–12, 2018. URL http://arxiv.org/abs/1810.04622. arXiv: 1810.04622 Citation182

Key: Crowley2018.183

Yann LeCun. Handwritten Digit Recognition with a Back-Propagation Network. In Neural Information Processing184

Systems. American Institute of Physics, 1988. URL https://proceedings.neurips.cc/paper/1987/file/185

a684eceee76fc522773286a895bc8436-Paper.pdf.186

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. Proceedings187

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:770–778,188

2016a. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385 Citation Key: He2016 ISBN: 9781467388504.189

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. Lecture Notes190

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),191

9908 LNCS:630–645, 2016b. ISSN 16113349. doi: 10.1007/978-3-319-46493-0_38. arXiv: 1603.05027 ISBN:192

9783319464923.193

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy194

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael195

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat196

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,197

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,198

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on199

heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.200

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level201

performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision202

(ICCV), December 2015.203

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). URL204

http://www.cs.toronto.edu/~kriz/cifar.html.205

Leslie N. Smith. Cyclical learning rates for training neural networks, 2017.206

9

http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1810.04622
https://proceedings.neurips.cc/paper/1987/file/a684eceee76fc522773286a895bc8436-Paper.pdf
https://proceedings.neurips.cc/paper/1987/file/a684eceee76fc522773286a895bc8436-Paper.pdf
https://proceedings.neurips.cc/paper/1987/file/a684eceee76fc522773286a895bc8436-Paper.pdf
https://www.tensorflow.org/
http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Residual networks (ResNet)
	Wide Residual Networks (Wide ResNet, WRN)

	Datasets
	Postprocessing

	Experimental setup and code
	Computational requirements

	Method description
	Fine-tuning
	Weight rewinding
	Learning rate rewinding

	Results
	Results reproducing original paper
	Results beyond original paper

	Discussion

