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Abstract

Spoken language understanding (SLU) is one
of the essential parts in smart voice assis-
tants, which typically includes intent classifi-
cation (IC) and slot filling (SF) tasks to in-
terpret user utterances. Deep models jointly
trained for the two tasks show more promis-
ing results compared with single-task models.
However, these models always learn seman-
tic representations for tokens and utterances
but ignore their lexical information. Although
they can generalize better to unseen tokens
and utterances from low-dimensional dense se-
mantic features, they also suffer from over-
generalization when training data is limited.
On the other hand, sparse lexical features such
as word ngrams are good to memorize existing
data correlations but fail for generalization. In
this paper, we propose an approach leveraging
lexical and semantic features to jointly learn
IC and SF. The aim is to combine the benefits
of memorization and generalization for SLU.
Evaluating on a couple of domains from a
large-scale smart voice assistant, results show
our approach significantly improves IC and SF
compared with several strong baselines.
1 Introduction

Smart voice assistants (SVA) such as Amazon
Alexa, Google Assistant and Apple Siri are be-
coming ubiquitous by providing voice-enabled ap-
plications built by third-party developers to fulfill
customer requirements. The essential part of SVAs
is the spoken language understanding (SLU) sys-
tem, where intent classification (IC) and slot filling
(SF) are two major tasks to parse utterances into se-
mantic frames and capture utterance core meanings
(Tur and De Mori, 2011). Table 1 demonstrates
how an utterance is assigned with one intent and a
sequence of slots with In-Out-Begin (I0OB) format.

Traditionally, intent classification is treated as
a sequence classification problem, and slot filling
is defined as a sequence tagging problem. Current
research shows promising results by jointly learn-
ing the two tasks (Weld et al., 2021; Kim et al.,

Sentence | Pay ‘ my ‘ electricity ‘ bill
Intent PayBilllntent
Slots | O | O [B-BillType | O

Table 1: An example utterance with its annotated intent
and semantic slots (IOB format).

2017). Given the advantages of deep neural net-
works, convolutional neural networks (CNN) and
recurrent neural networks (RNN) have been widely
used to construct joint models along with condi-
tional random fields (CRF) (Kane et al., 2021; Niu
et al., 2019; Kumar and Baghel, 2021). More ad-
vanced techniques are utilized to further improve
prediction accuracy such as pre-trained language
models (Chen et al., 2019), capsule neural networks
(Zhang et al., 2018), and attention-based models
(Goo et al., 2018; Chen et al., 2021; Wu et al.,
2021). Some other works focus on solving label
sparsity issue in the two tasks from meta learning
(Bhathiya and Thayasivam, 2020), transfer learning
(Soto and Arkoudas, 2021), and few shot learning
(Yu et al., 2021) perspectives.

One challenge in SLU, similar to the recommen-
dation task (Cheng et al., 2016), is to achieve both
memorization and generalization. Memorization
can be loosely defined as learning the frequent co-
occurrence of features and exploiting their corre-
lation, which can be achieved by learning linear
relationship over sparse lexical features such as
word ngrams. While generalization is based on
transitivity of correlation and explores new fea-
ture combinations from unseen tokens and utter-
ances, which is more topical and semantic. Current
models mostly represent tokens and utterances as
low-dimensional dense vectors to capture utterance
semantics for generalization but ignore utterance
lexical information for memorization, which may
over-generalize when the training data is limited.
For instance, if the model is trained to recognize
that both Seattle and San Francisco are labeled as
“US City” slot type, it may over-generalize at infer-



ence time and mistakenly recognize Berlin, Cairo
or Beijing as slot values given that all these cities’
semantic representations could be similar.
Previous works (Cheng et al., 2016; Yang et al.,
2013) notice that combining both lexical and se-
mantic features can achieve better results than sin-
gle type features in recommendation and SLU tasks.
Given that, we propose a joint model combining
semantic features (extracted from jointly trained en-
coders) and hand-crafted lexical features for IC and
SF. The goal is to combine the benefits of mem-
orization and generalization for reducing model
errors. Meanwhile, in Table 1, the annotated slot
“B-BillType” is highly correlated with intent “Pay-
Billlntent”, indicating that slot information will
inherently benefit intent classification. Therefore,
to enhance the connection between IC and SF, we
merge predicted slots with utterance context to con-
struct lexical features for intent classification.
2 Method

At high level, our proposed model consists of two
head blocks as shown in Figure 1: an utterance
intent classification head which is a sequence-level
softmax layer and a slot filling head which is a
conditional random field (CRF) layer on top of
bi-directional LSTM (BiLSTM) and token-level
softmax layer. The model is trained jointly to mini-
mize the linear combination of the two task losses.

2.1 Feature Engineering

Inspired from the Wide and Deep model (Cheng
et al., 2016), we combine two types of features for
intent classification: lexical features for memoriza-
tion and semantic features for generalization. As
lexical features are represented as multi-hot embed-
dings on utterance level, they cannot support the
sequence tagging problem. Therefore only seman-
tic features are employed for slot filling.

2.1.1 Lexical Features
The lexical features require more feature engineer-

ing effort. To enhance connections between the
two tasks, we also use predicted slots to construct
lexical features for intent classification. In the end,
there are three types of lexical features: utterance
length, slot-mixed features and token features.
Given an utterance v = {w1, wa, ..., wi }, lexi-
cal features include word unigrams and bigrams.
Utterance length is treated as a categorical feature.
Slot-mixed features include predicted slot unigrams
and slot-mixed bigrams where predicted slots are
used to replace the original tokens for bigram con-
struction. Specifically, in training stage, utterance
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Figure 1: The pipeline of the proposed joint model.
Red lines indicate wide lexical features, and blue lines
indicate deep semantic features.

ground truth slots are used to construct slot-mixed
features. While in testing stage, SF predicted slots
are used to construct slot-mixed features instead.
For example in Table 1, the slot-mixed bigrams
will be “pay_my, my_B-BillType, B-BillType_bill”.

2.1.2 Semantic Features

The Byte-Pair encoding (BPE) subword tokeniza-
tion (Sennrich et al., 2015) is applied to split words
into subwords (tokens). For semantic features, the
concatenation of the Bi-LSTM hidden states of
first and last token is regarded as utterance seman-
tic representation. To incorporate both general and
domain-specific information, we train two BPE em-
bedding layers (in Figure 1): the first embedding
layer is pre-trained on public Wikipedia data and
the second is trained from scratch using domain
data. Then we train a separate Bi-LSTM block on
top of each BPE embedding layer.

2.2 Intent Classification

We calculate multi-hot embeddings of lexical fea-
tures for model memorization, including utterance
length e;, unigram/bigram tokens e; and slot-mixed
unigram/bigram tokens es. We also have dense se-
mantic features for model generalization, including
pre-trained BPE encoder output /,, and domain-
specific BPE encoder output h;. Similar to (Cheng
et al., 2016), we concatenate both types of features
together and pass it to a non-linear layer to predict
intent I with the largest probability score.

hi = [e; es; €53 hp; hal
I = argmax softmax(Why + b) (1)
I



2.3 Slot Filling
Besides the two shared BPE components (in Fig-

ure 1) capturing token’s sequential semantics, we
involve two augmented features including token
embeddings and gazetteer embeddings to capture
token’s individual semantics. Different from token
multi-hot embeddings used for intent classification,
we hereby use dense vectors for token embeddings.
Gazetteer features are mappings from tokens to
named entities through our pre-owned gazetteer
dictionary, e.g., “The Beatles” would be mapped to
“ArtistName”. It is a preprocessing step to generate
an extra slot signal for each token. Gazetteer fea-
tures are excluded in intent classification as they
contain duplicated information with slot-mixed fea-
tures. In the end, each token is associated with a
gazetteer embedding as well.

The i*" word w; in utterance u may contain mul-
tiple BPE tokens, the last token is empirically used
to represent the word itself. We first concatenate its
token embedding ¢?, , i*" step pre-trained BPE’ BilL-
STM encoder output h?, it" step domain-specific
BPE’s BiLSTM encoder output hfi and gazetteer
embedding e; to pass to a softmax layer. A CRF
layer is finally employed on all step outputs to pre-
dict the slot sequence S = {s1, ..., i }.

h's = softmax([ey,; hy,; h; €g])
S = CRF(h}, ..., hY)

2.4 Model Training

Our proposed model is trained by jointly minimiz-
ing the two task losses. Intent classification loss
L7 is cross entropy loss with L1 and L2 regular-
ization on weight matrix W. C'is the number of
intents, y; is the ground truth score and g; is the pre-
dicted score for the i, intent. Slot filling loss Lg is
standard CRF loss aiming to find the slot sequence
S with the highest score. The score(-) function
measures the slot sequence likelihood given utter-

2

ance tokens. log(> 3 escore(u,S )) is the sum over all

possible slot sequences S. The final loss £ is the
weighted sum of £y and Lg.
c

Lr==> yilog(iii) + BillWIf + Bl [ W]
i=1
Lg = —score(u, S) + log(z eseore(w,9))
S
L=L;+alg
3)
In training stage, two tasks are learned jointly.
In inference stage, SF prediction is first retrieved
to construct slot-mixed features for IC prediction.

3 Experiments

3.1 Data

The data is collected from 5 domains (third-party
applications) of Amazon Alexa: Talking Tom,
Trivia Battle, CL Vocab Game, WikiHow and Plex.
Detailed data statistics are reported in Table 2. Both
training and development sets consist of synthetic
utterances provided by skill developers. The testing
set consists of manually-annotated real utterances.

Dataset Training Development Testing Intents Slot Types

Talking Tom 10,000 1,000 788 4 2
Trivia Battle 7,542 1,000 2,070 9 8
CL Vocab Game 7,542 1,000 1,863 9 4
WikiHow 10,000 1,000 541 7 3
Plex 10,000 1,000 1,784 19 9

Table 2: Dataset Statistics.

3.2 Settings
We use four different metrics: SemER (Semantic
Error Rate), SER (Slot Error Rate), IRER (Interpre-
tation Recognition Error Rate), and ICER (Intent
Classification Error Rate) (Su et al., 2018). SemER
combines IC and SF errors into a single score. It
computes a modified edit distance that takes into
account the number of substitutions (S), incorrect
predictions (I), and deletions (D) in intent and slot
prediction. For a sequence of L tokens, SemER is
defined as (S+ 1+ D)/ (L + 1). SER is similar to
SemER but only measures slot accuracy. IRER is
the fraction of utterances not correctly recognized
on both intents and slots. ICER is the the fraction
of utterances not correctly recognized on intents.
Our proposed model is compared with three
baseline models: 1) Linear-CRF model currently
serves as Alexa production model which contains
a generalized linear model for intent classification
and a conventional CRF model for slot filling. 2)
Wide-BiLSTM-CRF model uses only lexical fea-
tures for intent classification. It uses the same struc-
ture as our proposed model for slot filling. 3) Deep-
BiLSTM-CRF model uses only semantic features
for intent classification. It uses the same structure
as our proposed model for slot filling. The intention
to choose these three baselines is that first we want
to compare our proposed model with production
model, second we want to explore the effectiveness
of wide and deep components.

3.3 Model Comparison

Table 3 reports the relative improvements of base-
lines and our models compared with the production
Linear-CRF model. The three DNN based mod-
els all outperform Linear-CRF on all evaluation
metrics, reflecting the advantages of deep models.



Wide-BiLSTM-CRF beats Deep-BiLSTM-CRF on
all metrics. As their slot filling component are with
same structure, SER is relatively similar. Higher
ICER means designed lexical features are more
powerful than semantic features for intent classifi-
cation. By combining lexical and semantic features,
our model achieves the best results. It means that
the two types of features complement with each
other and combining them can reduce errors.

Model A% SemER SER IRER ICER
Wide-BiLSTM-CRF 5.50 2.03 4.77 5.33
Deep-BiLSTM-CRF 4.74 1.97 3.94 4.27

Our Model 7.78 2.04 6.39 7.41

Table 3: Model comparison results. Relative improve-
ment values are computed with respect to the Linear-
CRF baseline model.

3.4 Feature Effectiveness Validation

To validate the effectiveness of each input feature,
we conduct experiments to remove each type of
features from the proposed full model and keep the
rest components fixed. The relative performance re-
sults are summarized in Table 4. “~” sign means the
corresponding features are removed from inputs.
For example, “~BPE” means two BPE semantic
features are removed for IC and SF prediction. All
features have positive impact on the two tasks as
removing each of them will downgrade model per-
formance. BPE is the most important one among
all features. Removing it will hugely hurt model
slot prediction capability, which in return will also
affect intent classification performance as BPE and
predicted slots are both used for intent classifica-
tion. Token features are important because they
include lexical features and token embeddings for
both tasks. Slot-mixed features also have signifi-
cant impact, indicating the usefulness to directly
import predicted slots for intent classification.

Model A% SemER SER IRER ICER
-BPE -8.21 9.83 -7.63 -3.37
—Token -2.74 -1.05  -2.60 -1.27
—Utt Length -1.09 -0.04 -098 -0.76
—Gazetteer -2.17 -1.37 -2.05 -0.49
—Slot-mixed -1.65 -0.04 -1.63 -1.42

Table 4: Relative improvement comparison results if
we remove each type of input features from full model.

3.5 Hyper Parameter Tuning

We report the tuning results of four hyper-
parameters: L1 and L2 regularization, batch size
and number of epochs. The visualization results
in Figure 2 help us determine the default settings:

Relative SemER
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Figure 2: Parameter tuning results. Reported values are
relative SemER scores compared with default settings.

L1 regularization is 1e-3, L2 regularization is 10,
batch size is 64 and number of epochs is 10.

Figure 2 shows relative SemER scores compared
with default settings. Selecting appropriate L1 and
L2 regularization values both have significant im-
pact on model performance. Large batch sizes will
degrade model performance. As the parameters are
updated based on average gradients in each batch,
gradients might be blurred if averaged by large
batch size. But small batch size will slow down the
training speed, which is a trade-off for batch size
selection. We also observe that model validation
results stay unchanged after 10 epochs, meaning
that training more epochs is not necessary as the
best model has already been achieved.

4 Conclusion

In this paper, we presented a wide and deep multi-
task model to address the disadvantages of the
widely adopted deep learning architecture for most
SLU systems. Although it is jointly trained to per-
form intent classification and slot filling, it com-
bines semantic and lexical features for IC but only
uses semantic features for SF. The experimental
results on five domains of a commercial voice assis-
tant, Amazon Alexa, have shown that the combined
features have significantly improved the quality of
IC but with minor improvement to the SF quality.
Eventually, the wide and deep model reported aver-
age relative improvement on SEMER and IRER by
7.78% and 6.39%, respectively. In the future work,
we will study the impact of combining semantic
and lexical features on the slot filling task as well.
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