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ABSTRACT

The generative modeling landscape has experienced tremendous growth in recent
years, particularly in generating natural images and art. Recent techniques have
shown impressive potential in creating complex visual compositions while de-
livering impressive realism and quality. However, state-of-the-art methods have
been focusing on the narrow domain of natural images, while other distribu-
tions remain unexplored. In this paper, we introduce the problem of text-to-
figure generation, that is creating scientific figures of papers from text descrip-
tions. We present FigGen, a diffusion-based approach for text-to-figure as well
as the main challenges of the proposed task. Code and models are available at
https://github.com/joanrod/figure—-diffusion

1 INTRODUCTION

Scientific figure generation is an important aspect of research, as it helps to communicate findings in
a concise and accessible way. The automatic generation of figures presents numerous advantages for
researchers, such as savings in time and effort by utilizing the generated figures as a starting point,
instead of investing resources in designing figures from scratch. Making visually appealing and
understandable diagrams would allow accessibility for a wider audience. Furthermore, exploring
the generative capabilities of models in the domain of discrete graphics would be of high interest.

Generating figures can be a challenging task, as it involves representing complex relationships be-
tween discrete components such as boxes, arrows, and text, to name a few. Unlike natural images,
concepts inside figures may have diverse representations and require a fine-grained understanding.
For instance, generating a diagram of a neural network presents an ill-posed problem with high vari-
ance, as it can be represented by a simple box or an unfolded representation of its internal structure.
Human understanding of figures largely relies on the text rendered within the image, as well as the
support of text explanations from the paper written in technical language.

By training a generative model on a large dataset of paper-figure pairs, we aim to capture the rela-
tionships between the components of a figure and the corresponding text in the paper. Dealing with
variable lengths and highly technical text descriptions, different diagram styles, image aspect ratios,
and text rendering fonts, sizes, and orientations are some of the challenges of this problem. Inspired
by impressive results in text-to-image, we explore diffusion models to generate scientific figures.
Our contributions are i) introduce the task of text-to-figure generation and ii) propose FigGen, a
latent diffusion model that generates scientific figures from text captions.

Related work. Deep learning has emerged as a powerful tool for conditional image genera-
tion (Ramesh et al.,|2022; |Saharia et al., 2022} |Balaji et al.| [2022), thanks to advances in techniques
such as GANs (Goodfellow et al., 2014} |Karras et al., [2019;2021)) and Diffusion (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al.| 2020b). In the domain of scientific figures, Rodriguez
et al.| (2023) presented Paper2Fig100k, a large dataset of paper-figure pairs. In this work, we aim to
explore diffusion models applied to the task of text-to-figure generation and analyze its challenges.

2 METHOD AND EXPERIMENTS

We train a latent diffusion model (Rombach et al) 2021)) from scratch. First, we learn an image
autoencoder that projects images into a compressed latent representation. The image encoder uses a
KL loss and OCR perceptual loss (Rodriguez et al., 2023)). The text encoder used for conditioning is
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Figure 1: Samples generated by our model using captions from Paper2Fig100k test set.

Model Text encoder Parameters CFG  FID| ISt  KID|{ OCR-SIM|
FigGengyge Bert (8 layers) 866M 1.0 30246 1.04 0.32 5.97
FigGenggge Bert (8 layers) 866M 50 28232 1.09 0.29 5.89
FigGengyge Bert (8 layers) 866M 10.0 284.12 1.08 0.29 5.83
FigGenypgig Bert (32 layers) 942M 1.0 308.50 1.03 0.32 5.95
FigGenyiqg  Bert (32 layers) 942M 5.0 29898 1.06 0.31 5.91
FigGenpig Bert (32 layers) 942M 10.0 301.10 1.06 0.31 5.86
FigGenp e  Bert (128 layers) 1.2B 1.0 30299 1.04 032 6.08
FigGenp ..  Bert (128 layers) 1.2B 50 28125 1.09 0.29 5.74
FigGenp.ee Bert (128 layers) 1.2B 10.0 288.02 1.09 0.29 5.76

Table 1: Main quantitative results of our text to figure generation models.

learned end-to-end during the training of the diffusion model. The diffusion model interacts directly
in the latent space and performs a forward schedule of data corruption while simultaneously learning
to revert the process through a time and text conditional denoising U-Net (Ronneberger et al., 2015))
(see Appendix [A-T]for details). We use Paper2Fig100k, composed of figure-text pairs from research
papers. It consists of 81,194 samples for training and 21, 259 for validation.

Experimental results. During generation, we use DDIM (Song et al.,[2020a) sampler with 200 steps
and generate 12,000 samples for each model to compute FID, IS, KID (Regenwetter et al., [2023),

and OCR-SIM'| We use classifier-free guidance (CFG) to test super-conditioning (Ho & Salimans|,
[2022). Table [I] presents results of different text encoders, and Figure [T| shows generated samples
of FigGeng,se. We find that the large text encoder offers the best results and that we can improve
conditional generation by increasing the CFG scale. Although qualitative samples do not present
sufficient quality to solve the task, FigGen has learned interesting relationships between texts and
figures such as the difference between plots and architectures (see also Appendix [A.3).

3 CONCLUSION

In this paper, we introduce the task of text-to-figure generation and define FigGen, a latent diffusion
model that we train on the Paper2Figl00k dataset. Our experiments show that FigGen is able to
learn relationships between figures and texts and generate images that fit the distribution. However,
these generations are not ready to be useful for researchers. One of the main challenges to solve is
the variability in text and images, and how to better align both modalities. Also, future work must
design validation metrics and loss functions for generative models of discrete objects.

"https://github.com/joanrod/ocr-vggan
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Input (latent) shape 64 x 64 x4
Number of channels 256
Number of residual blocks 3
Self-attention resolutions  [64, 32, 16]
Channel mult. [1,2,4,4]
Dropout 0

Table 2: Base diffusion U-Net architecture.
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A APPENDIX

A.1 MODEL DETAILS

Image encoder. The first stage, the image autoencoder, is devoted to learning a projection from
the pixel space to a compressed latent representation that makes the diffusion model train faster.
The image encoder needs to also learn to project the latents back to the pixel space without losing
important details about the figure (e.g., text rendering quality). To this end, we define a convolutional
encoder and decoder with a bottleneck, that downsamples images with a factor f = 8. The encoder
is trained to minimize a KL loss with a gaussian distribution as well as a VGG perceptual (Zhang
et al.l 2018) loss and an OCR perceptual loss. We follow the adversarial procedure proposed in
VQGAN (Esser et al.,[2020), which increases reconstruction quality.

Text encoder. We find that using a general-purpose text encoder (e.g., CLIP (Radford et al.| 2021))
is not well-suited for our task, because text encoders trained on natural texts and images exhibit a
domain gap with respect to the technical descriptions present in papers. We define Bert (Devlin et al.}
2018) transformer that is trained from scratch during the diffusion process. We use an embedding
channel of size 512, which is also the embedding size of the cross-attention layers for conditioning
the U-Net. We explore varying the number of layers of the transformer in the set 8, 32, and128.

Latent diffusion model. Table [2] describes the U-Net network architecture. We perform diffusion
in a perceptually equivalent latent representation of images, that is compressed to an input size of
6426424, which makes the diffusion model faster. We define 1000 steps of diffusion and a linear
noise schedule.

A.2 TRAINING DETAILS

Our models are trained in Paper2Figl00k. During our experiments, we find that a challenging
problem is how to deal with extremely varying aspect ratios that exist between images in the dataset
(e.g., figures tend to be larger in width than in height). Cropping figures would result in a loss
of crucial information. Therefore we opt for applying white padding to images and only consider
images with an aspect ratio between 0.5 and 2, to avoid having most of the pixel information be the
padded pixels. The final dataset consists of 37,613 samples for training and 9, 506 for validation.
Images are processed at size 5122512 and downsampled to 64264 by our image autoencoder.

For training the image autoencoder we use Adam optimizer with an effective batch size of 4 samples,
and a learning rate of 4.5e — 6, using 4 Nvidia V100 12GB GPUs. For training stability, we warm up
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Input (image) shape 384 x384x3
Embed dimension 4
Number of channels 128
Number of residual blocks 2
Channel mult. [1,2,4,4]
Discriminator weight 0.5
VGG perceptual loss weight 0.2
OCR perceptual loss weight 0.8
KL loss weight le-6
Dropout 0

Table 3: Image autoencoder architecture.

5 Ny y N\(
Figure 2: network architecture of the proposed Figure 2. overview of Adafocus. Ft first takes a quick glance at
each frame VT using a light-weighted global CNN FG. Then a 5
auto{l models. (a ).uutall-u and (b) autoll:d for e e, § Mt VBBV o et fig. 5. the framework of transformer fusion module.
undirected and directed graphs, respectively. important image region VI i terms of recogaition.(..) )\
CFG=10
CFG =50
CFG =100

Figure 2: Samples generated from FigGeng,se. We display two generated samples for three prompts
Paper2Fig100k test set. Each row displays the classifier-free guidance (CFG) scale, showing that we
can super-condition the generations to make the samples align better with the prompt.

the model during 50 iterations without using the discriminator (Esser et al., [2020; [Rombach et al,
|QTT_2T[). For training latent diffusion models, we use Adam optimizer, using an effective batch size of
32 and a learning rate of 1e — 4. For training the models on Paper2Fig100k we use 8 Nvidia A100
80GB GPU.

A.3 ADDITIONAL GENERATION RESULTS

Figures [2] show additional generated samples of FigGen when tuning the classifier-free guidance
(CFG) (Ho & Salimans|, [2022)) parameter. We observe improvement in figure quality when increas-
ing the CFG scale which is also shown quantitatively. Figure[3]presents more generations of FigGen.
Note the variability in text length between samples, as well as the technical level of the captions,
which makes it difficult for the model to properly generate understandable figures. However, high-
level concepts are correctly captured, such as captions that describe charts and plots, algorithms, or
cases where we aim to display neural network architectures.
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