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Abstract

Spurious correlations are a threat to the trust-
worthiness of natural language processing sys-
tems, motivating research into methods for
identifying and eliminating them. However,
addressing the problem of spurious correla-
tions requires more clarity on what they are
and how they arise in language data. Gardner
et al. (2021) argue that the compositional na-
ture of language implies that all correlations
between labels and individual “input features”
are spurious. This paper analyzes this proposal
in the context of a toy example, demonstrat-
ing three distinct conditions that can give rise
to feature-label correlations in a simple PCFG.
Linking the toy example to a structured causal
model shows that (1) feature-label correlations
can arise even when the label is invariant to in-
terventions on the feature, and (2) feature-label
correlations may be absent even when the la-
bel is sensitive to interventions on the feature.
Because input features will be individually cor-
related with labels in all but very rare circum-
stances, domain knowledge must be applied
to identify spurious correlations that pose gen-
uine robustness threats.

1 Introduction

Spurious correlations are a growing source of con-
cern in machine learning (Geirhos et al., 2020) and
related fields including natural language process-
ing (Gururangan et al., 2018; McCoy et al., 2019,
inter alia). While the intuition is fairly clear —
spurious correlations are features that are useful in
the training data but unreliable in general — the
notion is frequently referenced without a formal
definition. Gardner et al. (2021) propose a defini-
tion in terms of conditional probabilities: a feature
Xi is spuriously correlated with the label Y unless
P (Y | Xi) is uniform. The definition can be gener-
alized from uniformity to independence (Xi ⊥⊥ Y )
without affecting the claims of the paper. They
go on to argue that “in a language understanding
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Figure 1: An instance from the toy model. The up-
per part of the figure corresponds to fX , the function
that generates the text via a PCFG (see fig. 2): nodes
represent non-terminals in the grammar and edges rep-
resent context-free derivations. The lower part of the
figure corresponds to the causal model of the sentiment
Y and target Z. Here nodes represent random variables
and edges represent causal relationships.

problem, . . . all simple correlations between input
features and output labels are spurious” (emphasis
in the original). The property that individual input
features should be independent of labels — which
I will call marginally uninformative input features
(UIF)1 — is treated as an assumption about the
nature of language processing and also as a desider-
atum that datasets should satisfy: if the label can
be predicted from input features alone, then the
dataset is in some sense too easy.2

1The features are marginally uninformative because
the criterion is the marginal distribution P (Y |Xi) =∫
P (Y,X¬i|Xi)dX¬i. Features may be marginally uninfor-

mative while still giving information about the label when
viewed in combination.

2To formalize the UIF assumption, it is necessary to clarify
which features are “input features”: bytes, phonemes, word-
pieces, words, phrases, or sentences? The selection of input
features is a property of the model and not the dataset, but
the intuitive support for UIF seems stronger for features that
are lower on the linguistic hierarchy. Because the arguments
presented here don’t depend on the specific definition of input
features, I will follow Gardner et al. (2021), who informally
identify input features with words. However, if one were to
apply UIF for a practical purpose such as dataset curation,
it would be important to explore this issue more thoroughly,
particularly in regard to languages in which words are the sites



The principle of UIF is based on the insight that
linguistic context can modulate the semantics of
any subspan of a text, using mechanisms such as
syntactic negation or discourse markers. Further-
more, the frequency of negation and other forms
of semantic inversion may vary across datasets and
deployment settings. A predictor that relies on
negation being rare (to pick one example) cannot
be said to have truly achieved competence in the
language processing task. Such a predictor may
perform poorly in domains in which these high-
level distributional properties shift.

An especially provocative assertion of Gardner
et al. is that all correlations between labels and
individual input features have the same status. In
the sentence the pizza was amazing, suppose that
both pizza and amazing are correlated with positive
sentiment because the reviewers like pizza. There
are at least two intuitive differences between these
two correlations. First, while one can easily imag-
ine a benighted subpopulation of reviewers who do
not like pizza, it is not so easy to imagine reviewers
who think that the word “amazing” carries nega-
tive sentiment. Second, if we modify the subject
(e.g., the movie was amazing), the label will usually
be unaffected, but there are many perturbations to
the adjective that flip the label (e.g., the pizza was
greasy). This second intuition can be described
using the framework of causality, which has gen-
erally treated spurious correlations as those that
arise without a direct causal explanation (Simon,
1954). Given a causal model of the data gener-
ating process, we can compute an interventional
distribution P (Y | do(X1 := x), X2, X3), which
corresponds to the distribution over Y in a data
generating process in which the variable X1 is sur-
gically set to the value x (Pearl, 1995; Peters et al.,
2017; Feder et al., 2021).3 When such interventions
do not affect Y for any given example, we say that
Y and X1 are counterfactually invariant (Veitch
et al., 2021). Violations of UIF are particularly
troubling when they are accompanied by counter-
factual invariance, because non-causal correlations
often do not transfer to other domains (Schölkopf
et al., 2012; Bühlmann, 2020).

of a significant amount of morphological composition and are
therefore capable of carrying complex relational meanings.
Conversely, multiword expressions can function analogously
to single word features, so there is no reason in principle
why only single-word features should be considered spuri-
ous (Schwartz and Stanovsky, 2022).

3Space does not permit a discussion of the distinction
between interventions and counterfactuals (see Pearl, 2009).

U :=NU (1)

(X1, X2, X3) :=fX(U,NX) (2)

Z :=fZ(X1, NZ) (3)

Y :=fY (X2, X3, NY ). (4)

Figure 2: Causal model for the toy example shown in
fig. 1. NU , NX , NY , NZ indicate independent noise
variables, and fX , fY , fZ indicate deterministic func-
tions that map from causes to effects (for more details
on the notation, see Peters et al., 2017).

This paper uses a toy example to relate the UIF
property to (1) the production probabilities in prob-
abilistic context-free grammars (PCFGs), and (2)
counterfactual invariance in structured causal mod-
els. The connection to PCFGs provides additional
motivation for the UIF criterion from the perspec-
tive of domain generalization, while clarifying the
scenarios that can give rise to violations of UIF,
which Gardner et al. attribute too narrowly to “bias
and priming effects” in annotators. The connection
to counterfactual invariance highlights the ways in
which these concepts do and do not align. Efforts
to remove artifacts from the training and evalua-
tion of NLP systems will be most productive when
focused at the intersection of these two views of
spurious correlations: violations of UIF for input
features to which the label is counterfactually in-
variant according to a plausible causal model.

2 Toy Example

Consider a simplified targeted sentiment analysis
task (Mitchell et al., 2013), in which the sentiment
is Y , the target is Z, and the sentences are all of the
form (X1, X2, X3), with X1 specifying a target
noun phrase, X2 a copula-like expression, and
X3 a predicative adjectival phrase. For example,
Y = POS, Z = PIZZA, X1 = the pizza, X2 =
turned out to be, X3 = crispy and delicious. We
will treat this data as generated from the causal
model shown in fig. 2. This causal model can be
summarized by two assertions: (1) the target Z is a
direct effect of only the span X1; (2) the sentiment
label Y is a direct effect of only the spans X2 and
X3. The function fX can represent any generative
model of text: an n-gram model, a grammar-based
formalism, a deep autoregressive network, etc.



Aside on the direction of causation. We treat
the text as the cause of the labels, rather than
the converse. This distinction is somewhat
vexed (Schölkopf et al., 2012; Jin et al., 2021). In
some cases the direction of causation is clear from
the task (e.g., table-to-text generation, summariza-
tion, and translation), but often the problem could
be framed in either direction: perhaps the writer
had the label in mind when producing the text, and
thus the text is an effect of the label; or perhaps it is
better to think of the annotator, who must read the
text to arrive at the label, regardless of the writer’s
intentions. When the labels cause the text, the no-
tion of counterfactual invariance can be restated in
terms of the invariance of text features to perturba-
tions on labels, e.g. P (X1 | do(Y := y), Z). As
the toy example is meant to serve only an exposi-
tory purpose, we leave elaboration of the relation-
ship of UIF to such models for future work.

2.1 Counterfactual invariance ; UIF

The causal model implies several counterfactual
invariance properties: intervention on X1 will not
affect Y , nor will intervention on X2 or X3 affect
Z. This is because X1 blocks the influence of X2

and X3 on Z, and vice versa for Y . Conversely,
(X3, Y ) are not counterfactually invariant in gen-
eral because X3 is an ancestor of Y in the causal
graph, and similarly for (X2, Y ) and (X1, Z).

Counterfactual invariance does not imply that
the associated input features are marginally unin-
formative of the label. Consider a classical spurious
correlation in which pizza tends to receive positive
sentiment and sushi receives negative sentiment.
This correlation is produced when fX encodes a
PCFG with the top-level production:

S → Z̃pizza Ỹ+ (1 + α)/4

Z̃sushi Ỹ− (1 + α)/4

Z̃pizza Ỹ− (1− α)/4
Z̃sushi Ỹ+ (1− α)/4,

(5)

with the right column indicating the probability of
each rule expansion and α ∈ [−1, 1].4 The nonter-
minal symbols Z̃pizza, Z̃sushi, Ỹ+, Ỹ− are intention-
ally chosen to correspond to the labels Z and Y .

4The stochasticity of the grammar is encoded in the de-
terministic function fX through the noise variable NX . Let
NX ∼ Uniform(0, 1), and choose the first rule expansion of
S when NX < (1 + α)/4, the second rule expansion when
(1 + α)/4 ≤ NX < (1 + α)/2, and so on.

Subsequent rules in the grammar can then be de-
signed to ensure that Z̃pizza usually produces values
of X1 that make Z = PIZZA likely, and analo-
gously for the other non-terminals and associated
labels. The unification of PCFGs and structured
causal models is shown in fig. 1.

When α 6= 0, there may be an association be-
tween X1 and (X2, X3). As a result, there exist
pairs of values (x1, x′1) such that,

P (Y |X1 = x1)

=
∑

X2,X3

P (Y | X2, X3)P (X2, X3 | X1 = x1)

6=
∑

X2,X3

P (Y | X2, X3)P (X2, X3 | X1 = x′1)

= P (Y |X1 = x′1),

(6)

creating a violation of UIF. The same argument
can be applied to P (Z | X2) and P (Z | X3). UIF
is also violated in P (Z | X1), P (Y | X2), and
P (Y | X3), but for a different reason: these distri-
butions are conditioned on the direct causal parents
of the labels in fY and fZ . Manipulation of the data
distribution to ensure that α = 0 (deconfounding
Ỹ and Z̃) can remove only the violations of UIF
induced by fX , but not those induced by the di-
rect causal relationships encoded in fY and fZ : for
example, if Pr(X3 = delicious|Ỹ+) > Pr(X3 =
delicious|Ỹ−) then the feature delicious will be as-
sociated with positive sentiment regardless of the
rule probabilities in eq. (5).

Discussion. The example shows how violations
to UIF can emerge via confounding, creating clas-
sical spurious correlations in the sense of Simon
(1954): informativeness despite counterfactual in-
variance. Such correlations are unlikely to be ro-
bust because it is not difficult to imagine a domain
in which the sign of α changes, impairing the per-
formance of predictors that have learned the spuri-
ous correlation. In contrast, feature-label correla-
tions that arise directly from the causal model, such
as (Z,X1), are only damaging under more extreme
forms of concept shift, in which the meanings of
the features themselves change.

Aside on causality and robustness. The dis-
tinct interpretations of spuriousness as (1) non-
causal and (2) non-robust are noted by Schwartz
and Stanovsky (2022) in concurrent work. How-
ever, these interpretations can be reconciled by



the argument that non-causal features are inher-
ently unlikely to be robust, which is sometimes
formalized as the principle of sparse mechanism
shift (Schölkopf et al., 2021). The principle states
that complex causal systems are usually composed
of smaller independent parts, with domain shifts
affecting only a few components of the system at
a time. A related principle arises in the context
of natural language: distributional frequencies are
more likely to change across domains, while cat-
egorical facts about language are generally stable.
Biber (1991), for example, makes this argument ex-
plicitly in the analysis of register. In our model, the
implication is that the probabilistic rule expansions
in fX are more likely to change than the basic prop-
erties of the lexicon, which govern which terminal
symbols can be emitted by each non-terminal.

2.2 UIF ; Counterfactual Invariance

Violations of counterfactual invariance can occur
even when UIF is satisfied. To show this, we supply
two more productions for the grammar:

Ỹ+ → COP+ ADJP+ β+

COP− ADJP− 1− β+
(7)

Ỹ− → COP+ ADJP− β−

COP− ADJP+ 1− β−
(8)

Here the non-terminal COP+ produces a “posi-
tive” copula in X2 (is, was, is universally agreed
to be), COP− produces a negated copula in X2

(isn’t, wasn’t, was the furthest possible thing
from), ADJP+ produces positive-sentiment adjec-
tival phrases in X3 (great, delicious), and ADJP−
produces negative-sentiment adjectival phrases in
X3 (disappointing, totally unappetizing). There are
two special cases of interest:

• When β+ = β−, the probability of using a
negated copula is independent of Y , so X2

satisfies UIF with regard to Y , while X3 gen-
erally does not.

• When β+ = 1 − β−, the use of negation is
balanced to make the distribution over senti-
ment terms independent of Y , so X3 satisfies
UIF with Y , while X2 generally does not.

Combining these cases, both X2 and X3 satisfy
UIF with Y when β+ = β− = 1

2 , meaning that
negated and non-negated copula are equally likely
and are independent of Y .

Discussion. UIF is violated not only by con-
founding, as discussed in the previous section, but
also in mild settings that do not meet any reason-
able definition of bias: unless β+ = β− = 1/2
then at least one of X2 and X3 is marginally infor-
mative of Y . Furthermore, UIF has no impact on
the counterfactual invariance of X2 and X3 on Y .
Neither is counterfactually invariant even when the
generative model is parametrized to make UIF hold
for all input features (see also Pearl, 2009, page
185). This is because the overall sentiment can
be directly affected by adding or removing nega-
tion and by flipping the polarity of the sentiment-
carrying adjective.

3 Conclusions

In the toy example, violations of UIF arise from
three distinct phenomena: confounding between
the sentiment and the target (α 6= 0, leading to
X1 6⊥⊥ Y ); confounding between the sentiment
and the use of negation (β+ 6= β−, leading to
X2 6⊥⊥ Y ); and lack of a perfect balance in the prob-
ability of negation between positive- and negative-
sentiment examples (β+ 6= 1 − β−, leading to
X3 6⊥⊥ Y ). The conditions required to satisfy UIF
are thus progressively less plausible as we move
fromX1 toX3, and full UIF is achieved only in the
perfectly balanced case of α = 0, β+ = β− = 1

2 .
The number of such constraints will increase with
the size of the grammar, making UIF vanishingly
rare in more general settings. This conclusion fol-
lows from the PCFG analysis and is derived with-
out reference to causality.

The toy example also demonstrates the discon-
nect between the UIF view of spurious correlations
and the causal view: counterfactual invariance does
not imply UIF because X1 can be marginally in-
formative of Y even when X1 and Y are counter-
factually invariant (these are the artifacts that we
want to remove); UIF does not imply counterfac-
tual invariance because both X2 and X3 can be
uninformative of Y even when Y is sensitive to
interventions on both features. From a theoretical
perspective, it is unsurprising that these two views
diverge, because UIF is a purely observational cri-
terion while counterfactual invariance requires an
explicit causal model. Indeed, this relationship is
discussed in depth by Pearl (2009, §6.3), albeit out-
side the context of language. The two perspectives
can be seen as complementary, in that violation of



UIF is a necessary but insufficient condition for a
spurious correlation in the causal sense.

Moving beyond toy examples, it is unlikely that
we can construct fully-specified causal models of
language that supply useful invariances while han-
dling every possible fluent utterance. How then can
we use causal insights to design better benchmarks
and more robust language understanding systems?
In some cases it is possible to elaborate partial
causal models of a task, with associated invariance
properties: for example, the sentiment of a movie
review should be invariant to (though not indepen-
dent of) the identities of the actors in the movie.
Several existing approaches can be viewed as in-
stantiations of partial causal models: for example,
data augmentation, causally-motivated regulariz-
ers, stress tests, and “worst-subgroup” performance
metrics (and associated robust optimizers) can be
seen as enforcing or testing task-specific invariance
properties that provide robustness against known
distributional shifts (e.g., Lu et al., 2020; Ribeiro
et al., 2020; Kaushik et al., 2021; Koh et al., 2021;
Veitch et al., 2021). Such approaches generally
require domain knowledge about the linguistic and
causal properties of the task at hand — or to put
it more positively, they make it possible for such
domain knowledge to be brought to bear. Indeed,
the central argument of this paper is that no mean-
ingful definition of spuriousness or robustness can
be obtained without such domain knowledge.

A final observation, pertaining to both UIF and
counterfactual invariance, is the parallel treatment
of X2 (the copula) and X3 (the adjectival phrase).
From a lexical semantic perspective, only X3 is di-
rectly associated with sentiment, while X2 plays a
functional role by potentially reversing X3. It may
therefore seem undesirable to learn a correlation
between X2 and Y , and preferable to attach that
relationship exclusively to X3. Indeed, one of the
main catalysts of interest in spurious correlations
in natural language processing was the observa-
tion that the presence of syntactic negation is a
strong predictor of contradiction label in the natu-
ral language inference task, which should require
reasoning about pairs of sentences (Gururangan
et al., 2018; Poliak et al., 2018). Yet neither UIF
nor counterfactual invariance is capable of making
any distinction between X2 and X3 in this model.
While it is possible to enforce uninformativeness on
X2 heuristically, e.g. by sampling or augmenting
the data to ensure β+ = β−, those same heuris-

tics could be applied to enforce uninformativeness
on X3 by making β+ = 1 − β−. Singling out
X2 requires additional justification. Such a prin-
ciple might be found in the multitask setting, in
which we prefer feature-label informativeness to
be sparse, with each feature directly informing only
a few labels.
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