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Abstract

Capturing effective long-range information propagation remains a fundamental
yet challenging problem in graph representation learning. Motivated by this, we
introduce SONAR, a novel GNN architecture inspired by the dynamics of wave
propagation in continuous media. SONAR models information flow on graphs
as oscillations governed by the wave equation, allowing it to maintain effective
propagation dynamics over long distances. By integrating adaptive edge resistances
and state-dependent external forces, our method balances conservative and non-
conservative behaviors, improving the ability to learn more complex dynamics.
We provide a rigorous theoretical analysis of SONAR’s energy conservation and
information propagation properties, demonstrating its capacity to address the
long-range propagation problem. Extensive experiments on synthetic and real-
world benchmarks confirm that SONAR achieves state-of-the-art performance,
particularly on tasks requiring long-range information exchange.

1 Introduction

Graph neural networks (GNNGs) [67, (76} [10} [18]] have become a powerful framework for process-
ing graph-structured data, enabling applications across various domains such as social networks
[59] 49], molecular biology [36, 89, 43| 5], and more [38} |58]. Most GNNs are built upon the
Message-Passing Neural Networks (MPNNs) framework [36], where information is exchanged
between neighboring nodes, enabling effective learning from local graph structure. Despite their
widespread use and success, a persistent challenge in GNNSs is the effective modeling of long-range
dependencies within graphs, as information propagation tends to degrade over extended distances.
This is caused by phenomena such as over-smoothing [[11} (73], over-squashing [2, [19]], and, more
generally, vanishing gradients [3]. Several recent approaches have been developed to better cap-
ture long-range dependencies in graphs, including graph rewiring [35} 83| [7]], multi-hop GNN5s
[L, 46l 20], differential-equation-based GNNs (DE-GNNs) [[13} 139,140} 52]], and graph transformers
[78. 23], 190, [72, [88]]. Graph transformers, in particular, have gained popularity due to their use of
attention mechanisms, which allow any pair of nodes to exchange information directly. However,
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their quadratic computational cost poses scalability challenges. Moreover, recent studies have shown
that, on some long-range tasks, they may actually perform worse than standard MPNNs [182].

To address the long-range propagation problem, we draw inspiration from wave propagation in
continuous media, where signals can travel vast distances with minimal energy loss [29]. We propose
SONAR (Structured Oscillatory Graph Neural Network with Adaptive Resistance), a novel DE-GNN
with a MPNN-like architecture that models information propagation through the lens of wave-based
dynamics. Unlike diffusion-based propagation schemes such as [59} 85} 189], which are inherently
dissipative and struggle to capture long-range interactions [3]], wave-based dynamics preserve signal
energy and enable effective communication across distant nodes. This mechanism is analogous to
acoustic wave propagation in the ocean, where, under specific temperature and pressure gradients,
sound waves can become trapped in the SOFAR channel [30]. This natural waveguide allows acoustic
signals to travel across thousands of kilometers with minimal attenuation. SONAR adopts a similar
principle in the graph domain: by treating information as a wave propagating through the graph
topology, it maintains signal fidelity over many hops and facilitates robust long-range interactions.
Specifically, it adopts a mathematically grounded formulation to model wave dynamics [34]], resulting
in inherently linear propagation dynamics with strong theoretical guarantees. Moreover, SONAR
introduces adaptive resistances that enable each edge to control the flow of information, along with
external forces that balance conservative and non-conservative dynamics, allowing the model to
capture more complex behaviors and improve performance on downstream tasks.

The key contributions of this work are the following: (i) We propose SONAR, a novel MPNN-like
architecture based on the wave equation for graphs, which enables the balance and integration of
non-dissipative long-range propagation and non-conservative behaviors. Additionally, it incorporates
adaptive resistances that allow each edge to modulate the information flow. (ii) We theoretically prove
that, in its conservative form, SONAR does not dissipate the energy of features in the graph, i.e.,
information is preserved. In its continuous form, the sensitivity matrix between any two nodes never
vanishes but oscillates following a cosine function. (iii) We employ additional dissipative and forcing
terms, allowing SONAR to mediate between pure conservative and non-conservative behaviors. This
gives SONAR the flexibility to learn to filter out irrelevant information. (iv) We conduct extensive
experiments to demonstrate the benefits of our method. SONAR consistently achieves on par or
better performance than existing methods across diverse tasks and benchmarks. Notably, SONAR
outperforms existing state-of-the-art methods on synthetic long-range benchmarks, where accurate
modeling of distant node interactions is crucial, highlighting its strength in long-range propagation.

2 Related Work

Long-Range Propagation in GNNs. Effectively modeling long-range dependencies remains a
central challenge in deep learning for graphs [[77, 13]. GNNs usually rely on local neighborhood
aggregation, which limits their capacity to capture interactions between distant nodes [2, [19] due
to challenges such as over-smoothing [[11} 168, 73] and over-squashing [2| 83} [19], which are linked
to the problem of vanishing gradients [3]]. Therefore, GNNs based on message passing exhibit a
performance degradation in tasks requiring more global context, such as molecular property prediction
[24]. To address these challenges, a variety of strategies have been proposed. Graph rewiring
methods, including SDRF [83]], DIGL [35]], FoSR [57], and DRew [46]], modify the graph topology to
facilitate long-range communication. Other approaches include regularizing the model’s weight space
[39] 141} 140]], exploiting port-Hamiltonian dynamics [52]], filtering messages in the information flow
[28}132], using a graph adaptive method based on a learnable ARMA framework [25]], or using multi-
hop information in a single update [21]. Graph Transformers [61} 72 78] [80, 90]] offer an alternative
paradigm by enabling direct message passing between any pair of nodes via attention mechanisms.
While effective, most of these methods often introduce additional computational complexity due to
denser graph shift operators or all-pairs interactions.

GNNs based on Differential Equations. Recent advancements in the field of representation learning
have introduced new architectures that establish a connection between neural networks and dynamical
systems. Building on foundational work in recurrent neural networks [16}47], this perspective has
been extended to GNNss [50]]. Indeed, works like GDE [71], GRAND [13], PDE-GCN [26], DGC [87],
GRAND++ [81] propose to interpret GNNs as discretisations of ODEs and PDEs. Methods in this
class impose a bias on node representation trajectories to follow the heat diffusion process [13LI81}87],
exploit non-dissipative dynamics [39} 140], or hamiltonian dynamics [56} |91} |52].GraphCON [/74]]



further explores oscillatory dynamics to preserve the Dirichlet energy encoded in the node features
and mitigate oversmoothing. In GraphCON, each node acts as an oscillator that exchanges infor-
mation with its neighbors through a simple GCN [59] or GAT [835]]. In contrast, SONAR adopts a
mathematically grounded formulation of graph calculus [33]] to model wave propagation on graphs
[34], resulting in inherently linear dynamics that offer stronger theoretical guarantees for long-range
information propagation. Moreover, SONAR introduces adaptive resistances (which allow each
edge to modulate how information is transmitted) as well as external forces that enable the mod-
eling of more complex dynamics. The spatio-temporal evolution of graphs has been studied in
[27), 1421 1551 144].

3 SONAR

In this section, we introduce our SONAR (Structured Oscillatory Graph Neural Network with
Adaptive Resistance), a novel GNN architecture whose information flow is designed as the wave
equation on graphs, enabling long-range information propagation between nodes. Figure ]| provides a
visual representation of the overall architecture and wave propagation dynamics.
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(a) Deep SONAR architecture (b) SONAR propagation dynamics

Figure 1: Illustration of (a) a deep SONAR architecture and (b) the SONAR propagation dynamics of
one block.

3.1 Notations and Preliminaries

We consider a graph G = (V, £) as the system of interacting entities called nodes, where V is a set of
nnodes and £ C V x Vs a set of m edges. The structural information expressed by £ can be encoded
in the adjacency matrix A € {0,1}"*", i.e., a binary matrix where A;; = 1if (4, j) € £ and zero
otherwise. We define the neighborhood of node v as the set of nodes u directly linked with v, i.e.,
N(v) = {u|A,, = 1}, and the degree of node v as the number of its neighbors, deg(v) = [N (v)].
Lastly, we consider the Laplacian matrix L and two normalizations, i.e., symmetric and random-walk
normalized Laplacian matrices, which are respectively defined as

L=D-A, LY =1 — (Dt)2A(D)2, LY =1I-D"A (1)

where I is the identity matrix, D is the diagonal degree matrix with D;; = deg(v;) and v; a generic
node. D™ is the pseudo-inverse of D. Following [34]], the definition of graph Laplacian can be
generalized to its weighted version and to any node function f(v) : V — R as

(Af)(v) = Lf)(v) = (D f)(v) = (A"H)0) = D aw(f(v) = f(u)) )

ueN (v)

where D® and A are the weighted degree and adjacency matrices, and a,, € R is a weight on the
directed edge (u,v) € &.

Each node in the graph is associated with a hidden state vector x,,(t) € R¢, which provides the evo-
lution of the node representation at time ¢ in the system. The term X (¢) = [xo(t),...,Xn_1(t)]" €
R™*4 is the matrix of all node states at time ¢. We note that in the domain of differential-equations the
continuous dynamics expressed by the neural network is discretized into classical GNN layers [39].
Therefore, given the initial condition (node input features) x, (0) = X,,, each GNN layer ¢ = 1,..., L
computes node states xf, which approximate x, (¢ = hf), with h being the integration step size.



The wave equation in physics. Waves in physics describe the propagation of oscillations in a
continuous medium. Common examples are electromagnetic waves [62] and sound waves [48]].
These are described by the wave equation i?ng =c? %, where f(t, x) is a scalar function describing
the wave and c is its propagation speed, which is an intrinsic characteristic of the conditions and
medium. Directly descending from their equation, waves have interesting properties: (i) they can
travel indefinitely without losing amplitude and energy at constant speed [29], and (ii) they can be
linearly composed and decomposed, allowing for superposition of waves propagating from different
directions [62]]. More specifically, the total energy E'(t) of a wave on R is defined as

so= [ () + (%) ar o

and can be shown to be constant [29] in the whole space and even on bounded domains. Our objective
is to exploit these properties to propagate energy and information indefinitely a graph.

Waves following a non-conservative dynamic can be modeled with the addition of a dissipative term
D(t,x) = k%(t, x), which dampens the wave and dissipates energy, or with an external forcing
term F'(t, z), which represents other environmental factors acting on the wave.

3.2 The SONAR wave propagation

To model information propagation on graphs as oscillations in a continuous medium, we formulate
the dynamics of SONAR through a differential equation that follows the graph wave equation.
Specifically, we start by defining the evolution of node states as:

X(t) = —~LX(t)W, X(0) = X, )

where X(t) is the second-order derivative of X(t), W € R?*¢ is a learnable weight matrix, and X
contains the initial node states. To more closely mimic wave propagation in physical media, we adopt
the weighted graph Laplacian in Equation (2), allowing different edges to modulate how signals travel
through the graph. In other words, each pairwise communication between nodes can be viewed as
residing in a distinct medium, where the wave properties, e.g., speed and amplitude, vary depending
on the properties of the medium. This is analogous to propagating signals at different depths in
the ocean, where specific water temperature and pressure alter the wave propagation capabilities.
Therefore, in our setting, the Laplacian weight a,,,, can be interpreted as an inverse resistance term
that governs the ease with which information flows between nodes v and v. Although a,,, can be
implemented as static (fixed) weights, in our experiments in Section 4] we employ neural networks to
learn such weights in order to adaptively model the dynamics of the propagation on the specific taskE]

To further cast the system dynamics in the more general setting, we then introduce the possibility
of trading between the conservative behaviour typical of undampened wave equations (discussed in
detail in Section [3.3]) with non-conservative dynamics. We introduce dissipative and external forcing
terms to alter the conservative evolution of node states. Therefore, Equation () can be rewritten to
include the new terms as

X(t) = —L*X(t)W — D(X(t)) ® X (t) + F(X(t)), 5)

where D(X(t)) € R7*% and F(X(t)) € R"*? denote the state-dependent dissipative and external
forcing terms, respectively. @ is the Kronecker product. We note that without D(X(¢)) and F'(X(t)),
the purely conservative inductive bias of the wave equations constrains node states to evolve along
conservative trajectories, which may limit the model’s effectiveness and hinder its ability to capture
the more complex dynamics required for downstream tasks. Therefore, the dissipative term allows
irrelevant information to be dissipated during propagation, while the external force introduces
additional flexibility to control the dynamics based on input-dependent signals. In our experiments in
Section[d] we employ neural networks to learn both the dissipative and external forcing terms.

Discretization and implementation details. As for standard DE-GNNs, a numerical discretization
method is needed to solve Equation (5). We solve the equation with a finite difference scheme [31].

Note that disconnected nodes always have a zero adaptive resistance. Thus, the resistance .., is calculated
only between connected nodes.



To this aim, we first introduce the auxiliary velocity variable to be the first-order derivative of the
node states, i.e., V(t) = X(t), to rewrite Equation (5)) as the first-order system:

{X(t) = V(1) . ©
V(t) = -L°X(t)W — D(X(t)) © V() + F(X(t)).
This system can be now discretized by iteratively solving

XA = X 4 Vit

{V“l =Vi—h(L*X'W + D(X*) 0 V! — F(XY)), 7

where h is the step size of the discretization method, and X° = X and V° = X°Wy,, with
Wy € R%*4 a learnable matrix for the initial velocity. Note that edge features can be seamlessly
incorporated into Equation (7)), as detailed in Appendix [A.T] As discussed above, we can discretize
time into GNN layers, such that the embedding x! from Equation (7)) encodes information that is £
hops away from v.

We note that, when dissipation and external forcing are not employed, information is linearly
aggregated. To increase effectiveness, we can build a deep architecture for our SONAR, following
principles established in modern architectures [69} 45, [12]]. Therefore, we define a SONAR block
by applying an MLP to the output of Equation (/) after L propagation steps, introducing nonlinear
dynamics into the model. Multiple SONAR blocks can then be stacked to form a deep architecture,
where the output of block i becomes the initial condition of the subsequent block (¢ + 1):

XL — SONAR(X):0)

X D0 — MLP(X)L), ®

This concept is visually summarized in Figure[Ta]

In our experiments in Section [4] the Laplacian weights a,,, are implemented as the output of an
MLP that takes the states x/ and x/ as input, followed by a ReLU activation to ensure a positive
output. The dissipative term is modeled using an MLP applied to the current node state, also followed
by a ReLU to enforce non-negative outputs. The external forcing term is computed via an MLP
without activation constraints, allowing it to output both positive and negative values. As a result,
each propagation step (i.e., iteration of the discretization step) £ in each block is associated with its
own set of learned Laplacian weights, as well as dissipative and external forces. Each SONAR block
is equipped with its own set of parameters for learning the Laplacian weights, the dissipative and

external forcing components, as well as its own learnable matrices for initial velocity WS), and

message passing aggregation weights W (?) (which are shared within the block). We consider both
the number of blocks and propagation steps as hyperparameters in our experiments.

3.3 Theoretical Properties of SONAR

We now provide theoretical statements about energy and information conservation properties of
SONAR, showing that our model effectively performs long-range propagation between nodes. Ap-
pendix [B| provides the proofs for the statements.

SONAR allows for long-range propagation. To prove that SONAR has a conservative behavior, we
start by defining the energy of the system, adapting Equation (3) to the graph domain, as

2

1 1]|oX(t)
B0 = X i+ |2 ©
veV
potential energy kinetic energy

The energy contains two components: the potential energy, which measures how much the signal
varies across the graph (i.e., spatial variationf]; and the kinetic energy, which captures how node
states change over time (i.e., layer-wise variation). In other words, the kinetic energy tells how fast
the wave is vibrating, while the potential energy reflects the tension in the system. By maintaining a
constant energy, we therefore ensure that node information is preserved during propagation.

3The potential energy is equivalent with the Dirichlet energy in [37] employed to measure over-smoothing.



To better highlight how node coupling and SONAR convolution affect energy conservation in the
graph, we now focus on a single feature X (¢) € R™. The generalization to multiple features is left to
Appendix [B] The following theorem shows that without dissipation and external forcing (i.e., with a
propagation similar to Equation (@), the wave propagation through the graph conserves the energy.

Theorem 3.1. Let X(t) € R™ be the node states at time t, obtained as the solution to the graph
wave equation in Equation (5)), with initial condition X (0) = X, null dissipative and external forcing
terms. Then, the energy E(t) in Equation (9) is conserved, that is, E(t) = E(0) Vt > 0.

This result implies that information encoded in the node states is neither amplified nor dissipated over
time (i.e., while traversing the graph), but redistributed in a lossless manner across the graph. This
property enables SONAR to perform deeper propagation, making it particularly suitable for tasks
requiring long-range interactions.

To provide a clearer picture of the long-range capabilities of our SONAR, we follow the recent
literature 83, |19] and evaluate the long-range propagation ability by measuring the sensitivity of
the node states. Specifically, we first measure how sensitive is a node state at an arbitrary time
t with respect to the initial state of another node, i.e., 9x,(t)/0x,(0). Then, we compute the
same sensitivity for the discretization version of our SONAR, i.e., 8x£ / 8x2, and compute its norm
similarly to [[19]. We consider SONAR with null dissipative and external forcing terms, and initial
conditions X (0) = X € R™, V(0) = 0. The explicit solution of our system (following [34]) is

X(t) = cos (t\/f) X, (10)

where cos (t\/f) = Zzo:o(—l)"ﬂ\/fzn. We drop the Laplacian superscript ¢ to ease notation

n!
and explicitly write the sensitivity matrix in the following theorem.

Theorem 3.2 (Sensitivity matrix, continuous case). Lef X, (t) be the state for node v at time t. Then,

the sensitivity g:“gé)) between nodes u and v is

g;‘:((é)) = cos (t\/f)w. 11

The proof is a consequence of the solution in Equation (I0). Theorem [3.2] shows that the influence of
node u on node v oscillates following a cosine function, but never vanishes definitively.

We now consider a full discrete message passing with state vectors X¢ € R™*¢ and measure the
sensitivity after £ steps (i.e., layers).

£
Theorem 3.3 (One-step sensitivity matrix, discrete case). The sensitivity matrix -2 € RIxd of

oxt~
Equation (/) with null dissipative and external forcing terms is given by
ox?!
axﬁjl =2L,, — h?LywW. (12)

The step size h balances two components: the residual information from the node itself, related to
the term 21I,,,,, and the signal coming from neighboring nodes, related to L., W. This last term is
also proportional to the difference between node features (see the definition of the graph Laplacian in
Equation 2, encouraging the exchange of information when neighboring nodes are different.

Similarly to [19], we now assess sensitivity of our SONAR in Equation for the full non-
conservative case, i.e., with dissipation and external forcing.

Theorem 3.4 (Sensitivity bound, discrete case). Consider the SONAR in Equation on node
states X (t) € R"*%. Let the dissipation coefficient be such that |D(X*)| < k and the external
forcing be F(X') = X*W . Let the initial velocity be calculated as V(0) = XWy. Finally, let
w = max{|W|,|Wgl|,|Wvy|,1}. Then, the sensitivity matrix has the following upper bound

¥4

H ox;,
0
oxY

< (wd)* (((1+h+h2(N+k+1))I+h2A)‘) (13)

vu

Ly

where N = max,cy N, = max,cy [N (v)| is the maximum degree in the graph, d is the number of
node features, and h is the step size of the discretization.



This result demonstrates that the sensitivity of SONAR remains well-controlled across layers. We
note that classical MPNNSs usually include a factor cf; in the bound, with ¢, the Lipschitz constant of
the nonlinearity o. In practice, this term often decay extremely fast, limiting the ability of standard
MPNN:Ss to propagate information over long distances. By contrast, the linear propagation dynamics
of our SONAR allows for stable long-range information flow. Therefore, together with the previous
theoretical results, it holds the capability of SONAR to perform long-range propagation effectively.

We remark that Theorem [3.1]and Theorem [3.2]do not depend on the choice of the discretization of
the solution, while the results in Theorem [3.3|and Theorem [3.4] which explicitly depend on the step
size, can be easily extended to any other integration procedure.

Complexity Analysis. SONAR consists of a stack of blocks, each with complexity of an MPNN
(e.g., [59L189]). Specifically, each iteration of Equation (/) is linear in the number of nodes (n) and
edges (m), therefore it has a complexity of O(n + m). Assuming that L iterations are performed, a
SONAR block has a complexity of O(L(n + m) + p), where p is the complexity of the MLP at the
end of the block, as defined in Equation .

4 Experiments

In this section, we empirically validate the practical benefits of our method on popular graph bench-
marks for long-range propagation as well as heterophilic node classification tasks. In Sections {.1]
and[4.2] we assess SONAR on synthetic benchmarks that require the exchange of messages between
far-away nodes, thus performing long-range propagation. Specifically, we consider the graph transfer
tasks from [40] and the task of predicting three graph properties from [39]. With the same purpose,
we verify our method on the real-world long-range graph benchmark [24] in Section[d.3] Moreover,
we assess the performance of SONAR on heterophilic tasks from [70] in Section[4.4] In Section[4.5]
we empirically assess the long-range capabilites of SONAR in terms of the sensitivity metric (dis-
cussed in Section[3.3). In Appendix we report additional ablation studies to provide a more
comprehensive understanding of SONAR, discussing runtimes and the role of adaptive resistance,
dissipation, external forces, and step size. The performance of SONAR is compared with state-of-the-
art methods, such as MPNNs, DE-GNNSs, higher-order GNNs, and graph transformers, detailing the
employed baselines in Appendix[A.2] We report the hyperparameter space used in our experiments in
Appendix[A.4] All the experiments are performed on a server with NVIDIA H100 GPUs. We openly
release the code at https://github.com/gravins/SONAR.

4.1 Graph Transfer Task

Setup. We consider the graph transfer task proposed by [[19] under the experimental setting of
[40]. The objective of this experiment is to transfer a label from a source to a target node placed
at increasing distance ¢, and measure how much information is propagated through the graph. We
initialize nodes with a random valued feature, and we assign values “1” and “0” to source and target
nodes, respectively. We consider three graph distributions, i.e., line, ring, crossed-ring, and four
different distances ¢ = {3, 5,10, 50}. Thus, we consider short to extreme long-range scenarios. As ¢
increases, the task becomes progressively more challenging, demanding more effective long-range
information propagation. Due to oversquashing, the performance is expected to deteriorate with larger
£. Consequently, addressing this problem requires methods with increasingly robust mechanisms
for maintaining information flow across distant nodes. For this experiment, we use the same data,
hyperparameter space, and experimental setting of [40].

Results. The results of SONAR and baseline models on the graph transfer task are shown in Figure[2]
where we report the test mean squared error with standard error bars as a function of the distance
between the source and target nodes. This task is specifically designed to evaluate a model’s ability
to propagate information across varying distances, making it a critical benchmark for assessing
long-range capabilities. SONAR clearly outperforms all baselines at large distances (most notably at
50 hops) empirically validating its ability to support long-range information propagation. Moreover,
SONAR achieves state-of-the-art performance across all tested distances, including shorter settings
such as 3, 5, and 10 hops. Notably, while other models exhibit significant degradation as the distance
increases, SONAR maintains a nearly constant error, demonstrating that it can propagate information
effectively over both short and long ranges with consistent accuracy.
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Figure 2: Information transfer performance on (a) Line, (b) Ring, and (c) Crossed-Ring graphs.
Overall, SONAR transfers the information more accurately as distance increases, achieving a lower
error than non-dissipative methods (i.e., A-DGN, SWAN, PH-DGN) and transformers (i.e., GPS).

4.2 Graph Property Prediction = Table 1: Mean test set logio(MSE)({) and std averaged on 4
random weight initializations on Graph Property Prediction

Setup. We consider the three graph tasks. The lower, the better. First, second, and third best

property prediction tasks proposed results for each task are color-coded.

in [39] and investigate the perfor-

mance of our SONAR in predicting ~ Model Diameter Sssp Eccentricity

graph diameter, single source short-  npNNs
est path (SSSP), and node eccen- GCN 0.7424 £0.0466  0.949910.0001  0.846810.0028
.. . GAT 0.8221+0.0752 0.6951+0.1499 0.7909 +0.0222
tricity on s.ynthe.tlc .graphs sampled GraphSAGE 08645 10 ones 0286310 1mme 07863 10 wans
from multiple distributions. These GIN 0.613110.0900  -0.540810.4103  0.950440.0007
tasks inherently demand the ability GCNII 0.528740.0570  -1.132940.0135  0.764010.0355
AMP 20.589110.0720 -3.9579:0.0760  0.051510.1810

to capture and transmit information
across the graph, as they are based ~ DE-GNNs

: DGC 0.602840.0050  -0.148310.0231  0.826110.0032
on ShOlth?t-path COmputathnS. 'In- GRAND 0.671540.0490 -0.09424 ¢ 3807 0.660240.1303
deed, similarly to standard algorith- GraphCON 0.0964+0.0620  -1.383610.0002  0.683310.0074
: i A-DGN 0.518810.1812  -3241740.0751  0.429640.1003
mic approaches (e.g., Bellman-Ford, ¢y, g 0598130 1145 3542500830 0.073910 2100
Dijkstra’s algorithm), accurate solu- PH-DGN 0.547310.107a 4299310 0701 -0.934840 2097
tions depend on the exchange of mul- Graph Transformers
tiple messages between nodes. Con- GPS 0.512140.0426  -3.599010.1040  0.6077+0.0282
sequently, models that struggle with  ~ypuinop GNNs
long-range propagation result in poor DRew-GCN 23692101054 -1.590540.0034  -2.100440 0256
performance. For this experiment, + delay 2401801007 -1.602310.0078  -2.0291:0.0240
we use the same data, hyperparam-  Our

eters space, and experimental setting SONAR -3.290610.0706  -6.751710.0500  -3.118740.0102

presented in [39].

Results. We report results using the logio(MSE) metric in Table [T} This benchmark focuses on
predicting shortest-path-based properties that inherently require the model to capture the global graph
structure, thus long-range information. SONAR sets a new performance standard by outperforming
all existing methods by at least one order of magnitude across all tasks. While standard MPNNs
struggle to model such properties due to their limited ability to propagate information over long
distances, SONAR consistently surpasses DE-GNNs (its direct competitors), multi-hop GNNs, and
transformer-based models, which are typically more computationally demanding. Notably, SONAR
improves over the best-performing baseline by 0.89 points on Diam., 1.01 on Ecc., and a remarkable
2.46 on the SSSP task, further demonstrating its effectiveness in capturing long-range dependencies.

4.3 Long-Range Graph Benchmark

Setup. To assess the performance on real-world long-range benchmarks, we consider the “Peptides-
func”, “Peptides-struct”, “Pascal VOC-SP” tasks [24]. The first two tasks involve predicting the
functional or structural properties of graphs derived from peptides, which are large molecules
based on amino acid chains. Similarly to previous tasks, accurate predictions require effectively
capturing long-range interactions, as these properties are determined by the interplay between distant
regions of the graphs, i.e., peptides. The “Pascal VOC-SP” is a node-classification task on superpixel



graphs, which is considered to be more difficult than the peptides ones in the long-range context
[6]. We use the same data and experimental setting in [24], including the 500k parameter budget.

Results. We present the performance
of SONAR alongside leading base-
lines in Table 2] with a more ex-
tended comparison in Appendix [C.T]
SONAR achieves significantly bet-

Table 2: Results for Peptides-func, Peptides-struct and
Pascal VOC-SP averaged over 3 training seeds. Baseline re-
sults are taken from [24] 46, |51, 165} 40, [52]. Note that all
MPNN-based methods include structural and positional en-
coding. The first, second, and third best scores are colored.

ter results than standard MPNNs
and generally outperforms most DE-

Model

Peptides-func

Peptides-struct

Pascal VOC-SP

. AP MAE FI
GNNs (i.e., SONAR’s model class) T ‘ i
and multi-hop GNNs across all “éplfl‘ngN s8.64 03420 02873
ate: 04+0.77 -3 +0.0013 .26/540.0219
tasks. On func, SONAR‘ranks GCN 593010 25 0349610 0015 0.126840 0060
second overall, only one point be-  GCNII 55434078 0347li0.0010  0.1698+0.0080
hind DRew, which relies on expen- GINE 54.9840.79 0.354710.0045  0.126510.0076
sive graph rewiring. On struct, Multi-hop GNNs
. . DIGL+MPNN+LapPE ~ 68.30+0.26  0.2616+0.0018  0.292140.0038
SONAR ach1§ve?s a performapce w;th DRew-GCN 69.9610 76 0.278140 0025  0.184840 0107
standard deviation overlapping with  DRew-GCN+LapPE 715040 44 02536400015  0.185110. 0092
top models' On PascalVDC_SP’ MixHop-GCN 65.9210.36 0.2921+0.0023 0.2506+0.0133
SONAR improves the F1 score of MixHop-GCN+LapPE 68.4310.49 0.2614 +0.0023 02218100174
transformer models by a remarkable Téansffg?’sefi - 6535 02500 03748
: : : rap! ap. -3940.41 - +0.0005 g +0.0109
83%, ranklng ﬁrst Wlth or Wlthout Graph ViT 69.4240.75 0.2449 0 0016 _
positional encoding. Overall, com-  GRIT 69.88+0.52  0.2460.0.0012 -

- SAN+LapPE 63.84:&1‘21 0,2683:&0‘0043 043230:&0_0039
pa,'red to traI?Sformer ba_sed mOdels Transformer+LapPE 63-26j:1.26 0-2529i0.0016 0-2694i0.0098
with quadratic complexity, SONAR

. DE-GNNs
achieves cpmpargblq or beFter perfor-  “or D 57895000 0341850 0015 019180 0007
mance while maintaining linear com-  GraphCON 602210.6s  0.2778+0.0018  0.210810.0091
plexity. We conclude that the long-  A-DGN 59.7540.42  0287410.0021  0.234910.0054
e SWAN 675140.30  0248540.0009  0.319210.0250
range capabilities of SONAR are also  pyy poy 01220 15 0246540 0020 =
evident in real-world tasks.
Ours
SONAR 68.42 1011 0.2525+0.0038 0.4058 -+ 0.0039
SONAR+LapPE 70471041 02486100006 0408210 o037

4.4 Heterophilic Tasks

Setup. To further evaluate the performance of our SONAR, we assess its the effectiveness in capturing
complex relational information in heterophilic settings, where nodes belonging to same class are often
connected through longer and sparser paths, we consider the five node classification tasks introduced in
[70]. Specifically, we consider the “Roman-empire”, “Amazon-ratings”, “Minesweeper”, “Tolokers”,
and “Questions” datasets. We adhere to the same data and experimental setting presented in [70].

Results. We report the results in Table 3] (extended comparison in Appendix [C.I). SONAR achieves
the best performance on both the Roman-empire and Minesweeper tasks, surpassing the second-best
models by 0.8 and 2.8 points, respectively. It also performs competitively on Amazon-ratings and
Tolokers, with less than one point difference from the top models and overlapping stds. Remarkably,
SONAR outperforms all heterophily-designated GNNs by up to 20 points, except for the Questions
dataset. This shows the flexibility of our approach on different tasks.

4.5 Empirical Sensitivity Analysis

We empirically assess the long-range capabilities of SONAR compared to a standard GCN, which
can be considered as the most comparable baseline to our proposed SONAR. Both rely on the
Laplacian operator and message-passing paradigm, but GCN lacks energy preservation guarantees
for long-range information propagation, adaptive resistance, and external forces. For this analysis,
we consider the Line task in Section 4. 1| with ¢ = 50 and measure the norm of the sensitivity matrix
in Equation (I3 between any node v and the source node u. Specifically, we compute the sensitivity
considering increasing distance between v and v (i.e., 10, 20, 30, 40, 50) with respect to increasing
values of model recurrences (i.e., number of explored hops). The results, reported in Table 4] confirm
our theoretical findings in Section the information propagation of SONAR leads to sensitivity
norms that never vanish, even at higher distances. On the contrary, the dissipative dynamics of the
GCN cause an exponential decay in the influence from the source node to distant nodes.



Table 3: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better. First, second, and third best results for each task are color-coded.

Model Roman-empire Amazon-ratings Minesweeper  Tolokers Questions

Acc T Acc T AUC 1t AUC 1 AUC 1
MPNNs
GAT 80.8740.30 49.0910.65 92011068 83704047 774311 20
Gated-GCN 74.4640.54 43.00+0.32 875441 020 77314114 76.6141.13
GCN 73.69+0.74 48.70+0.63 89.7540.52 83.6410.67 76.09+1.27
SAGE 85.7410.67 53.6310.39 93.5110.57 824310.44 76441062
Graph Transformers
Exphormer 89.03i()_;57 53.51i(]_4(; 90.74i0_53 83.77:()_73 7394:&1.06
NAGphormer 743410 77 51.2640.72 84.1910.66 78324095 68.1741 53
GOAT 71.5941 25 44.61+0.50 81.0941.02 83.11+t1.04 757641 .66
GPS 82.0040 61 53101042  90.6340.67 83.71104s 71731147
GPSgar+performer (RWSE)  87.0410 58 49.9210.68 91.084+0.58 84.3810.91 77.1411.49
GT 86.5110.73 S11710.66 91851076 83234064 779540 68
GT-sep 87.3240.39 52.18+0.80 92.2910.47 82.5240.92 78.0510.93
Heterophily-Designated GNNs
FAGCN 65.2240.56 44121030 88074073 77754105 772441 26
FSGNN 799210 56 52741083  90.084070 82761061 78.86-0 0o
GBK-GNN 745710 a7 45981071 90851058 81.0140 67 744720 86
GPR-GNN 64.8540 o7 44881081 86241061 729430 07 554810 01
JacobiConv T1.1410.42 43.5540.48 89.661+0.40 68.6610.65 73.8811.16
Our
SONAR 89.82l(),_’,7 52.22j:0.14 ‘)6.29;|)_73 83.57:{:1_44 74.96:(:1_10

Table 4: Sensitivity across different distances and recurrences in the Line-50 graph from Sectionlm

SONAR | GCN
N. Recurrences— 25 50 75 100 N. Recurrences— 25 50 75 100
Distance | Distance | x107% x107° x107° x107°
10 0.0115 0.0413 0.573 1.955 10 0.7078 0.0 1.1470 0.3562
20 0.0037 0.0334 0.703 5.084 20 0.0 0.0 1.0490 0.2980
30 0.0273 0.0616 1.269 4.341 30 0.3725 0.9779 0.5259 0.0745
40 0.0131  0.0253  0.584  1.061 | 40 0.0 0.0 0.0 0.0
50 0.0002 0.0324 0.143 1.004 50 0.0 0.0 0.0 0.0

5 Conclusions

In this work, we introduced SONAR a novel DE-GNN architecture that models information prop-
agation using wave dynamics governed by the graph wave equation. SONAR offers a principled
approach for long-range information propagation by balancing conservative and non-conservative
behaviors by integrating adaptive edge resistances and state-dependent external forces. Our theoretical
analysis demonstrates that SONAR’s energy preservation ensures stable and effective propagation
of information over long distances. Moreover, the sensitivity analysis confirms that SONAR main-
tains non-vanishing influence between distant nodes, both in its continuous and discretized forms.
Empirically, SONAR achieves state-of-the-art performance on a range of challenging benchmarks,
i.e., synthetic and real-world long-range tasks, as well as heterophilic tasks. For such a reason, we
believe SONAR represents a step forward in the design of GNNs capable of effective long-range
propagation. Future work can focus on exploring alternative discretization methods, e.g., adaptive
multistep scheme [4]], and extend SONAR to temporal graphs [38]].

Impact Statement. This work aims to advance the field of machine learning on graphs, with a focus
on enhancing long-range information propagation. There are many potential societal consequences
of our work, none which we feel must be specifically highlighted here.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and the introduction are carefully explained
and theoretically proven in Section [3] We included results on energy conservation and
the long-range propagation capabilities through the sensitivity matrix in Section[3.3] Our
experimental results in Section @ reflect our theoretical findings and show the capabilities of
our model on different tasks, including heterophilic and long-range tasks

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theoretical result is carefully described and explained in Section [3.3]
along with its consequences in theory and practice. Each of them has its proof in Appendix|B|
where we include additional statements.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [3|describes all the details on the methodology and its practical im-
plementation (i.e., , how to discretize the continuous process and write it in an MPNN-like
form). Furthermore, all of our experiments are based on open-source datasets available
online. The setup of each experiment is described in Section d Hyperparameters and
additional details for performing experiments are described in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the details to implement the main method in Section 3] as
well as describing the setup for each experiment in Section[dand Appendix [A] providing
sufficient information to reproduce our experiments. Moreover, all our experiments fully rely
on public benchmarks. We openly release the code to reproduce our empirical evaluation
upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The setup of each experiment is described in Section ] For each of them,
we provide a reference to the original paper that described and analyzed these datasets and
tasks. Hyperparameters for each task are available in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The experiments for Graph Property Prediction, Graph Transfer, and Long-
Range Graph Benchmark are all performed with 3 or 4 different seeds, and the results are
provided with the average between runs and the standard deviation to verify the significance
of results. Experiments with heterophilic graphs are performed with 10 folds each, and
results are provided in the same way.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on the experimental setup in Section @ and Appendix [A]
A comparison of the computational time and resources required to perform experiments is
available in Table[T1]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms in every aspect with the
NeurIPS Code of Ethics. Our research does not involve sensitive data or human subjects,
nor idoes t represent a potential harm for society.

Guidelines:
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» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss potential impacts after the conclusion.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no particular risk of misuse for the models and datasets
employed.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: For each dataset and task used in this work, we correctly cite and mention

the work introducing it and relevant related studies. Licenses and terms of use are properly
respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

22


paperswithcode.com/datasets

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as any
important, original or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Details

A.1 Edge Feature Aggregation

Together with the usual node features X, € R%, some graphs provide edge features E € R™> -
made of a d.-dimensional vector e,,, € R¢% for every edge (u,v) € £. While classical MPNNs add
this information during the convolution, we adopt a different approach to preserve our wave-like
propagation and theoretical properties. In particular, we follow [26]], transforming the edge features
and injecting them into the node space. To do so, we define the average Avg and gradient Grad
operators, which shift node features into edge features [26} 33|, as

1
(AVgX)uv = §Guv (Xv + Xu); (GradX)uv = Guv (Xv - Xu)7 (14)
where G € R"*" is a matrix where G, = % and 7, is the geometric mean of the degrees of
nodes v and v. Their adjoint operators, which coincide with their transpose, transform edge features
into node features [33, [26]. Therefore, before starting the propagation of information, the initial
condition is a concatenation of the initial node features and the transformation of the edge ones:

Xpow = (X ®Ave E® GradTE) (15)

A.2 Employed Baselines

In our experiments, the performance of our method is compared with various state-of-the-art GNN
baselines from the literature. Specifically, we consider:

¢ classical MPNN-based methods, i.e., GCN [39]], GraphSAGE [49], GAT [85], Gat-
edGCN [9], GIN [89]], GINE [54]], GCNII [15];

* heterophily-specific models, i.e., HZGCN [93]], CPGNN [92], FAGCN [8], GPR-GNN [17],
FSGNN [66]], GIoGNN [63]], GBK-GNN [22]], and JacobiConv [86]];

« DE-GNNG, i.e., DGC [87], GRAND [13], GraphCON [75]], A-DGN [39], SWAN [40],
PH-DGN [52];

* Graph Transformers, i.e., Transformer [84, 23], GT [[79], SAN [61]], GPS [72], GOAT [60],
Exphormer [80], NAGphormer [[14], GRIT[65], and GraphViT [51];

* Higher-Order GNNS, i.e., DIGL [35], MixHop [1], DRew [46]], and GRED [20]]. .

A.3 Employed Datasets

In our experiments, we evaluate SONAR’s performance on widely used graph benchmarks. Specifi-
cally, we consider long-range propagation tasks, including the graph transfer tasks from [40], as well
as the three graph property prediction tasks introduced in [39] (“Diameter”, “SSSP”, and “Eccentric-
ity”). Additionally, we assess SONAR on the “Peptide-func”, “Peptide-struct”, and “Pascal VOC-SP”
tasks from the real-world Long-Range Graph Benchmark (LRGB) [24]]. To further evaluate its effec-
tiveness, we include five heterophilic tasks: “Roman-empire”, “Amazon-ratings”, “Minesweeper”,
“Tolokers”, and “Questions” [[/0]. We highlight that the three graph property prediction tasks are
problems fundamentally linked with information propagation, as node signals must travel from each
node v across the entire graph. Therefore, they require nodes to iteratively exchange information with
increasingly distant nodes. This process shares similarities with classical algorithms like Bellman-
Ford or Dijkstra’s algorithm. Indeed, Dijkstra’s algorithm works by progressively expanding a frontier
of visited nodes, where each node updates the shortest known distance to its neighbors.

In Table[5] we report the statistics of the employed datasets.

A.4 Hyperparameter Space

The hyperparameter space employed by SONAR in our experiments is reported in Table 6]
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Table 5: Dataset statistics.

Dataset #Nodes #Edges #Graphs Task

Graph Transfer 3-100 7 -396 1,200 Node Regression
Diameter 25-35 22 -553 7,040 Graph Regression
SSSpP 25-35 22 -553 7,040 Node Regression
Eccentricity 25-35 22 -553 7,040 Node Regression
Peptide-func 8-444 10-928 15,535 Graph Classification
Peptide-struct 8-444 10 - 928 15,535 Graph Regression
Pascal VOC-SP 198 - 500 1,044 -2,942 11,355 Node Classification
Roman-empire 22,662 32,927 1 Node Classification
Amazon-ratings 24,492 93,050 1 Node Classification
Minesweeper 10,000 39,402 1 Node Classification
Tolokers 11,758 519,000 1 Node Classification
Questions 48,921 153,540 1 Node Classification

Table 6: The grid of hyperparameters employed during model selection for the graph transfer tasks
(Transfer), graph property prediction tasks (GPP), Long Range Graph Benchmark (LRGB), and
heterophilic benchmarks (Hetero).

H | Values
yperparameters

| Transfer | gpP | LRGB | Hetero
Optimizer Adam Adam AdamW AdamW
Learning rate 0.001 0.003 0.001 0.001, 0.0005
Weight decay 0 10°° 0 0
Dropout 0 0 0,0.2,0.5 0,0.2,0.5
N. recurrences distance/2, distance | 5, 10, 20 1,2,4,6,8,12,16 1,2,4,6,8,12,16
Embedding dim 64 30 60, 68, 74, 105, 117, 136 64, 128, 256, 512
N. Blocks 1,2 1,2 1,2,34,5 from 1 to 12
€ 0.05,0.1,0.5, 1 0.001,0.1,0.5,1 | 0.01,0.02, 0.025, 0.05, 0.1 | 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1
Use Dissipation True, False
Use External Force True, False
Use Adaptive Resistance True, False
L D-A, I-D'2AD"'?, 1-D'A

B Proofs of the Theoretical Results

In this section, we prove the theoretical results in Section [3.3]

B.1 Proof of Theorem 3.1]

To prove Theorem [3.1] we first need this preliminary lemma:

Lemma B.1. Let X € R” be a feature vector for the nodes in graph G. Then, it holds that

S IV@IP =D ) (0 —xu)? = % D Apulxy —x,)° = XTLX (16)

veV vEV UEN, u,veV

The lemma involves only one feature per node, but it can easily be generalized to multiple features by
considering norms and scalar products.
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Proof of Lemma|B.1} The first equivalence comes from the gradient definition in a graph (see [34]),
while the second follows from expanding the sum of neighbors. We now show the last equivalence:

% Z Avu(xv - Xu)2 = %ZZ AUU(Xg + Xi - 2XUXu)
u,veV voou

Y A Y A 23 A,

= % (Z x2deg(v) + Z x; deg(u) — 2 Z Au@xux”)

= % (2 ZX%DUU -2 Z Auvxuxv>
Z X (X’UDU’U - Z Avuxu> (17)
veV u
= Z Xy (XUD,UU (6uvxu - Avuxu)>

u

veV
= Z Xy Z(Duu(suv - Avu)XU
veV u

= Z Z Xo (Duuduv - AUU)XU

= quLxU =X'LX

where 9, is 1 if w = v and 0 otherwise. O]

Proof of Theorem[3.1] We show the theorem for d = 1 (one feature), since it involves the norms of the
feature vector X (¢). To improve clarity, here we consider the initial considtion to be X(0) = X = X.
The wave (@) has an explicit solution (see [34]]) given by

X(t) = cos (t\/f) X, (18)
where
12 t4 > 2n n
cos (t\/f> :I—§L+IL2+...:Z(—1)”F\/E2 . (19)
I 2 !

The energy in (9) can be calculated as

2
B0 = (Z o, ol + | 5 )
veV
_ (20)
d(cos (tVL) X
:% X(t) TLX(t) + <(;t)) ,

where we used the Lemma [B.Tffor the first term and the explicit solution for the second. Using the
explicit solution, the first term is equal to

X(H)TLX (1) = (cos (t\/i) X)T L(cos (t\/i) X
— (X)T cos (t\/f)T L cos (t\/f) b
_ H\/Ecos (t\/f) XH2
< omo5) 53]

2n
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where the last equality follows from the fact that cos (t\/f) and v/L commute, which follows from
the Taylor series expansion in (I9). The second term can be calculated as

o o0 nt2n\/72" B o _ t2n—1 an B
o 22:0(—1) VL | X = ;(—1) BT L |X. (22)

which, using the Taylor series expansion of sin (tx/f) , is equal to

aX

12
O = |VEsin (wE) x| = sin (+E) vEX]| @)
Finally, the sum of the two terms is equal to

E(t) Hcos (t\/f) \/EXHQ + Hsin (t\/f) \/EXHZ>

((X)T\/f—r cos (t\/f) ! cos (t\rL) VLX + (X)T\/ET sin (t\/i) ' sin (t\/f) \/EX)
(X) T VL cos? (tx/i) VLX + (X)"VLsin? (tx/f) )

(
((X) VL (cos? (VL) +sin? (VL)) VIX)
(

(X)TVLVIX) = % (X)TLX) = E(0),

(24)

Where the transpositions for v/L, sin, and cos vanish as they are all symmetric matrices (since L is
symmetric and positive definite, we can choose a symmetric square root). O

‘We now prove a general version of Theorem.with d features X (t) € R"*% and W =1L

Theorem B.1. Let X (t) € R"*? be the node states at time t, obtained as the solution to the graph
wave equation in Equation (5), with initial condition X (0) = X, null dissipative and external forcing
terms, and W = 1. Then, the energy E(t), defined as

U ST OIN La<Ul

veV

, (25)

is conserved, that is, E(t) = E(0) Vt > 0.

Proof. The proof is almost identical to the one from Theorem Theorem [3.1] Since features are not
coupled, the solution to the equation is the same as Equation (I0), and the same steps apply. Since
we work with multiple features, scalar norms become vector norms, while the latter become matrix
norms. O

B.2 Proof of Theorem 3.2]

While the proof of Theorem 3.2]is a direct consequence of the explicit solution, we now prove a more
general version of it for node states with d features and W = 1.

Theorem B.2 (Sensitivity matrix, continuous case). Let X, (t) € R be the state for node v at time t.

e . . 0%y (t) .
Then, the sensitivity matrix 7%, (0) between nodes u and v is

2:;)((8)) = cos (t\/f) - I (26)

Proof. Since W = 1, the analytic solution to the SONAR wave equation in Equation (@) is the vector
version of Equation

X(t) = cos (t\/f) X = cos (t\@) X(0) (27)
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Now, by differentiating with respect to x,,(0), we obtain

0x,(t) ]
o () = (t\/f)m I. (28)

O

While Theorem [B.T|and Theorem [B.2] are not the most general statements with any possible feature
coupling, we are the first to show proofs for the wave equation for graphs involving multidimensional
features. Most of the works in the mathematical literature on the graph-based Laplacian and graph
wave equation involve only the scalar case with single-valued functions [34} 53]

B.3 Proof of Theorem 33|

Proof. We start by recalling the Sonar update with null dissipative and external forcing term

X = X+ pVEt,
{VEJrl =Vi-h (LXZW) , 29
Substituting the second equation in the first one, we obtain
X = X+ hVE - BPLX'W
—X 4+ h% CRPLXW (30)
=2X’ - X! - PP LX'W
We now write the update for a single node v
xtH = oxf —xi71 _ p? Z L,.x' W (31)

uey

Therefore, if we consider alinode u € V, the one-step sensitivity matrix can be directly calculated

by differentiating Equation|31|by x,,. Since the dynamical system is causal, we have that 8;;2 - 0

u

and, finally,

ox! 9
et = o = LW, (32)
with I,,,, denoting the (u, v)-th entry of the identity matrix. O

B.4 Proof of Theorem 3.4
Proof of Theorem Let us consider one update of the wave equation solution from equation

XZ+1 _ Xf + hvf+1

(33)
Vil = v - hLXPW — hk(X) © V + hF(XY)
We will now show that
L
Haxg < (wd)* (((1+h+h2(N+k+1))I+h2A)é> (34)
8Xu Lt vu
and
o L
H avg < (wd)* (((1 +h(N +k+ 1)+ hA)f) (35)
Xu Lt VU

by induction, following [19]].
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Base case / =1 . Using the update equations, it is clear that

oxLe ovle
P < by + Opuh o —F (36)
and
1, 0, 0,y
A ‘ = bun (‘ AL Y Al ‘ + IhWaﬁl) R ‘ WL @)
oxy/ 0xy/ Oxy
Since ’gigﬁ ‘ = |[W2?| < w, we have that
1,
ng 5| < dpuw (1 + hk + h) + |Lyy|wh < dppw (1 4+ (N +k+1)) + Ay, wh  (38)
X
which, by summing over 5 and maximizing on «
) 1
Yoll < (d) (14 (N +k+1)T+hA),,, (39)
0x9 || 11
and, by applying the same reasoning to equation 36|
) 1
X0l < (wd) (14 h+h2(k + N +1))I + h2A), . (40)
8Xu 1 vu

Inductive step, / — ¢ + 1. We start by noticing that

ox!Fhe oxbe ovitha
ox%"? = O < ox%? h ox%? ) ’ @1
which can be further decomposed as
o l+1,c o YN o (+1,c o £,y o l+1,cx B! £,y
XDOB < < xgﬂ h VUZ XSUB Vve V”O”B ) . 42)
Oxy Oxy oxy) | 0%y ovy) || 0xy
It is easy to see that
aVZJrl,oz
”Z < h|Lyw|w + hwdyy < Jpphw(N 4+ 1) + whA .y,
O’ 43
gyitla (43)
U
‘ 8v5}“’ < Oy (1 + hk).
We now calculate
o I+1,« o YNeY ox Ia o Yo'
o < b ((1 +hk)’ Vg” + h‘ ) | L |
Oxy’ 00Xy 0x% 0%y 44
v’ ox Z (9x€ “
< Owu | (1 + hE) Vi + wh(N +1) + hwA .,
0x9 || 1 0x9 || 11 0x0 A

We now expand this last expression by inductive hypothesis and discard the terms with O(h?) as they

become O(h3) in the next step. Summing over 3 and maximizing over @ we get

ovifha
oxoP

which proves the inductive step for the sensitivity matrix on V. We are now ready to prove the final

part. Starting from equation[42] plugging in equation 43| we get

< (wd)+! (((1 FA(N+E+1)T+ hA)“l) . (45)

vu

oxitha ox’ ovithe 1ox!, ovirlbel|lov,
—0F | S th ¢ I
ax” 5Xu Lt oxyY 110X || ovy 110X ||
ox* ov’
H + 1(Syphw(N + 1) + whAyy) ‘Xg (L + hk) Gy || Do
u Lt 0 u || L1 8 Xu Il

<(wd)" (((1+h+h2(N+k+1))I+h2 )) +

VU

+ 1(Sowhw(N + 1) + whA ) (wd). (((1 +h4+hA(N +k+ 1))+ th)‘) n

wu

+ Spuwh(1 + hk)(wd)" (((1 FR(N +k+ 1)1+ hA)e)

wu

(46)
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Summing over the last two terms and discarding the terms O(h?), we have
8XZ+1,(X ' 9 5 Y
L S(wd)*(((1+h+h(N+k+1))I+hA)) +
O ou @7)
+ (wd) wh((1 + (N + k +1))8p0 + hA ) (((1 +h+h*(N+k+1)I+ h2A)Z)/

wu

Now we put d,,,, in front over the first term (and sum over w) to join the two terms together obtaining
8XZ+1,(1
o

‘ oxy”
+ (wd)* wh((1 + h(N + k + 1))8pw + hALy) (((1 +h+h(N+k+1)I+ hQA)[')

< o (wd)’ (14 R+ RN +k+ D))T+12A)) 4

— w1+ b+ R2(N 4k +1))000 + h2A ) (((1 Fhth2(N +k+ 1)L+ h?A)‘)

= witldt (((1 +RA(N +k+ 1)+ hQA)“l)

(48)
Summing over [ gives the additional factor d, while maximizing over « gives us the thesis. O

C Additional Results And Comparisons

C.1 Extended Comparison

To further evaluate the performance of SONAR, we report a more complete comparison for the
LRGB tasks in Table [7]and for the heterophilic tasks in Table[§] Specifically, in the LRGB setting,
we include more multi-hop DGNs and ablate on the scores obtained with the original setting from
[24] and the one proposed in [82]]. The latter incorporates added residual connections and 3-layers
MLP decoder. In the heterophilic setting, we include more MPNN-based models, graph transformers,
and heterophily-designated GNNs. In both tables, we color the top three methods. Different from
the main body of the paper, here we also include sub-variants of methods in the highlighted results,
providing an additional perspective on the findings. Notably, our SONAR achieves state-of-the-art
performance across all considered tasks.

C.2 Ablations

To better understand the contribution of each component in SONAR, we conduct a series of ablation
studies.

Adaptive Resistance, Dissipation, and External Forces. We analyze the role of the dissipation
mechanism, the external force term, and the adaptive edge resistance in shaping the model’s dynamics
and performance. Each of these components plays a crucial role in controlling information propaga-
tion over the graph. By systematically removing these elements, we assess their individual impact on
long-range information flow and overall predictive performance.

Table [9reports the mean and standard deviations on the test set for some tasks we analyzed in Section
[l i.e., graph transfer line-50, SSSP, Peptides-struct, and Roman-Empire. We report the results for
each possible combination of adaptive resistance (i.e., adaptively re-computing the edge resistance
at each step), dissipative, and external forcing components. We note that the importance of each
component in SONAR varies depending on the task and the nature of the information it involves. In
the graph transfer task, all components of SONAR are essential, particularly dissipation and external
forcing as intermediate nodes contain random features that must be effectively filtered out. In the
SSSP task, re-computing the resistances at each step leads to a performance drop, indicating that a
constant propagation pattern is preferable. For peptides-struct, the external forcing term proves
to be the most impactful, while dissipation offers little benefit. The best results on the Roman-Empire
dataset are achieved using the purely conservative form of SONAR, highlighting the value of a
non-dissipative signal propagation in that setting.

Lastly, to understand the importance of the energy preservation behavior of our SONAR, we compare
its performance with that of a standard GCN, which can be considered as the most comparable base-
lines to our proposed SONAR. Both rely on the Laplacian operator and message-passing paradigm,
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Table 7: Results for Peptides-func, Peptides-struct and Pascal VOC-SP averaged over 3 training seeds.
Baseline results are taken from [24} 46, 511 182, 165 21} 140} 152} 21]]. Re-evaluated methods employ
the 3-layer MLP readout proposed in [82]]. Note that all MPNN-based methods include structural
and positional encoding. The first, second, and third best scores are colored. ¥ means 3-layer MLP
readout and residual connections are employed.

Peptides-func  Peptides-struct Pascal VOC-SP

Model AP 1 MAE | F1 1
MPNNs
GatedGCN 58.64+10.77 0.34200.0013 0.2873+0.0219
GCN 59.30+0.23 0.3496+0.0013 0.1268 +0.0060
GCNII 55.43j:0.78 0-34711:0,0010 0.1698:{:0‘0080
GINE 54.98.+0.79 0.3547 £0.0045 0.1265 +0.0076
Multi-hop GNNs
DIGL+MPNN 64.6910.19 0.3173+0.0007 0.2824 +0.0039
DIGL+MPNN+LapPE 68.30:‘:0,26 0.26]6;{:0_0018 0.2921 +0.0038
DRew-GCN 69.96i0,76 0~2781i0,0028 0.1848i0‘0107
DRew—GCN+LapPE 71.5010_44 0.2536;{:0,0015 0.185]:{:0,0092
DRew-GIN 69.40i0,74 0~2799i0,0016 0~2719i040043
DRew—GIN+LapPE 71.26:‘:0,45 0.2606;{:0,0014 0.2692:{:0,0059
DRew-GatedGCN 67.3340.94 0.269910.001s 0.3214 +0.0021
DRew—GatedGCN+LapPE 69.7710.26 0.25390.0007 0.3314+£0.0024
GRED 70.85+0.27 0.2503+0.0019 -
GRED+LapPE 71.3340.11 0.245510.0013 -
MiXHOp-GCN 65~92i0.36 0.2921i0,0023 0.2506i040133
MiXHOp—GCN+LapPE 68.43:‘:0.49 0.2614;{:0,0023 0.2218:{:0‘0174
Transformers
GrathPS+LapPE 65‘35i0A41 0.2500i0,0005 0.3748i040109
Graph ViT 69.4210.75 0.2449i()_(][)1(5 -
GRIT 69‘88i0A82 0.2460i0,0012 -
SAN+LapPE 63.8411.21 0.2683i0,0043 0-3230i040039
Transformer+LapPE 63.26+1.26 0.2529+0.0016 0.2694 40.009s
Modified and Re-evaluated*
GCN 68.60-+0.50 0.2460 100007 0.2078 +0.0031
GINE 66.21;&0.67 0.2473:|:0,0017 0.2718:{:0‘0054
GatedGCN 67.65i0A47 0.2477i0,0009 0.3880i040040
DRew-GCN+LapPE 69.4510.21 0.2517+0.0011 -
GrathPS+LapPE 65.3410.01 0.2509+0.0014 0.4440-0.0064
DE-GNNs
GRAND 57.89+0.62 0.3418+0.0015 0.1918+0.0097
GraphCON 60.22;‘:0,68 0.2778;{:0_0018 0.2108:&0_0091
A-DGN 59.7510.44 0.2874i0,0021 0-2349i040054
SWAN 67.5140.30 0.2485+0.0009 0.3192+0.0250
PH-DGN?* 70.1210.45 0.2465+0.0020 -
Ours
SONAR 68.4210.11 0-2525:t0,0038 0.4058i0‘0039
SONAR+LapPE 70.47i0A41 0.2486i0,0006 0.4082i0_0037
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Table 8: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better. First, second, and third best results for each task are color-coded.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

Model
Acc T Acc T AUC 4 AUC 1 AUC 4
[64]
MLP-2 66.0410.71 49.5510.81 50924105 74.5840.75 69.97+1.16
SGC-1 44.6010.52 40.69i0.42 82.04i0_77 73.80i1‘35 71.06i0.92
MLP-1 64.1210.61 38.60+0.41 50.5940.83 71.8940.82 70.3310.96
Graph-agnostic
ResNet 65.88+0.38 45.9040.52 50.8941.39 72.95+1.06 70.3410.76
ResNet+SGC 73.9010.51 50.6640.48 70.88-0.90 80.70+0.97 75.81+0.96
ResNet+adj 52‘25i0,40 51.83i0,57 50‘42i0.83 78.78i1‘11 75.77i1,24
MPNNs
GAT 80.87+0.30 49.0940.63 92.01+0.68 83.7040.47 77.43+1.20
GAT—sep 88.75i0A41 52.70i0.62 93.91i()‘35 83.78i0,43 76.79i0,71
GAT (LapPE) 84.80+0.46 44.9040.73 93.504+0.54 84.99.054 76.5540.84
GAT (RWSE) 86.62;&0‘53 48.58;‘:041 92.53;};065 85-02i0.67 77.83i1,22
GAT (DEG) 85.51+0.56 51.65+0.60 93.0410.62 84.2240.81 77.10+1.23
Gated-GCN 74.464.0.54 43.0040.32 87541120 77314114 76.6141.13
GCN 73.69+0.74 48.7040.63 89.751052 83.641067 76.0941.27
GCN (LapPE) 83.37;{:()‘55 44.35:{:036 94.26i0_49 84.95:&078 77.79:{:1,34
GCN (RWSE) 84.8410.55 46.4040.55 93841048 8511077 77.8141.40
GCN (DEG) 84.21+0.47 50.01+0.69 94141050 82.51+0.83 76.96+1.21
SAGE 85.7410.67 53.6310.39 93.51+0.57 82434044 76441062
Graph Transformers
Exphormer 89.0310.37 53-51i0./’16 90.74i0,53 83.77:{:0‘78 73-94:!:1.06
NAGphormer 74.34i0}77 51.2610,72 84-19i0A66 78.32i0‘95 68.17i1,53
GOAT 71.59:‘:1.25 44.61j:0.50 81.09:‘:1,02 83.11:{:1‘04 75-76j:1.66
GPS 82.00+0.61 53.10+0.42 90.6310.67 83.71+0.48 71.7341.47
GPSGeN+performer (LapPE) 83.96+0.53 48.20+0.67 93.854+0.41 84724077 T77.85+1.25
GPScen+performer (RWSE) 84.7210.65 48.0810.85 92881050 84.81+0.86 76451151
GPScen+performer (DEG) 83.3810.68 48.9310.47 93.60+0.47 80.49+0.97 74241118
GPScar+performer (LapPE) 85.9310.52 48.86+0.38 92.621079 84.62+0.54 76.7110.08
GPScar+performer (RWSE) 87.0410.58 49.9240.68 91.08+0.58 84.38+0.01 77.1441.49
GPScar+performer (DEG) 85.5410.58 51.03+0.60 91521046 82.45+0.89 76.51+1.19
GPSGCN+Transf0rmer (LaPPE) OOM OOM 9182:&041 8351:{:093 OOM
GPScen+Transformer (RWSE) OOM OOM 91174051 83.53+1.06 OOM
GPSceN+Transtormer (DEG) OOM OOM 91764061 80.82+09.05 OOM
GPSGAT+Transformcr (LapPE) OOM OOM 92.29i0A61 84~70i0456 OOM
GPScar+Transtormer (RWSE) OOM OOM 90.82+0.56 84.0l+0.06 OOM
GPScar+Transformer (DEG) OOM OOM 91.584056 81.8940.85 OOM
GT 86.5110.73 51.17i0.66 91-8510.76 83~23i0464 77-95i0.68
GT—sep 87.32i()‘39 52-18i0.80 92.29i()‘47 82.52i0492 78.05i0_93
Heterophily-Designated GNNs
CPGNN 63.96+0.62 39.79+0.77 52031546 73.3641.01 65.9641.95
FAGCN 65.22:‘:0.56 44.12;{:0.30 88.17:‘:0,73 77.75:{:1,05 7724:{:1.26
FSGNN 79.92.10.56 52.7410.83 90.0840.70 82.7640.61 78.86.(.9>
GBK-GNN 74.57:‘:0.47 45.98;{:0.71 90.85:‘:0,58 81.01:{:0,67 74-47j:0.86
GloGNN 59~63i0.69 36.89i0,14 51‘08i1,23 73.39i1‘17 65.74i1,19
GPR-GNN 64.85:‘:0.27 44.88;‘:0.34 86.24:‘:0,61 72.94:{:0_97 55.48:{:0,91
HZGCN 601 1i0,52 36.47i0,23 89‘71i0,31 73.35i1‘01 63-59i1.46
JacobiConv 71.14:‘:0.42 43.55;‘:0.48 89.66:‘:0,40 68.66:{:0‘65 73.88:{:1,16
Our
SONAR 89.82i(]_57 52.2210.14 96.29i(}_73 83.57i1.44 74.96i1,10

32



Table 9: Mean test set results with standard deviations for different combinations of SONAR
components. The last line presents the results from a standard GCN for the comparison with a
non-conservative method. First, second, and third best results for each task are color-coded.

Adaptive Resistace Dissipation External Forcing log?;?li;lssté) 1 10g1SOSI\S/Il;E 1 Peptl\l/tli;;siruct RomZnC-CE;n pire

v v v -6.4069 10 4653 -3.021310.2431 0.261110.0075  88.2410.24
v v — -5.754210.6264 -3.818240.2239 0.259240.0168 88.614+1.11
v — v -6.254510 3354 -2.785740.1731 0.2506+0.0010 89.27 0 .77
v - - -5.38271+0.4078 -2.81084+0.2010 0.2560+0.0098  89.81+0.57
- v v -6.3598 10,5403 -6.751510 0589 0.26311£0.0052  88.95t0.57
— v — -5.9058 +0.5576 -6.593910.2925 0.2508+0.0036 89.1240.82
_ — v 49749 40.2777 -6.524140.5738 0.2486.10.0006  89.2240.41
— — - -5.448710.7370 -6.32261+0.1126 0.250310.0006  89.4210.67

GCN results for comparison \ -3.5032+0.0001 0.949940.0001 0.349640.0013 73.69+0.74

Table 10: Mean train and test errors of identical SONAR models with different step sizes i on the
Ring-10 task from Section 4.1

step size b | mean train loss mean test loss

0.05 0.0020273 0.0019732
0.10 0.0019947 0.0019512
0.50 0.0039039 0.0039458
1.00 0.0085834 0.0086960

but GCN lacks energy preservation guarantees for long-range information propagation, adaptive
resistance, and external forces. We note that GCN fails in solving these tasks since it performs a
dissipative signal propagation. As a result, information about distant nodes becomes increasingly
indistinguishable and ultimately lost. In contrast, our SONAR successfully solves these tasks because
it performs a non-dissipative propagation. This is enabled by explicitly preserving the energy of
the system (Equation (9)) in its design, with the result of preserving signals during propagation (as
theoretically discussed in Section [3).

Overall, these results highlight SONAR’s ability to balance conservative and non-conservative
behaviors, enhancing its ability to learn more complex and task-specific dynamics. We believe that
the modular design of SONAR, with components that can be selectively activated, provides high
flexibility and allows SONAR to adapt to a wide range of scenarios while maintaining computational
efficiency, without relying on global attention mechanisms or graph rewiring.

This analysis also suggests a practical guideline: for propagation-heavy tasks, forcing (and often
dissipation) is beneficial; dissipation is particularly useful under high noise (e.g., graph transfer tasks);
and adaptive resistance tends to help particularly with heterophilic tasks. These trends narrow the
hyperparameter search space, though a small hyperparameter search is still necessary for optimal
performance.

The Effect of the Step-Size h. Since the step size controls the numerical accuracy of the wave
equation, its careful selection is essential for preserving SONAR'’s properties and performance.
As with classical numerical solvers for physical equations, a high number of iterations requires a
smaller step size, and vice versa. In practice, we observed that small variations in the step size have
little impact on performance, and exploring different orders of magnitude is sufficient to identify
near-optimal values. For a practical example, we consider the ring-10 task described in Section [4.1]
and train an identical configuration of SONAR with 4 different step sizes. The results, reported in
Table[I0] indicate that close step sizes produce comparable performance, with noticeable differences
arising only for large changes. This demonstrates that SONAR’s behavior is robust to small changes
in the step size.

Runtimes. Additionally, we report runtime analyses to evaluate the computational efficiency of
SONAR with respect to state-of-the-art methods in Table Specifically, we report the training and
inference times in milliseconds, as well as the memory usage obtained on the Roman-Empire dataset,
fixing the model trainable parameters to 100k. As can be seen from the results in the Table, our
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SONAR maintains a similar runtime and memory consumption to GCN, which has linear complexity
with respect to the graph size. All runtimes are measured on an NVIDIA H100 GPU.

Table 11: Training and inference time (in milliseconds) and memory usage on the Roman-Empire
dataset measured on a NVIDIA H100 GPU. All models have approximately 100k trainable parameters;
GPS uses 2 attention heads.

Depth
Method Metrics 4 8 16 32
Training (ms) 3.3240.07 5.08+0.85 7.9910.3 13.04+0.12
GCN Inference (ms) 1.98+0.02 3241006 5.0+0.07 8.05+0.04
Training Mem (GB) 0.25 0.25 0.28 0.34
Inference Mem (GB) 0.21 0.18 0.16 0.14
Training (ms) 101.2140.25 321.3311.27 642.5341054 OOM
GPS Inference (ms) 88.5140.14 1573141022  287.27+0.15 OOM
Training Mem (GB) 0.35 43.59 75.13 OOM
Inference Mem (GB) 15.79 15.78 15.78 OOM
Training (ms) 10.1140.97 18.014+1.11 32.6240.12 63.1840.82
Inference (ms) 3.78+0.04 6.59+0.02 12.2310.03  23.45410.09
SONAR (I'block) i ing Mem (GB) 0.71 1.24 2.29 441
Inference Mem (GB) 0.27 0.28 0.28 0.28
Training (ms) 9.6310.158 16.2140.1 29.6210.09  56.5610.47
Inference (ms) 4.0341.14 5.87+0.05 1047 10.02  19.7410.07
SONAR (2 blocks) . hing Mem (GB) 0.57 0.97 1.77 3.37
Inference Mem (GB) 0.23 0.23 0.23 0.23

D Limitations

This paper contributes to the field of machine learning by advancing (differential equation-inspired)
graph neural networks, with a focus on enhancing long-range information propagation. Specifically,
we introduce a novel methodology that enables provable long-range propagation on graphs, grounded
in a physically interpretable model based on wave dynamics and their underlying properties.

While we believe our work offers a meaningful contribution, it is important to clarify that SONAR
is designed to address the long-range propagation problem in GNNSs through the lens of DE-GNNS.
Therefore, our model prioritizes on problems that require effective modeling of long-range interaction
while maintaining low computational overhead. However, if the goal is to maximize downstream
performance regardless of computational complexity, alternative approaches such as multi-hop GNNs
or graph transformers may also be appropriate.

A second limitation arises from SONAR’s formulation as a discrete approximation of a continuous
dynamical system. Its behavior depends on the discretization scheme, making the choice of the
step size h crucial. As shown in Theorem the sensitivity bound can grow exponentially with
the number of steps, potentially leading to exploding gradients if h is not appropriately tuned. We
emphasize, however, that this issue can be effectively mitigated through careful step size selection
and was never encountered in our experiments.
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