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a b s t r a c t

Event Causality Extraction (ECE) plays an essential role in many Natural Language Processing (NLP),
such as event prediction and dialogue generation. Recent research in NLP treats ECE as a sequence
labeling problem. However, these methods tend to extract the events and their relevant causality
using a single collapsed model, which usually focuses on the textual contents while ignoring the
intra-element transitions inside events and inter-event causality transition association across events.
In general, ECE should condense the complex relationship of intra-event and the causality transition
association among events. Therefore, we propose a novel dual-channel enhanced neural network to
address this limitation by taking both global event mentions and causality transition association into
account. To extract complete event mentions, a Textual Enhancement Channel(TEC) is constructed to
learn important intra-event features from the training data with a wider perception field. Then the
Knowledge Enhancement Channel(KEC) incorporates external causality transition knowledge using a
Graph Convolutional Network (GCN) to provide complementary information on event causality. Finally,
we design a dynamic fusion attention mechanism to measure the importance of the two channels.
Thus, our proposed model can incorporate both semantic-level and knowledge-level representations
of events to extract the relevant event causality. Experimental results on three public datasets show
that our model outperforms the state-of-the-art methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Event causality extraction (ECE) is a challenging task in In-
ormation Extraction (IE) that automatically extract event de-
criptions and identify causal relations between events. For ex-
mple, ‘‘Tax revenue decline is caused by fiscal decentralization
eforms’’. There exists a cause–effect relation, i.e., causality asso-
iation, between ‘‘fiscal decentralization reforms’’ and ‘‘tax revenue
ecline’’. This pattern reflects the logical relationship between
vents, which is of great value for many NLP tasks such as
ecommendation system [1], event prediction [2,3], and ques-
ion answering [4]. However, due to the ambiguity of event
escription, limited dataset, and long-distance dependence of
vent causality, designing an effective ECE method is still a topic
orthy of long-time research.
Recent research on ECE can be divided into three types, includ-

ng rule-based methods [5,6], statistical methods [7,8], and deep
earning methods [9,10]. Rule-based methods that rely on pattern
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matching consider massive hand-crafted linguistic features, in-
cluding lexical, syntactic, and semantic patterns, to extract causal
events. Generally, these methods have the following problems:
(1) Regardless of extensive manual efforts, it is impossible to
enumerate all causal language expressions; (2) The diversity of
semantics in natural language (e.g., lexicon ambiguities) leads to
extraction errors when performing template matching. Compared
with rule-based methods, statistical methods learn causality from
annotated corpus through much effort of feature engineering,
which requires careful design of features and can only be applied
to limited domains.

In recent years, deep learning has achieved success in many
NLP tasks. Among these neural networks, the convolutional neu-
ral network (CNN) [11] has the advantage of extracting n-gram
features that have been widely used in relation extraction. In
addition, the language model [12] (e.g., Bidirectional Encoder
Representations from Transformers, BERT) is served as the token-
wise encoder of neural networks and have achieved state-of-
the-art performance in many NLP tasks. However, there exist
shortcomings in either pre-trained model BERT and its variants or
CNNs: (1) BERT contains a lot of non-domain knowledge, and its

improvement on domain-specific tasks with less data is limited;
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Fig. 1. Overview of dual-channel enhanced neural network.
2) CNN can only extract local n-gram features of text, its ability
o perceive context is limited; (3) Deep models are prone to
verfit on insufficient datasets; (4) Due to the ambiguity of event
entions and the long-distance dependence of cause and effect,

t is difficult for the model to extract complete event causality
ust relying on the model itself and limited annotated dataset.

To solve the above four problems, we propose a novel dual-
hannel enhanced neural network for ECE. As shown in Fig. 1,
ur proposal combines event semantics learned from the text
nd causality transition among events obtained from a Causality
ransition Graph (CTG). To utilize global textual context and CTG,
e design a dual-channel enhancement architecture to leverage
ultiple sources, such as textual description and graph structure,

o generate rich-attribute embeddings for events, simultaneously
ncapsulating causality relations. First, the pre-trained model
ERT is applied to generate the token-wise representations for
he input sentence. Then, above the BERT encoder, the Textual
nhancement Channel (TEC) passes the hidden representations
nto an iterated dilated convolution neural network to encode
he global textual information. However, differing from previous
orks [13], we learn the probability distribution of n-grams from
he training data using Naive Bayes and initialize the convolu-
ional kernel with centroid vectors of the cause/effect n-gram
lusters before the fine-tuning procedure. In parallel with TEC,
e design another Knowledge Enhancement Channel (KEC) by
onstructing a CTG from a causal corpus using causal indicators
o integrate event causality transition associations. Finally, to
nhance the model’s ability to identify the complex causality
ransition of inter-event in the sentence, we use the attention
echanism to link the representation of TEC and KEC together.
he contributions of the paper are four folds:

• We propose a dual-channel enhanced model that integrates
knowledge obtained from labeled data and domain unstruc-
tured text into the model, which can fully consider intra-
element transitions inside events and inter-event causality
transition association across events.
• We propose a TEC to enhance event extraction on cause and

effect by integrating the important n-gram filters learned
from labeled data into iterated dilated convolutions, captur-
ing semantic features inside events with global contextual
information.
• We propose an effective method to construct KEC incorpo-

rating causality transition associations obtained from CTG,
which can improve the model’s ability to identify complex
causal relationships between events.
2

• Experiments conducted on three datasets demonstrate that
the dual-channel enhancement strategies are interrelated
and effective, and achieve state-of-the-art performance on
both in-domain and out-domain datasets.

2. Related work

ECE can be divided into template matching, statistical learning,
and neural networks. In this section, we will briefly introduce the
three parts.

2.1. Template matching on ECE

ECE based on template matching uses causal indicators to
construct adaptive semantic templates and extract causal events
from text. Khoo et al. [5] apply adaptive templates and linguistic
clues to ECE. Girju et al. [6] obtain lexical patterns that can ex-
press causality from knowledge bases such as WordNet, and sort
the obtained patterns through the coarse-grained semantic con-
straints. To reduce manual participation, Ittoo et al. [14] extract
complex causal relations from domain texts through a minimally
supervised algorithm without relying on manual rules. However,
template matching requires a lot of manpower to carefully design
the template, and the accuracy and generalization of the template
matching still need to be improved.

2.2. Statistical learning on ECE

Methods of statistical learning turn ECE into a classification
task. Inui et al. [7] propose a computational model for ECE,
which can extract four types of event causality, including cause,
effect, precondition, and means. Blanco et al. [8] further present a
supervised method to extract causality from open domain texts.
However, the above model can only deal with explicit causality,
and the accuracy of implicit causality extraction is low. To solve
this problem, Yang et al. [15] develop an ECE system that is able to
extract more complex causal relations between two noun phrases
represented by fixed verbs or prepositions. However, extensive
feature engineering and possible noise reduce the accuracy and
applicability of the model.

2.3. Neural networks on ECE

In recent years, deep learning has become the mainstream
method of natural language processing, among which the most
widely used are Recursive Neural Networks (RNN) [16,17] and
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Fig. 2. Example of event causality extraction, the description of cause and effect are extracted at once.
onvolutional Neural Networks (CNN) [18,19]. Socher et al. [20]
resent a method for relation classification using a recursive
eural network. To represent relations more compactly, Ebrahimi
t al. [21] use RNN for relation classification based on the shortest
ath of two entities in the dependency graph. However, RNN-
ased methods require dependency analysis which may introduce
rror propagation.
CNN can automatically extract n-gram semantic features from

he text and has been proven suitable for ECE due to its excellent
ocal feature extraction and discriminative representation capa-
ilities [11,22]. Furthermore, Santos et al. [23] propose a ranking
NN algorithm for relation classification, and reduce the influence
f artificial classes on experimental results. However, the last
ayer of neurons in the convolution of conventional CNN models
an only obtain a small piece of information in the original input
ata. Since the contextual information in the text may affect the
abel of the input text, the perceptual field of CNN needs to be
urther improved. To solve this problem, Yu et al. [24] propose
ilated convolutions to increase the perception field of the filter.
ince increasing the depth of the dilated convolution on limited
ata can easily lead to overfitting, Strubell et al. [25] propose
n improved method called Iterated Dilated Convolutional Neural
etwork (IDCNN), which greatly increases the perception range
nd stability of the model by using a recursive approach. For
CE, Liang et al. [26] propose a novel multi-level causality de-
ection network to detect text with event causality by combining
he advantages of feature engineering in providing prior knowl-
dge and neural networks in capturing contextual information.
urthermore, Jin et al. [9] propose a cascaded multi-structure
eural network to improve the accuracy of inter-sentence and
mplicit causality extraction. However, due to complex of ECE,
ust relying on a small amount of labeled data and the model
tself, the improvement of ECE is limited. In response, Wang
t al. [10] propose a join extraction framework to incorporate the
rior knowledge like frequent event causality mentioned into the
onvolution kernel. Li et al. [27] incorporate multiple knowledge
nto the embedding representation to generate hybrid embedding
epresentations. Besides, Li et al. [13] obtain causal knowledge
rom labeled data and external knowledge bases such as WordNet
nd FrameNet, respectively, and integrate it into the convolution
nitialization, which improves the overall performance of the
odel on the ECE task.

.4. Neural network on graph

Due to the challenge of heterogeneous graph data, people
ave done extensive and in-depth research on how to apply the
eep learning method to the graph [28,29]. Previous research
reat neural network on the graph as a form of recurrent neural
etwork. However, their method requires repeated application
f the contraction maps as the activation function until the rep-
esentation of the node reaches a stable state. This restriction
as alleviated by adding gated recurrent units and improving the
ack-propagation optimization strategy [30]. As for Graph Convo-

utional Network (GCN), Bruna et al. [31] extend the convolutional

3

neural network to a graph. Then Defferrard et al. [32] use Cheby-
shev polynomials to obtain graph convolution to remove expen-
sive Laplacian eigen-decomposition. Based on previous work [31,
32], Kipf et al. [33] further simplify spectral graph convolutions
via a localized first-order approximation. Recently, people have
done a lot of research on the application of graph neural networks
on NLP, such as text classification [34], event argument extrac-
tion [35], document-level graphs for relation extraction [36], and
document-level graphs for event causality identification [37].

3. The proposed approach

In this section, we will introduce our model architecture as
shown in Fig. 1. For both the textual enhancement channel and
knowledge enhancement channel, we use BERT as a token en-
coder.

3.1. Notations

Event causality extraction (ECE) is a subtask of information
extraction. It aims to extract event phrases containing causal
relationships from texts, as shown in Fig. 2.

In ECE, let l = (x1, x2, x3, . . . , xn) denote a sentence consisting
of several tokens xi. y = (B−C, I−C, B−E, I−E,O) is the label set.
Each element in y represents xi is the beginning of the cause, a
continuation of cause, the beginning of the effect, a continuation
of effect, non-target word. The ECE model needs to output the
probability that xi belongs to each label in y.

3.2. Textual enhancement channel

In the field of NLP, the convolution operation can be seen as
the semantic feature extraction of a sentence. In our model of
ECE, the iterated dilated convolution layer aims to extract feature
map of intra-event mentions and capture contextual information
in the sentence. Inspired by [10,13,38], the construction of the
textual enhancement channel is shown in Fig. 3. Firstly, we ex-
tract important cause/effect n-gram semantic features from the
labeled data. Secondly, the semantic features of n-gram with sim-
ilar semantics are divided together using the clustering method
to generate high-level n-gram semantic representation. Finally,
the high-level n-gram representation is fed into the initialization
process of iterated dilated convolution. In this operation, we
use high-level n-gram features for part of the filters, and the
remaining positions are randomly initialized, allowing the model
to learn more useful features by itself. Therefore, the textual
enhancement channel consists of two steps: n-gram selection and
filter initialization.

N-gram Selection. Events can be represented by meaningful
phrases composed of several ordered words, and convolution can
extract n-gram features from the text. Therefore, n-gram seman-
tic features (e.g., tri-gram: decline in performance) can be used

as prior knowledge for convolution initialization to enable the
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Fig. 3. Textual enhancement channel, the important n-gram semantic features
selected for filters are copied to the first layer of a bottom-up dilated CNN block.

model to extract complete event mentions. To select effective n-
gram semantic features from labeled data, Naive Bayes is applied
to select effective n-gram as follows:

score =

(
ni
c + b

)
/∥ nc∥1(

nj
e + b

)
/∥ ne∥1

(1)

where c and e are the cause and effect, respectively. ni
c is the

number of sentences that contain n-gram i in cause c. ∥ nc∥1 is
the number of n-gram in cause c , b is a smoothing parameter.
ntuitively, when the length of the n-gram is close to the length
f the event description in the sentence, it is easier to capture the
emantic information and boundary of event mentions. Therefore,
e choose the event length that accounts for the largest propor-
ion in the labeled data as the parameter of n-gram, and select
he top 20% of n-gram as the semantic feature for convolution
nitialization.

Filter Initialization. In NLP, the convolution filter is usually
m × n dimensional matrix, where m represents the width

f the convolution filter, and n is the embedding dimension of
ach token. The convolutional operator for each token xt can be
alculated as follows:

t = Wc

r⨁
k=0

xt±k (2)

here⊕ is vector concatenation.Wc is the filter width of r tokens.
To enlarge the perception field of convolution, dilated con-

olution [24] performs a wider effective input width by skip-
ing over δ inputs at a time. The dilated convolution can be
epresented as follows:

t = Wc

r⨁
k=0

xt±kδ (3)

here δ is the dilation width, when dilation width δ > 1, dilated
onvolution can provide a wider perceptual field than simple
onvolution without adding additional parameters.
We can obtain top k cause/effect n-grams through Formula (1),

nd encode each n-gram with BERT to generate embedding rep-
esentations. Since the limited filters in the CNN are not enough
o use all the n-gram semantic features, we use K-means to divide
he similar n-gram features together, and thereby the cluster
entroid vector can be used as an abstract representation of
n n-gram class. In order to assign the centroid vector to the
onvolution kernel, we set the number of clusters equal to the
umber of filters. Considering the impact of contextual infor-
ation on cause/effect events, we input the centroid vector to
4

he center position of the filter, and the remaining positions of
he filter are randomly initialized. This operation can make the
odel learn more useful features itself. For dilated convolution,
imply increasing the depth of the stacked dilated convolution
an easily cause an overfitting problem. Therefore, we feed the
inal generated filters into the bottom-up first layer of iterated di-
ated convolutions [25], which enables the model to extract com-
lete event mentions with a wider perceptual field and desirable
eneralization capabilities.

.3. Knowledge enhancement channel

TEC can extract complete event mentions with full consider-
tion of contextual information. Naturally, Knowledge Enhance-
ent Channel (KEC) can be designed to enhance the model’s
bility to capture the causal relationship between events. Con-
idering that there are a large number of explicit causality in the
etwork, which can be used to improve the accuracy of the model
n event causality extraction. The KEC is constructed through
he following steps, including Causality Transition Graph (CTG)
onstruction and GCN encoding based on CTG.

.3.1. Causality transition graph construction
Fig. 4 shows the main procedure for constructing a Causality

ransition Graph (CTG). We crawl a large number of news texts
rom the Internet, and split them into sentences. CTG can be
onstructed through three steps: causal sentence recognition,
vent nuggets detection, and causality transition calculation.
Causal Sentence Recognition. Causal sentence recognition

ims to identify sentences containing causal relationships from
nlabeled news texts using Causal Indicator Words (CIW), includ-
ng CIW construction, CIW expansion, CIW disambiguation. Each
IW lexicon and its corresponding example sentences are shown
n Table 1.

Firstly, we construct a CIW lexicon. According to the com-
osition and part of speech of CIW, CIW can be divided into
nary CIW conjunctions, unary CIW verbs, and dual CIW conjunc-
ions. In addition to the above three cases, CIW also has some
rregular phrase descriptions (e.g., irregular CIW: have the role
n). Secondly, we expand the obtained CIW lexicon. The recall
f the initially constructed CIW lexicon is low, we use HowNet,1
ordNet2 and word2vec [39] to perform synonym expansion for
IW. In order to ensure the accuracy and objectivity of CIW, we
se the voting strategy to correct each CIW. Finally, we disam-
iguate the expanded CIW lexicon. The causal sentences can be
dentified by template matching. However, due to the multiple
eanings of some CIW, the recognition of causal sentences by

emplate matching may lead to some errors. For example, for
he word ‘‘so’’, as a conjunction it can be equivalent to ‘‘lead
o’’ and ‘‘so that’’, but as an adverb of degree, it is equivalent to
‘very’’ and ‘‘quite’’. Through comparative analysis, it can be found
hat the wrong recognition of causal sentences generally has the
ollowing two characteristics: (1) the part of speech of CIW in the
entence has changed; (2) CIW becomes part of a phrase. Based
n these two properties. We use Language Technology Platform
LTP) [40] and Natural Language Toolkit (NLTK)3 to identify the
arts of speech in Chinese and English, respectively. Partially
rong causal sentences are identified by judging whether the
IW becomes part of a phrase or whether the part-of-speech of
IW has changed.
Event Nuggets Detection. Event nuggets are a meaningful

emantic unit that can describe an event, which can be a single

1 http://www.yuzhinlp.com.
2 https://wordnet.princeton.edu.
3 http://www.nltk.org/.

http://www.yuzhinlp.com
https://wordnet.princeton.edu
http://www.nltk.org/
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Fig. 4. An overview of causality transition graph construction.
Table 1
Examples of different types of causal indicator words and their corresponding causal sentences.
Name of CIW CIW Example of causal sentence

Unary CIW
conjunctions

...
then, so, result in ... The emergence of the ‘‘problem map’’ caused by the weak awareness of individual

merchants’ national territory.

Unary CIW-Verbs ...
indicate, lead to, bring about ... The expansion of cities increase the variety of commodities

Dual CIW
conjunctions

...
(the reason, because), (the reason,
due to) ...

As long as the stock price rises, shareholding reductions and even liquidation
reductions will continue.

Irregular CIW ...
(is the reason for),(is the result of) ... Short-term dollar appreciation has a negative effect on oil prices.
p
w

D

w
w
c

3

[
i
a
o
X
w

t
n
w
o
d
w
d

word or a phrase [41,42]. A single word is generally a verb, noun,
and adverb, which refers to an event type. For a phrase, it is a
complete semantic unit composed of multiple words (continu-
ous or discontinuous). The following are two examples of event
nuggets, the word in bold face is event nuggets.

• Many people were killed in car accident.
• Calluses are caused by a skin abnormality.

It can be seen that events contain the following two properties
n terms of composition and part of speech. (1) An event consists
f a single word or phrases of multiple words; (2) Events gen-
rally consist of verbs or common nouns, followed by adjectives
nd adverbs. Therefore, we extract the main part of the events
n the text through the following steps. Firstly, LTP is applied to
o word segmentation for Chinese datasets. We perform part-of-
peech tagging and named entity recognition on the corpus, LTP
nd NLTK are applied to process the Chinese corpus and English
orpus, respectively. Then we sequentially remove stop words
nd specific entities (e.g., people, organizations, and places), and
ick out verbs, common nouns, adjectives, and adverbs from the
entence. The selected content in the sentence can be considered
s event nuggets lm(lm ⊆ l).
Causality Transition Calculation. Through the construction of

IW, we can get a large number of CIW, and further obtain a large
umber of explicit causal sentences through template matching.
esides, the obtained CIW usually have a clear direction. For ex-
mple, lead to, owing to, bring about, etc. are indicative of causal
irection. Therefore, CIW can be divided into order matching from
ause to effect, middle matching from cause to effect, and order
atching from effect to cause according to its position in the
entence. We deal with the above three cases as follows: (1) For
rder matching from cause to effect, the second word of CIW is
sed as separation. The left part is the cause, and the right part
s the effect. (2) For the order matching from effect to cause, the

econd word of CIW is used as separation. The left part is the

5

effect, and the right part is the cause. (3) For the middle matching
from cause to effect, the current word is used as separation. The
left part is the cause, and the right part is the effect.

Association Link Network (ALN) is a kind of semantic link
network that can be used to effectively associate and organize
various resources on the Internet [43,44]. Inspired by ALN, we
design an ALN-based Causality Transition Graph (CTG) to model
causality transition in massive texts. CTG can be represented by
graph g = (w, e), and each node wi is the keyword of the
event description, each edge (wi → wj) ∈ e is the causality
transition weight from the word wi to word wj. Given a set of
re-processed causal sentences through event nuggets detection,
e can construct CTG as follows:

wi→wj =
co(wi → wj)√
DF (wi) ∗ DF (wj)

(4)

here co(wi → wj) is the co-occurrence frequency from cause
ord wi to effect word wj, DF (wi) is the number of sentences
ontaining the word wi.

.3.2. GCN encoding based on CTG
In this section, we use Graph Convolutional Networks (GCN)

33] to encode the causality transition information between nodes
n CTG. Given a graph G = (V , E), which contains node vi ∈ V
nd edge eij(eij = (vi, vj) ∈ E) with weights wij. The input
f GCN consists of two parts: node representations denoted by
= {xi}Ni=1, where xi is the feature vector of node vi, and the
eighted adjacency matrix of the graph A ∈ RNXN where Aij = wij.
For a sentence l (assuming it has N tokens), the word represen-

ations X can be obtained by the BERT encoder. We extract event
uggets lm ⊆ l through event nuggets detection, and the matched
eight wij ∈ A of causality transition between words in lm can be
btained from CTG. However, it should be noted that BERT has
ifferent encoding granularity for English and Chinese, which use
ord encoding and character encoding, respectively. For Chinese
ata, the nodes in CTG are represented by words, and BERT
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encodes each token by character, making GCN unable to encode
the subgraph of CTG due to the different dimensions of the input
matrix. To solve this problem, we use the method shown in Fig. 5
to generate the final weighted adjacency matrix. If the weight of
causality transition from Chinese word wi to Chinese word wj is
wij, the weight of character ci ∈ wi to character cj ∈ wj is wij.
his operation retains the association information between words
nside the event and reflects the causality transition association
etween words across the event.
After we get the embedding matrix X and the weighted adja-

ency matrix of causality transition A, the layer-wise propagation
ule of multi-layer GCN can be summarized as follows:
(l+1)
= σ (D̃−

1
2 ÃD̃−

1
2 H (l)W (l)) (5)

here Ã = A + IN , D̃ is a degree matrix of Ã, and IN is the
dentity matrix. H (0)

= X is fed into the input layer of GCN,
hich contains origin word features and sequence information.
(l)
∈ RN×Ml is the activation matrix that contains hidden infor-

ation of the vertices in the lth layer. W (l) is a trainable weight
atrix. σ (·) denotes the activation function. Such propagation

ules can be considered as a differentiable generalization of the
eisfeiler–Lehman algorithm [33].

.4. Dual-channel fusion

The textual enhancement channel can extract the features
f event mentions with wider perception fields. The knowledge
nhancement channel captures the causality transition between
vents. Intuitively, considering that the knowledge enhancement
hannel can provide supervised guidance information for the
earning process of determining the causal relationship between
eature maps of the textual enhancement channel, and the in-
ormation in the two parts may have different priorities, we use
he multi-head attention mechanism [45] to link the two parts
ogether to represent the global preference of event causality. The
ormulation of multi-head attention is as follows:

HEAD = concat (head1, head2, . . . , headh)W (6)

where headi = Attention
(
QWQ

i , KW K
i , VW V

i

)
, Q ∈ Rt×d, K ∈

Rt×d, and V ∈ Rt×d are the input of attention, representing
the query matrix, key matrix, and value matrix, respectively. The
parameter matrices of ith linear projection is WQ

i ∈ Rn×( dh ), W K
i

Rn×( dh ), W V
i ∈ Rn×( dh ), and the attention values of h heads

re concatenated together. Considering that the TEC retains the
emantic information and sequence information of the text, and
he output of dual-channel fusion reflects the contribution of each
6

feature in TEC under the guidance of KEC. The outputs of TEC and
attention structure are cascaded to output token-wise contextual
representations.

3.5. Object function

In order to make full use of contextual information, the token-
wise contextual representations is fed to Bi-directional Long
Short-Term Memory (BiLSTM) [46], which can learn the semantic
features of sentences from both directions. Assuming the output
sequences of BiLSTM is

−→
ht and

←−
ht , the two hidden vectors can be

concatenated into [
−→
ht ,
←−
ht ] to generate the final representation.

Adjacent labels usually have strong dependencies in the ob-
tained label sequence. Therefore, we use Conditional Random
Field (CRF) [47] to decode the label sequence output by BiLSTM,
which can fully consider the sequence and correlation between
labels. Given sentence l and its predicted label sequence y =
y1, y2, . . . , yn), the score of CRF can be expressed as follows:

core(l, y) =
n+1∑
i=1

Ayi−1,yi +

n∑
i=1

Pi,yi (7)

where A is the transition matrix in the CRF layer, Ayi−1,yi repre-
ents the transition score from label yi−1 to label yi. P is the score
atrix output by BiLSTM, Pi,yi is the confidence score of word i

belongs to label yi. The convergence conditions of the model by
inimizing the loss function are as follows:

= log
∑
y∈Y

exps(y)
−score(l, y) (8)

where Y is the set of all possible label sequences in a sentence.

. Experiment and evaluation

.1. Datasets

We conduct experiments on three benchmark datasets to ver-
fy the effectiveness of our method. The dataset contains two
hinese domain datasets and one English non-domain dataset,
ncluding the financial dataset, CEC (Chinese emergency corpus)
ataset4 and SemEval-2010 task 8 dataset [48]. The financial
ataset is a Chinese dataset, and we crawl a large number of news
eports from financial websites such as Jinrongjie5 and Hexun.6

4 https://github.com/shijiebei2009/CEC-Corpus.
5 http://www.jrj.com.cn/.
6 http://www.hexun.com/.

https://github.com/shijiebei2009/CEC-Corpus
http://www.jrj.com.cn/
http://www.hexun.com/
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Table 2
Statistics result of the three datasets.
Statistics Financial CEC SemEval2010

Data size 2270 1026 1003
Average sentence length 57.94 31.14 18.54
Distance between cause and effect 13.49 10.24 5.33
Length of cause with the largest proportion 4(41%) 2(31%) 1(85%)
Length of effect with the largest proportion 4(23%) 4(27%) 1(91%)
These texts contain a certain number of causal events. We split
these news reports into sentences and annotated causal events
on the corpus, finally getting 2270 causality instances. For the
CEC dataset, it is a public event ontology corpus that contains
six event types, including fires, earthquakes, outbreaks, terrorist
attacks, traffic accidents, and food poisonings. We annotate causal
events on the corpus, and obtain 1026 causality instances. For
the SemEval-2010 task 8 dataset, it contains 10717 annotated
samples, and each sample is a sentence annotated with entity
pairs (e1, e2) and their relationship. We re-annotate sentences
containing causal relations and obtained 1003 causal sentence
instances. The details of the three datasets are shown in Table 2.

4.2. Experimental setting

For CTG construction, we constructed domain-specific Chi-
nese CTG (including Chinese financial CTG and Chinese emer-
gency CTG) and non-domain English CTG for different datasets.
The large-scale news corpus used to construct CTG is crawled
from the related website, and the domain corpus is obtained by
matching the pre-defined domain lexicon.

For the above three datasets, We use BERT to encode text to
generate embedded representations. The hyper-parameters of the
model during training are as follows: (1) the n-gram filter used
for convolution initialization on the three datasets of financial,
CEC, and SemEval-2010 task 8 are 4, 2, and 1, respectively; (2)
the number of epochs for model training is 70; (3) the batch size
for the training set is 8; (4) the learning rate of the optimizer
adam used for optimization is 1× 10−5.

In order to ensure the reliability of the experimental results, all
the data is shuffled with different random seeds before training,
and is divided into a training set, validation set, and test set with a
proportion of 80%, 10% and 10%, respectively. We use the average
F1 value of ten-fold cross-validation as the evaluation metric, and
the final result is the average value of the ten macro-averaged F1
scores.

4.3. Method for comparison

We apply some classical methods to the above three datasets
to verify the effectiveness of the proposed method.

• BiLSTM+CRF: This is a basic model for information extrac-
tion, which use BiLSTM to capture the sequence and contex-
tual information of texts, and CRF is applied to decode the
obtained tag sequence.
• CNN+BiLSTM+CRF [49]: The model uses CNN to extract mul-

tiple n-gram semantic features, and the BiLSTM+CRF layer is
applied to capture the dependencies between features.
• CSNN [9]: The author uses CNN to extract text features,

and an association between semantic features is established
using the self-attention mechanism.
• BERT+CISAN [10]: The authors integrate important event

causality mentions into the convolution initialization, and
BERT is served as an embedded encoder for CISAN to replace

GloVe word embedding.

7

Table 3
Macro-averaged F1 scores of various methods on three datasets, results are
shown in percentages.
Model Financial CEC SemEval2010

BiLSTM+CRF 74.75 68.74 73.20
CNN+BiLSTM+CRF 74.31 71.68 74.20
CSNN 74.59 70.61 73.71
BERT+CISAN 77.09 75.93 77.65
BERT+SCITE 78.20 74.13 77.41

Our model 79.89 82.27 80.02

• BERT+SCITE [27]: The method incorporates multiple prior
knowledge into the embedding representation to generate
hybrid embedding representations, and a multi-head at-
tention mechanism is applied to learn the dependencies
between causal words. We encode sentences using BERT
instead of hybrid embedding representations.

4.4. Results and analysis

Table 3 shows the results of our method compared with other
baselines. Besides, BERT+CISAN and BERT+SCITE are two strong
benchmarks to verify the effectiveness of our dual-channel en-
hanced method.

It can be seen that the performance of the CNN-based method
(e.g., CNN+BiLSTM+CRF and CSNN) is better than BiLSTM + CRF.
In the conventional information extraction tasks (e.g., named
entity recognition), BiLSTM can capture the sequence informa-
tion and dependencies between tokens, and CRF can adjust the
label sequence according to the distribution and interrelation
of the predicted label sequence to generate the best label sets.
Therefore, BiLSTM+CRF is more suitable for conventional infor-
mation extraction tasks. However, ECE is a joint extraction task
of phrase-level event extraction and causality recognition. CNN
can extract the semantic n-gram features of several consecutive
tokens, which is crucial for phrase-level information extraction
tasks. Experimental results also demonstrate the importance of
introducing CNN for ECE.

In addition, BERT-based methods significantly outperform non-
BERT methods. This is mainly because the pre-trained model
BERT is trained from a large-scale corpus, which contains a
lot of prior knowledge and has been proven to be suitable for
many NLP tasks. Compared with BERT-based methods, our model
is 2.8%, 6.34%, and 2.37% higher than BERT+CISAN and 1.69%,
8.14%, and 2.61% higher than BERT+SCITE on financial, CEC, and
SemEval2010, respectively. Event causality extraction is a joint
extraction task of event extraction and causal relationship identi-
fication. The two BERT-based methods only consider prior knowl-
edge of an event, but it ignores the influence of a large amount
of causal knowledge that exists on the Internet on the model.
Our method integrates prior knowledge and data features into
the model through the knowledge enhancement channel and
textual enhancement channel to improve the model’s ability to
extract causal events. Among them, the textual enhancement
channel feeds the semantic features of important event mentions
to the iterated dilated convolutions, capturing features of differ-
ent sizes inside events with global contextual information. The
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Table 4
Ablation analysis of our proposed method on three datasets, ‘‘–’’ means to
remove a component from the model in order.
Model CEC Financial SemEval2010

Our model 82.27 79.89 80.02
-KEC 77.52 77.77 78.21
-Attention 76.10 76.16 75.93
-TEC 75.15 74.95 73.96
-BERT 68.26 71.81 68.55

Table 5
Results of n-gram filters with different lengths on three datasets.
Model Ngram Financial CEC SemEval2010

Our model

Unigram 79.61 81.52 80.02
Bigram 79.11 82.27 78.67
Trigram 78.91 81.32 79.07
Quagram 79.89 81.79 79.26

knowledge enhancement channel improves the model’s ability
of causality identification between events by using GCN to learn
the causality transition information between nodes in the CTG.
Moreover, financial and CEC are two domain datasets, our method
can achieve better performance on the three datasets, and the
performance on the domain datasets is better than the non-
domain dataset (SemEval 2010). Namely, our method also has
certain applicability to non-domain datasets.

4.5. Ablation experiments

Table 4 is an ablation analysis to show whether each part of
ur method has a positive role in the ECE task. We perform -
ec, -attention, -tec, and -BERT in order. First, we perform the
KEC operation. After removing KEC, the output ct of TEC is
oncatenated with self-attention operation of ct (this operation
s proved to be effective in BERT+CISAN), and is fed into the
iLSTM+CRF layer. Then, we perform the -attention operation to
irectly feed the output ct of TEC into the BiLSTM+CRF layer.
ext, we perform the -TEC operation to initialize the convolution
andomly. Finally, we perform the -BERT operation to initialize
he model’s embedding layer randomly, which can be seen as the
omparison baseline model IDCNN+BiLSTM+CRF.
It can be seen that after removing the relevant parts of the

odel in order, the performance of the model gradually de-
reases, indicating that all parts of the model are useful for
CE tasks. The contribution of BERT has the greatest impact
n the model because BERT is a deep transformer neural net-
ork trained from a large-scale corpus. As a result, it can learn
ood representation for each token and adjust its parameters
hrough fine-tuning to make the model obtain state-of-the-art
erformance.
In addition, TEC is designed to help the model extract a com-

lete event description based on global contextual information,
nd KEC is used to assist the model in identifying the causal
elationship between features of different granularity. Then the
ttention mechanism links the two parts together, and the fea-
ures of event description and causality transition can be matched
n a targeted manner. Finally, the model can pick out the optimal
eature combination. Therefore, all these layers simultaneously
ontribute to obtaining SOTA performance.

.6. Comparison w.r.t semantic convolutional filters

To find the appropriate n-gram length for different datasets,
e designed the experiment as shown in Table 5 to explore the

nfluence of different n-gram lengths on the experimental results.
8

Table 6
F1-score of various methods under different sentence length intervals on the
financial dataset.
Model (0,16) (16,32) (32,48) (48,64) (64,80) (>80)

BiLSTM+CRF 78.26 57.50 71.43 57.58 61.11 56.68
CNN+BiLSTM+CRF 83.33 71.01 72.26 63.49 63.46 75.95
CSNN 83.33 68.29 75.00 67.74 63.16 76.34
BERT+CISAN 100 70.93 73.17 69.72 76.19 84.40
BERT+SCITE 100 78.32 75.82 70.43 82.27 80.49
Our model 100 82.30 77.46 70.74 69.84 86.71

The result shows that the best length of n-grams for financial,
CEC, and SemEval2010 is 4, 2, and 1, respectively. By analyzing
the differences among different datasets, we find that the event
lengths with the largest proportions in the financial dataset,
CEC dataset, and SemEval2010 dataset are also 4, 2, and 1, re-
spectively. This phenomenon proves that this paper’s textual
enhancement channel can better capture common event men-
tions. For example, in the English dataset, ‘‘the fire cause a slight
injury on the ventral side of the neck and at the base of horns’’. In
this sentence, the cause is ‘‘fire’’, and the effect is ‘‘injury’’. We
think the convolution is more sensitive to a such event when the
frequent event mentions are expressed in a single word.

4.7. Comparison w.r.t. epoch

Fig. 6 shows the learning curve of our methods compared with
other baselines. It can be seen the iteration result of the BERT
model (e.g., our model, BERT+CISAN and BERT+SCITE) is signif-
icantly better than the NON-BERT model. Besides, the conver-
gence speed of the BERT+CISAN and BERT+SCITE outperforms the
non-BERT model. However, we find an interesting phenomenon,
i.e., our method does not have a very high starting point at the
beginning of the iteration, but it converged quickly after three
iterations. This may be caused by two reasons: (1) The search for
causality transition in the knowledge enhancement channel is a
dynamic process, so the model needs several rounds of iteration
to find the appropriate parameters; (2) Due to the complexity of
our model and insufficient training data, the model needs several
rounds of iterations to find suitable weights until converge. Even
so, the time taken for our model to converge is almost the same
as BERT+CISAN.

4.8. Comparison w.r.t. sentence length

Table 6 shows the performance of various methods for sen-
tences of different lengths on the financial dataset. We divide the
test set into six intervals according to the length of sentences. It
can be seen that our results are better than other methods in most
cases, which means that our method has better results in both
long-range dependency and short-range dependency causality.
This is mainly because both KEC and TEC of our model have
the ability to perceive global contextual information. TEC can
perceive more contextual information by iterated dilated convo-
lution to extract phrase-level event semantic features, and the
CTG used in KEC contains global causality transition informa-
tion. Therefore, the combination of KEC and TEC can enable the
model to capture more contextual information from the text and
improve the model’s performance on the ECE task.

5. Conclusion and future work

We present a novel dual-channel enhanced neural network for
Event Causality Extraction (ECE). The proposed method improves
the model’s ability of ECE through the Textual Enhancement
Channel (TEC) and Knowledge Enhancement Channel (KEC). The
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Fig. 6. The learning curve of different methods on the three test datasets.
TEC uses Naive Bayes and unsupervised clustering to generate
important n-gram semantic features on cause and effect from
labeled data, and then the features are applied to the initial-
ization of iterated dilated convolutions, allowing the model to
extract more complete event mentions while considering rich
contextual information. Meanwhile, the KEC models the external
causal knowledge as Causality Transition Graph (CTG), which
can be constructed from the related corpus. Then we use Graph
Convolutional Networks (GCN) to capture the complex infor-
mation transition of inter-event causality learned from CTG. As
a result, our method can capture intra-element transitions in-
side events and inter-causality association across events. The
proposed method is fully automatic without sophisticated fea-
ture engineering, and the performance of our approach has been
experimentally verified on three datasets.

In future work, we will try a more effective method to build a
causality transition graph without relying on too much external
corpus, and explore potential applications of our model in other
non-domain-specific tasks.
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