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Abstract

We provide a simple proof of convergence covering both the Adam and Adagrad adaptive
optimization algorithms when applied to smooth (possibly non-convex) objective functions
with bounded gradients. We show that in expectation, the squared norm of the objective
gradient averaged over the trajectory has an upper-bound which is explicit in the constants
of the problem, parameters of the optimizer and the total number of iterations IN. This
bound can be made arbitrarily small: Adam with a learning rate o = 1/v/N and a momen-
tum parameter on squared gradients 8y = 1 — 1/N achieves the same rate of convergence
O(In(N)/V/N) as Adagrad. Finally, we obtain the tightest dependency on the heavy ball
momentum among all previous convergence bounds for non-convex Adam and Adagrad, im-
proving from O((1 — B1)72) to O((1 — $1)~1). Our technique also improves the best known
dependency for standard SGD by a factor 1 — ;.

1 Introduction

First-order methods with adaptive step sizes have proved useful in many fields of machine learning, be it for
sparse optimization (Duchi et all 2013), tensor factorization (Lacroix et all 2018) or deep learning (Good-
fellow et al. |2016]). Duchi et al.| (2011) introduced Adagrad, which rescales each coordinate by a sum of
squared past gradient values. While Adagrad proved effective for sparse optimization (Duchi et al., 2013)),
experiments showed that it under-performed when applied to deep learning (Wilson et al. 2017). RM-
SProp (Tieleman & Hinton, |2012) proposed an exponential moving average instead of a cumulative sum to
solve this. Kingma & Ba, (2015) developed Adam, one of the most popular adaptive methods in deep learn-
ing, built upon RMSProp and added corrective terms at the beginning of training, together with heavy-ball
style momentum.

In the online convex optimization setting, |Duchi et al.|(2011) showed that Adagrad achieves optimal regret
for online convex optimization. |[Kingma & Ba| (2015) provided a similar proof for Adam when using a
decreasing overall step size, although this proof was later shown to be incorrect by Reddi et al.| (2018), who
introduced AMSGrad as a convergent alternative. Ward et al.| (2019)) proved that Adagrad also converges to
a critical point for non convex objectives with a rate O(In(N)/v/N) when using a scalar adaptive step-size,
instead of diagonal. |Zou et al. (2019b|) extended this proof to the vector case, while [Zou et al. (2019a)
displayed a bound for Adam, showing convergence when the decay of the exponential moving average scales
as 1 — 1/N and the learning rate as 1/v/N.

In this paper, we present a simplified and unified proof of convergence to a critical point for Adagrad
and Adam for stochastic non-convex smooth optimization. We assume that the objective function is
lower bounded, smooth and the stochastic gradients are almost surely bounded. We recover the stan-
dard O(In(N)/v/N) convergence rate for Adagrad for all step sizes, and the same rate with Adam with an
appropriate choice of the step sizes and decay parameters, in particular, Adam can converge without using
the AMSGrad variant. Compared to previous work, our bound significantly improves the dependency on the
momentum parameter 3;. The best know bounds for Adagrad and Adam are respectively in O((1 — 31)~?)
and O((1 — B1)75) (see Section , while our result is in O((1 — 31)~!) for both algorithms. Our proof
technique for heavy-ball momentum can also be applied to plain SGD, and improves the dependency on
1 — ;1 from a —2 to a —1 exponent (Yang et al., |2016)). This improvement is a step toward understanding
the practical efficiency of heavy-ball momentum.
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Outline. The precise setting and assumptions are stated in the next section, and previous work is then
described in Section The main theorems are presented in Section [4 followed by a full proof for the
case without momentum in Section The proof of the convergence with momentum is deferred to the
supplementary material, along with the same technique applied to SGD. Finally we compare our bounds
with experimental results, both on toy and real life problems in Section [G}

2 Setup

2.1 Notation

Let d € N be the dimension of the problem (i.e. the number of parameters of the function to optimize)
and take [d] = {1,2,...,d}. Given a function h : R? — R, we denote by Vh its gradient and V;h the i-th
component of the gradient. We use a small constant €, e.g. 10~8, for numerical stability. Given a sequence
(tn)nen with Vn € N, u,, € R%, we denote u,,; for n € N and i € [d] the i-th component of the n-th element
of the sequence.

We want to optimize a function F' : R? — R. We assume there exists a random function f : R? — R such that
E[Vf(z)] = VF(z) for all # € R, and that we have access to an oracle providing i.i.d. samples (f,,)nen+. We
note E,,_1 [-] the conditional expectation knowing fi,..., fn—1. In machine learning, x typically represents
the weights of a linear or deep model, f represents the loss from individual training examples or minibatches,
and F' is the full training objective function. The goal is to find a critical point of F'.

2.2 Adaptive methods

We study both Adagrad (Duchi et al.l 2011) and Adam (Kingma & Bal |2015) using a unified formulation.
We assume we have 0 < 85 < 1, 0 < 81 < B2, and a non negative sequence (o, )nen+. We define three
vectors my,, vp, T, € R? iteratively. Given g € R? our starting point, mg = 0, and vy = 0, we define for all
iterations n € N*|

My, = Bimn—1,i + Vifn(@n_1) (1)
Un,i = PoUn_1,i + (Vifu(zn1))’ (2)
Mpg

Tni = Tp—1,i — On

VETF Un,;i

The parameter 3 is a heavy-ball style momentum parameter (Polyak| |1964), while 85 controls the rate at
which the scale of past gradients is forgotten. Taking f; = 0, Sz = 1 and «,, = « gives Adagrad. While
the original Adagrad algorithm did not include a heavy-ball-like momentum, our analysis also applies to the
case 1 > 0. On the other hand, when 0 < 82 < 1, 0 < 81 < 9, taking

153

anp =a(l =) =

(4)

leads to an algorithm close to Adam. We moved the 1 — 31 and 1 — 35 factors originally in and to the
step size ay,, as this allows for a common treatment of Adam and Adagrad. We also integrate the corrective
term /1 — % into the step size. However, we chose to drop the corrective term in 1 — 7' in the original
algorithm. Indeed, keeping both can make «, non monotonic, which complicates the proof. The first few
1/(1 — py) iterations will be smaller than with the usual Adam, i.e., for a typical 81 of 0.9 (Kingma & Baj,
2015)), our algorithm differs from Adam only for the first 50 iterations.

2.3 Assumptions
We make three assumptions. We first assume F' is bounded below by Fy, that is,

Vz € RY F(z) > F,. (5)
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We then assume the o, norm of the stochastic gradients is uniformly almost surely bounded, i.e. there is
R > /e (y/€ is used here to simplify the final bounds) so that

vz € RY|Vf(z)|,, < R— Ve as, (6)

and finally, the smoothness of the objective function, e.g., its gradient is L-Liptchitz-continuous with respect
to the fy-norm:
Va,y € R [|VF(z) = VF(y)|l, < Lz —yll, - (7)

3 Related work

Early work on adaptive methods (McMahan & Streeter], 2010 [Duchi et all, [2011]) showed that Adagrad
achieves an optimal rate of convergence of O(1/v/N) for convex optimization (Agarwal et al., 2009). Later,
RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Bal 2015) were developed for training deep
neural networks, using an exponential moving average of the past squared gradients.

[Kingma & Bal (2015) offered a proof that Adam with a decreasing step size converges for convex objectives.
However, the proof contained a mistake spotted by [Reddi et al (2018]), who also gave examples of convex
problems where Adam does not converge to an optimal solution. They proposed AMSGrad as a convergent
variant, which consisted in retaining the maximum value of the exponential moving average. When « goes to
zero, AMSGrad is shown to converge in the convex and non-convex setting (Fang & Klabjan|2019;|Zhou et al.
. Despite this apparent flaw in the Adam algorithm, it remains a widely popular optimizer, be it for
image generation (Karras et al}[2019)), music synthesis (Dhariwal et al.,[2020]), or language modeling
, raising the question, does Adam really not converge? When 5 goes to 1 and « to zero, our
results and previous work (Zou et all 2019a) show that Adam does converge with the same rate as Adagrad.
This is coherent with the counter examples of Reddi et al.| (2018), because they uses a small exponential
decay parameter 35 < 1/5.

The convergence of Adagrad for non-convex objectives was first tackled by [Li & Orabonal (2019)), who proved
the convergence of Adagrad, but under restrictive conditions (e.g., @ < y/¢/L). The proof technique was
improved by [Ward et al.| (2019), who showed the convergence of “scalar” Adagrad, i.e., with a single learning
rate, for any value of a with a rate of O(In(N)/v/N). Our approach builds on this work but we extend it to
apply to both Adagrad and Adam, in their coordinate-wise version, as used in practice, while also supporting
heavy-ball momentum.

The coordinate-wise version of Adagrad was also tackled by |Zou et al.|(2019b)), offering a convergence result
for Adagrad with either heavy-ball or Nesterov style momentum. We obtain the same rate for heavy-ball
momentum with respect to N (i.e., O(In(N)/v/N)), but we improve the dependence on the momentum
parameter (31 from O((1 — B1)~2) to O((1 — B1)~1). [Chen et al|(2019) also provided a bound for Adagrad
and Adam, but without convergence guarantees for Adam for any hyper-parameter choice, and with a worse
dependency on fi. |[Zhou et al.| (2018) also cover Adagrad in the stochastic setting, however their proof
technique rely on € being quite large, as shown by the \/T/e term in their bound. Finally, a convergence
bound for Adam was introduced by Zou et al.| (2019a). We recover the same scaling of the bound with
respect to a and (2. However their bound has a dependency of O((1 — 31)~°) with respect to (3, while
we get O((1 — $1)71), a significant improvement. obtain similar convergence results for
RMSProp and Adam when considering the random shuffling setup. They use a strong growth condition (i.e.
norm of the stochastic gradient is bounded by an affine function of the norm of the deterministic gradient)
instead of the boundness of the gradient, but their bound decays with the number of total epochs, not
stochastic updates leading to an overall /s extra term with s the size of the dataset. Finally, [Faw et al.
use the same affine growth assumption to derive high probability bounds for scalar Adagrad.

Non adaptive methods like SGD are also well studied in the non convex setting (Ghadimi & Lanl [2013)),
with a convergence rate of O(1/v/N) for a smooth objective with bounded variance of the gradients. Unlike
adaptive methods, SGD requires knowing the smoothness constant. When adding heavy-ball momentum,
[Yang et al.|(2016) showed that the convergence bound degrades as O((1— 1)~ 2), assuming that the gradients
are bounded. We apply our proof technique for momentum to SGD in the Appendix, Section [Bland improve
this dependency to O((1 — B1)71).
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4 Main results

For a number of iterations N € N*, we note 7y a random index with value in {0,..., N — 1}, so that

VieN,j<N,Plr=jol—g"". (8)

If 1 = 0, this is equivalent to sampling 7 uniformly in {0,..., N—1}. If 81 > 0, the last few ﬁ iterations
are sampled rarely, and iterations older than a few times that number are sampled almost uniformly. Our
results bound the expected squared norm of the gradient at iteration 7, which is standard for non convex

stochastic optimization (Ghadimi & Lan| [2013).

4.1 Convergence bounds

For simplicity, we first give convergence results for 5; = 0, along with a complete proof in Section [5] We
then provide the results with momentum, with their proofs in the Appendix, Section [A.6] We also provide a
bound on the convergence of SGD with an improved dependency on 7 in the Appendix, Section along
with its proof in Section [B.4]

No heavy-ball momentum

Theorem 1 (Convergence of Adagrad without momentum). Given the assumptions from Section the
iterates x, defined in Section with hyper-parameters verifying Bo = 1, ap = a with a > 0 and 1 = 0,
and T defined by , we have for any N € N¥,

F(xo) — F 1

2 L2\00) ™ B - 2
E[HVF(J:T)H } <2R TN +\/N(4dR + adRL) In <1+

Theorem 2 (Convergence of Adam without momentum). Given the assumptions from Section the

NRZ) | ©

€

iterates x,, defined in Section with hyper-parameters verifying 0 < B2 < 1, oy = « 11:2;; with a > 0
and f1 =0, and 7 defined by (8)), we have for any N € N*,
F(zo) — Fi 1 R?
E[F72}<27 1+ — ) , 1
IVF )] < 2R 0 (i (14 =g ) — ) (10)
with
O 4dR? adRL

vl—ﬁ2+1*52.

With heavy-ball momentum

Theorem 3 (Convergence of Adagrad with momentum). Given the assumptions from Section the
iterates x,, defined in Section[2-9 with hyper-parameters verifying Bo = 1, a, = a with e > 0 and 0 < By < 1,
and T defined by , we have for any N € N* such that N > -2

1-p17
F —F, VN NR?
E [||VF($T)||2] < 2RVN% + ——Cln (1 + R ) , (11)
alN N €
with N = N — 15151, and,

12dR? n 2a2dL? B3,

1-p 1-p

Theorem 4 (Convergence of Adam with momentum). Given the assumptions from Section the it-
erates x, defined in Section with hyper-parameters verifying 0 < fo < 1, 0 < p1 < P, and,

an = a(l = B1)y/ 11:[;5; with a > 0, and 7 defined by , we have for any N € N* such that N > 15}31 ,

E [||VF(;UT)||2] < 23% +C (;f In (1 + (lf;)ﬁ) - gm(ﬂﬁ) 7 (12)

C =adRL +
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with N = N — flﬁl, and

adRL(1—f) 12dR?T — B, 202dL2B,

€= (1=51/B2)(A1 = P2) (1= p1/B2)¥2V1 =P " (1= B1/B2)(1 = B2)%/2

4.2 Analysis of the bounds

Dependency on d. The dependency in d is present in previous works on coordinate wise adaptive meth-
ods (Zou et al., [2019a3b). Indeed, for the diagonal version of Adagrad and Adam, we will see in Sectionthat
we apply Lemma once per dimension. The contribution from each coordinate is mostly independent of
the actual scale of its gradients (as it only appears in the log), so that the right hand side of the convergence
bound will grow as d. In contrast, the scalar version of Adagrad (Ward et al., |2019) has a single learning
rate, so that Lemma is only applied once, removing the dependency on d. However, this variant is rarely
used in practice.

Almost sure bound on the gradient. We chose to assume the existence of an almost sure uniform
{so-bound on the gradients given by @ It is possible instead to assume a uniform bound on the gradients
in expectation. We use @ in Lemma [5 . to obtain and (26]), however in that case a bound on the
expected squared norm of the gradients is sufficient. We then use ([6]) to derlve ) and (| in Section
For those, one can assume only a bound in expectation and use Holder 1nequahty, as done by [Ward et al

(2019) and|Zou et al.[(2019b). This however deteriorates the bound, as instead of a bound on E [||VF($T) ||§} )

one would obtain a bound on E [||VF( )||4/3}

Impact of heavy-ball momentum. Looking at Theorems [3] and ] we see that increasing £ always
deteriorates the bounds. Taking #; = 0 in those theorems gives us almost exactly the bound without
heavy-ball momentum from Theorems [I|and [2] up to a factor 3 in the terms of the form dR?.

As discussed in Section previous bounds for Adagrad in the non-convex setting deteriorates as O((1—/£1) ™)
(Zou et al., 2019b), while bounds for Adam deteriorates as O((1 — 81)7%) (Zou et al., 2019a)). Instead, our
unified proof for Adam and Adagrad achieves a dependency of O((1 — 1)~ 1), a significant improvement.
We refer the reader to the Appendix, Section[A3] for a detailed analysis. Note that our proof technique can
also be applied to SGD and achieve a dependency of O((1 — $1)~1), compared to O((1 — 31)~2) for the best
existing result |Yang et al. (2016)). We provide a complete proof in the Appendix, Section

While our dependency still contradicts the benefits of using momentum observed in practice, see Section [6]
our tighter analysis is a step in the right direction.

4.3 Optimal finite horizon Adam is Adagrad

Let us take a closer look at the result from Theorem [2} It could seem like some quantities can explode but
actually not for any reasonable values of a, B and N. Let us assume ¢ < R, a =N"%and o =1 — N~°.
Then we immediately have

E [||VF($T)H2} < 23% +C ( Ly (RiNb) + N‘b) , (13)

with C' = 4dR?*N%/? + dRLN"~®. Putting those together and ignoring the log terms for now,

F — F,
E[IvF@,)|?] s 207001

L
+AdRNY?7! + 4dRPN™Y2 + RLNP™*7 4 SN0,
The best overall rate we can obtain is O(1/v/N), and it is only achieved for a = 1/2 and b = 1, i.e.,
a=0a;/VN and B, =1 —1/N. We can see the resemblance between Adagrad on one side and Adam with
a finite horizon and such parameters on the other. Indeed, an exponential moving average with a parameter
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B2 =1—1/N as a typical averaging window length of size N, while Adagrad would be an exact average of
the past N terms. In particular, the bound for Adam now becomes

E [||VF(xT)\|2} < W + \/% <dR+ O”f) <ln (1 + ReN) + 1) , (14)

which differ from @D only by a +1 next to the log term.

Adam and Adagrad are twins. Our analysis highlights an important fact: Adam is to Adagrad like
constant step size SGD is to decaying step size SGD. While Adagrad is asymptotically optimal, it has a
slower forgetting of the initial condition F(xo) — F, as 1/v/N instead of 1/N for Adam. The fast forgetting
of the initial condition of Adam comes at a cost as it does not converge. It is however possible to choose
« and (3 to achieve an e critical point for e arbitrarily small and, for a known time horizon, they can be
chosen to obtain the exact same bound as Adagrad.

5 Proofs for 5, = 0 (no momentum)

We assume here for simplicity that 5; = 0, i.e., there is no heavy-ball style momentum. Taking n € N*| the
recursions introduced in Section can be simplified into

Un,i = BQUn—l,i + (Vifn(zn—l))Q 5
{ vifn(wnfl) (15)

Tpni = Tp—14— « .
n,i n—1,2 n m

Remember that we recover Adagrad when «,, = a for & > 0 and 83 = 1, while Adam can be obtained taking

0< B2 <1and
an =« 1= /3 (16)
n 1_ﬁ27

Throughout the proof we denote by E,_; [-] the conditional expectation with respect to f1,..., fn—1. In
particular, x,,_1 and v,_; are deterministic knowing f1,..., f,_1. For all n € N*, we also define 0,, € R¢ so
that for all 4 € [d],

for ao > 0.

Uni = Potn-1,i +En_1 [(Vz‘fn(xn—l))z ; (17)

i.e., we replace the last gradient contribution by its expected value conditioned on fi,..., fn_1.

5.1 Technical lemmas

A problem posed by the update is the correlation between the numerator and denominator. This
prevents us from easily computing the conditional expectation and as noted by Reddi et al.| (2018), the
expected direction of update can have a positive dot product with the objective gradient. It is however
possible to control the deviation from the descent direction, following |Ward et al.| (2019) with this first
lemma.

Lemma 5.1 (adaptive update approximately follow a descent direction). For all n € N* and i € [d], we
have:

—2RE,_; (18)

vifn($n1>] - (ViF(20-1))°

Proof. We take ¢ € [d] and note G = V,;F(zp-1), ¢ = Vifn(Tn-1), v = Upn; and ¥ = ;.

En_1 [viF(xnl)

€+ Up g

(vifn(xnI»Q] _

e e N

A
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Given that g and ¢ are independent knowing f1,..., fn—1, we immediately have
Gy G?
E,_ = . 20
! [m } e+ (20)

Now we need to control the size of the second term A,

A=G oY
B g\/eJrv\/eJrf)(\/eJerr\/eJrf))
e En1]g] o
g\/e+v\/6+f1(\/e+v+\/e+f1)
En 1 [g°] g
Al < |G| ————— +|Gy| —————.
Al =16l ==+ o T 19 e v
K P

The last inequality comes from the fact that /e + v++/€ + 0 > max(y/e + v, Ve + 0) and ’En,l [gﬂ - g2| <
E,_1 [92] + ¢2. Following [Ward et al.| (2019), we can use the following inequality to bound x and p,

VAS 0,2,y € Ray < 2a? 4+ L (21)
x x —x° 4+ =
) 7y b y —_ 2 QA
First applying to k with
5= e+ v |G| Y= |9/ Ep_1 [92]

2 Vet Vet oef+o

we obtain
2 2R 212
o < G g En—1 [g ]

T A4/e+ T * (e+0)3/2(e +v)

Given that e + 0 > E,,_1 [92] and taking the conditional expectation, we can simplify as

G2 Enfl [92] g2
En—1|k] < + E,_ . 22
W= es e o e @2)
Given that \/E,_1 [¢2] < Ve + 0 and \/E,_1 [¢?] < R, we can simplify as
G2 92
E,_ < ———+RE,_ . 23
n1[/€]_4\/€+—1~) nl[e-l—v} (23)
Now turning to p, we use with
\ o Ve+ D v |Gyl 7
2B, [9%] Vero VT v
we obtain
G2 2 En— 2 4
ps &0 Eol] o 1)
4/e + T En_1[9?] e+v (e+v)
Given that € + v > ¢2 and taking the conditional expectation we obtain
G2 En—l [92] 92
E,— < + E,— ; 25
s ==+ ~/as ot ere (25)
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which we simplify using the same argument as for into

G2 g2
E,_ <——+—+4+RE,_ . 26
el < o=+ 1L+v} (26)

Notice that in (24)), we possibly divide by zero. It suffice to notice that if E,_; [92] =0 then g2 =0 a.s. so
(26

that p = 0 and (26)) is still verified. Summing and we can bound
G2 g2
E, ,[|A|]] < ——— +2RE,,_ . 27
al |]_2m+ 1|:€+1):| (27)
Injecting and into finishes the proof. O

Anticipating on Section[5.2] the previous Lemma gives us a bound on the deviation from a descent direction.
While for a specific iteration, this deviation can take us away from a descent direction, the next lemma tells
us that the sum of those deviations cannot grow larger than a logarithmic term. This key insight introduced
in [Ward et al.| (2019) is what makes the proof work.

Lemma 5.2 (sum of ratios with the denominator being the sum of past numerators). We assume we have
0 < B2 <1 and a non-negative sequence (an)nen+. We define for allm € N*, b,, = Z?:l By 7a;. We have

N
Z : —C|l—jb‘ <In (1 + bf) — Nln(Bs). (28)
j=1 J

Proof. Given that concavity of In, and the fact that b; > a; > 0, we have for all j € N*,

a
€+jbj <In(e+b;) —In(e +b; — a;)

= ln(e + bj) — 111(6 + 62bj_1)

I (f“’a) t (Hbal> _
e+b1 €+ [abj_1
The first term forms a telescoping series, while the second one is bounded by —In(f2). Summing over all
j € [N] gives the desired result. O

5.2 Proof of Adam and Adagrad without momentum

Let us take an iteration n € N*, we define the update u,, € R%:

vifn(xn—l)
VEF Ui

Adagrad. As explained in Section we have o, = a for a > 0. Using the smoothness of F' , we have

Vi € [d], tns = (29)

a’L
F(zpi1) < F(zn) — aVF(2,) un. + 5 ||Un||§ (30)
Taking the conditional expectation with respect to fo, ..., fn—1 we can apply the descent Lemma Notice

that due to the a.s. £, bound on the gradients @, we have for any i € [d], \/e + 0,,; < Ry/n, so that,

o (ViF(1,1))" _ o (ViF(za-1)®

31
N 2R\/n (31)

This gives us

2

Bt [F(o)] < Flnos) = 5 (9P G0l + (208 + 255 ) B [lunl].
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Summing the previous inequality for all n € [N], taking the complete expectation, and using that v/n < VN
gives us,

B(F(en)] < Flao) — fz AR (2aR+)NZ E ).

From there, we can bound the last sum on the right hand side using Lemma [5.2] once for each dimension.
Rearranging the terms, we obtain the result of Theorem

Adam. As given by in Section we have o, = « 11 B2 for o > 0. Using the smoothness of F
defined in , we have

F(z,) < F(xp_1) — anVF(zn_ 1) u,

(32)

a’l’b

2
We have for any ¢ € [d], \/€ + Ui < R/ Z? 01 62 R 1 5 , thanks to the a.s. £, bound on the gradients
@, so that,

(ViF (2-1))° < OZ(Vz'F(mn—l))Q_

33
2\/e+Un; 2R ( )

n

Taking the conditional expectation with respect to fi,..., f,_1 we can apply the descent Lemma and

use to obtain from ,

Bt [Fla)] < Flonmt) = 1 IVF o)l + (200 S5 ) By o]

Given that 35 < 1, we have a,, < ﬁ Summing the previous inequality for all n € [N] and taking the
—P2

complete expectation yields

N

E[F(ay)] < F NZ B [19F @I + (2 + 5 )Z [lun2].

Applying Lemma for each dimension and rearranging the terms finishes the proof of Theorem

6 Experiments

On Figure we compare the effective dependency of the average squared norm of the gradient in the
parameters «, £ and fs for Adam, when used on a toy task and CIFAR-10.

6.1 Setup

Toy problem. In order to support the bounds presented in Section[d] in particular the dependency in 2,
we test Adam on a specifically crafted toy problem. We take x € RS and define for all i € [6], p; = 107*. We
take (Qi);e[g), Bernoulli variables with P[Q; = 1] = p;. We then define f for all z € R? as

Qi

bi

flx) = Z (1 —Q;)Huber(z; — 1) + Huber(z; 4+ 1), (34)

1€[6]
with for all y € R,
2
% when |y| <1

Huber(y) = { 2

lyl — 3 otherwise.

Intuitively, each coordinate is pointing most of the time towards 1, but exceptionally towards -1 with a weight
of 1/,/p;. Those rare events happens less and less often as ¢ increase, but with an increasing weight. Those
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Parameter Parameter
(a) Average squared norm of the gradient on a toy (b) Average squared norm of the gradient of a small
task, see Section [6] for more details. For the o and convolutional model |Gitman & Ginsburg (2017
1 — B2 curves, we initialize close to the optimum to trained on CIFAR-10, with a random initialization.
make the Fp — F. term negligible. The full gradient is evaluated every epoch.

Figure 1: Observed average squared norm of the objective gradients after a fixed number of iterations when
varying a single parameter out of ;, 1 — 3; and 1 — B2, on a toy task (left, 10° iterations) and on CIFAR-10
(right, 600 epochs with a batch size 128). All curves are averaged over 3 runs, error bars are negligible except
for small values of o on CIFAR-10. See Section |§| for details.

weights are chosen so that the variances of all the coordinates of the gradient are equalﬂ It is necessary to
take different probabilities for each coordinate. If we use the same p for all, we observe a phase transition
when 1 — 5 = p, but not the continuous improvement we obtain on Figure

We plot the variation of E [||F(x7)||§} after 10° iterations with batch size 1 when varying either o, 1 — £

or 1 — B through a range of 13 values uniformly spaced in log-scale between 1076 and 1. When varying «,
we take 8 = 0 and o = 1 — 107%. When varying 1, we take & = 107° and B2 = 1 — 107 (i.e. S5 is so
that we are in the Adagrad-like regime). Finally, when varying 32, we take 8; = 0 and @ = 107%. When
varying a and S, we start from zq close to the optimum by running first 106 iterations with a = 1074, then
1076 iterations with a = 107, always with 83 = 1 — 1075, This allows to have F(zg) — F, ~ 0 in and
and focus on the second part of both bounds. All curves are averaged over three runs. Error bars are
plotted but not visible in log-log scale.

CIFAR-10. We train a simple convolutional network (Gitman & Ginsburg) 2017 on the CIFAR—l(ﬂimage
classification dataset. Starting from a random initialization, we train the model on a single V100 for 600
epochs with a batch size of 128, evaluating the full training gradient after each epoch. This is a proxy
for E [HF (JCT)”;}, which would be to costly to evaluate exactly. All runs use the default config o = 1073,

B2 = 0.999 and B, = 0.9, and we then change one of the parameter.

We take o from a uniform range in log-space between 107% and 10~2 with 9 values, for 1 — 3; the range is
from 1072 to 0.3 with 9 values, and for 1 — 35, from 1076 to 10! with 11 values. Unlike for the toy problem,
we do not initialize close to the optimum, as even after 600 epochs, the norm of the gradients indicates that
we are not at a critical point. All curves are averaged over three runs. Error bars are plotted but not visible
in log-log scale, except for large values of «.

I1We deviate from the a.s. bounded gradient assumption for this experiment, see Section for a discussion on a.s. bound
vs bound in expectation.
%https://www.cs.toronto.edu/~kriz/cifar.html
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6.2 Analysis

Toy problem. Looking at Figure we observe a continual improvement as (5 increases. Fitting a linear
regression in log-log scale of ]E[HVF(xT)Hg] with respect to 1 — 32 gives a slope of 0.56 which is compatible
with our bound , in particular the dependency in O(1/4/1 — 33). As we initialize close to the optimum,
a small step size « yields as expected the best performance. Doing the same regression in log-log scale, we
find a slope of 0.87, which is again compatible with the O(c) dependency of the second term in (10). Finally,
we observe a limited impact of 81, except when 1 — 37 is small. The regression in log-log scale gives a slope
of -0.16, while our bound predicts a slope of -1.

CIFAR 10. Let us now turn to Figure As we start from random weights for this problem, we observe
that a large step size gives the best performance, although we observe a high variance for the largest a.
This indicates that training becomes unstable for large «, which is not predicted by the theory. This is
likely a consequence of the bounded gradient assumption @ not being verified for deep neural networks.
We observe a small improvement as 1 — o decreases, although nowhere near what we observed on our toy
problem. Finally, we observe a sweet spot for the momentum (7, not predicted by our theory. We conjecture
that this is due to the variance reduction effect of momentum (averaging of the gradients over multiple
mini-batches, while the weights have not moved so much as to invalidate past information).

7 Conclusion

We provide a simple proof on the convergence of Adam and Adagrad without heavy-ball style momentum.
Our analysis highlights a link between the two algorithms: with right the hyper-parameters, Adam converges
like Adagrad. The extension to heavy-ball momentum is more complex, but we significantly improve the
dependence on the momentum parameter for Adam, Adagrad, as well as SGD. We exhibit a toy problem
where the dependency on a and (5 experimentally matches our prediction. However, we do not predict the
practical interest of momentum, so that improvements to the proof are needed for future work.

Broader Impact Statement

The present theoretical results on the optimization of non convex losses in a stochastic settings impact our
understanding of the training of deep neural network. It might allow a deeper understanding of neural
network training dynamics and thus reinforce any existing deep learning applications. There would be
however no direct possible negative impact to society.
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