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ABSTRACT

Out-of-distribution generalization capabilities of sequence-to-sequence models
can be studied from the lens of two crucial forms of generalization: length gen-
eralization – the ability to generalize to longer sequences than ones seen dur-
ing training, and compositional generalization: the ability to generalize to token
combinations not seen during training. In this work, we provide first provable
guarantees on length and compositional generalization for common sequence-to-
sequence models – deep sets, transformers, state space models, and recurrent neu-
ral nets – trained to minimize the prediction error. Taking a first principles per-
spective, we study the realizable case, i.e., the labeling function is realizable on
the architecture. We show that simple limited capacity versions of these differ-
ent architectures achieve both length and compositional generalization. In all our
results across different architectures, we find that the learned representations are
linearly related to the representations generated by the true labeling function.

1 INTRODUCTION

Large language models (LLMs), such as the GPT models (Achiam et al., 2023) and the Llama
models (Touvron et al., 2023), have led to a paradigm shift in the development of future artificial
intelligence (AI) systems. The accounts of their successes (Bubeck et al., 2023; Gunasekar et al.,
2023) as well as their failures, particularly in reasoning and planning (Bubeck et al., 2023; Stechly
et al., 2023; Valmeekam et al., 2023), continue to rise. The successes and failures of these models
have sparked a debate about whether they actually learn general algorithms or if their success is
primarily due to memorization and a superficial form of generalization (Dziri et al., 2024).

A model’s ability to perform well across different distribution shifts highlights its ability to learn gen-
eral algorithms. For models with fixed-dimensional inputs, considerable efforts have led to methods
with provable out-of-distribution (OOD) generalization guarantees (Rojas-Carulla et al., 2018; Rame
et al., 2022; Chaudhuri et al., 2023; Wiedemer et al., 2023b; Eastwood et al., 2024). For sequence-
to-sequence models, a large body of empirical works have investigated OOD generalization (Anil
et al., 2022; Jelassi et al., 2023) but we lack efforts that study provable OOD generalization guaran-
tees for these models. These provable guarantees provide a stepping stone towards explaining the
success of the existing paradigm and also shine a light on where the existing paradigm fails.

OOD generalization capabilities of sequence-to-sequence models can be studied from the lens of
two forms of generalization: length generalization – the ability to generalize to longer sequences
than ones seen during training, and compositional generalization – the ability to generalize to token
combinations not seen during training. While transformers (Vaswani et al., 2017) are the go-to
sequence-to-sequence models for many applications, recently, alternative architectures based on
state-space models, as noted by Gu et al. (2021), Orvieto et al. (2023b), and Gu & Dao (2023),
have shown a lot of promise. This motivates us to study a range of natural sequence-to-sequence
architectures, including deep sets (Zaheer et al., 2017), transformers, state space models (SSMs),
and recurrent neural networks (RNNs). We focus on the realizable case, i.e., the labeling function
is in the hypothesis class of the architecture. Further, in our theoretical analysis, we make certain
simplifications to permit tractable analysis, for instance, we study RNNs with a limit on hidden state
dimension. Our key contributions and insights are summarized below.
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• Simple limited capacity versions of the different architectures namely deep sets, transformers,
SSMs, and RNNs, provably achieve length and compositional generalization.

• In all our results across different architectures, we find that the learned representations are
linearly related to the representations generated by the true labeling function, which is also
termed linear identification (Khemakhem et al., 2020; Roeder et al., 2021).

• Through a range of experiments, we show the success in both forms of generalization, match-
ing the predictions of the theory and even going beyond.

To the best of our knowledge, our provable guarantees for length and compositional generalization
for sequence-to-sequence models are the first in the literature.

2 RELATED WORKS

Length generalization In the field of length generalization, many important empirical insights
have been synthesized over the last few years. Shaw et al. (2018) discovered the drawbacks of ab-
solute positional embeddings and suggested relative positional embeddings as an alternative. Sub-
sequent empirical analyses, notably by Anil et al. (2022) and Jelassi et al. (2023), explored length
generalization in different settings for transformer-based models. Key findings revealed that larger
model sizes don’t necessarily enhance generalization, the utility of scratchpads varies, and the effec-
tiveness of relative positional embeddings appeared task-dependent. In Kazemnejad et al. (2024),
the authors did a comprehensive study of different positional embeddings and provided evidence to
show that explicit use of positional encodings is perhaps not essential. In Delétang et al. (2022), the
authors conducted experiments on tasks divided based on their placement in the Chomsky hierarchy
and showed the importance of structured memory (stack, tape) in length generalization. In a recent
work, Zhou et al. (2023) proposed RASP conjecture, which delineates the tasks where transformers
excel or fall short in length generalization, emphasizing the necessity of task simplicity for the trans-
former and data diversity. Our work is inspired by the experimental findings of their work. While
Zhou et al. (2023) provide empirical evidence for the conjecture, our work formalizes and proves
simpler versions of the conjecture for a range of architectures.

On the theoretical side of length generalization, in Abbe et al. (2023), the authors showed an implicit
bias of neural network training towards min-degree interpolators. This bias was used to explain the
failures of length generalization on the parity task from Anil et al. (2022). In Xiao & Liu (2023),
the authors leverage directed acyclic graphs (DAGs) to formulate the computation in reasoning tasks
and characterize conditions under which there exist functions that permit length generalization. Our
results crucially differ, we show a range of conditions under which models learned via standard
expected risk minimization achieve length and compositional generalization.

Compositional generalization Compositionality has long been seen as a key piece to the puzzle
of human-level intelligence (Fodor & Pylyshyn, 1988; Hinton, 1990; Plate et al., 1991; Montague,
1970). Compositionality is a large umbrella term associated with several aspects (Hupkes et al.,
2020). In this work, we focus on systematicity, which evaluates a model’s capability to understand
known parts and combine them in new contexts. The breadth of research on compositional general-
ization, encompassing studies like Lake & Baroni (2018); Loula et al. (2018); Gordon et al. (2019);
Hupkes et al. (2020); Kim & Linzen (2020); Xu et al. (2022); Arora & Goyal (2023); Zhang et al.
(2024), is too expansive to address comprehensively here, refer to these surveys (Lin et al., 2023;
Sinha et al., 2024) for more detail.

In recent years, several works have taken first steps towards theoretical foundations of composition-
ality. We leverage the mathematical definition of compositionality from Wiedemer et al. (2023b),
which focuses on generalization to the Cartesian product of the support of individual features. In
Dong & Ma (2022), the authors analyze the conditions that provably guarantee generalization to the
Cartesian product of the support of individual training features. Dong & Ma (2022) studied additive
models, i.e., labeling function is additive over individual features. In (Wiedemer et al., 2023a), the
authors focus on a more general model class than Dong & Ma (2022), where the labeling function
is of the form f(x1, · · · , xn) = C(ψ1(x1), · · · , ψn(xn)). However, to guarantee compositional
generalization, Wiedemer et al. (2023b) require that the learner needs to know the exact function C
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that is used to generate the data. In our work, we do not make such an assumption, our data gen-
eration is dictated by the architecture in question, e.g., RNN, and we constrain the dimension of its
hidden state. Lachapelle et al. (2023); Brady et al. (2023) extend these precursor results from Dong
& Ma (2022) from the supervised setting to the unsupervised setting. In particular, Lachapelle et al.
(2023); Brady et al. (2023) are inspired by the success of object-centric models and show additive
decoder based autoencoders achieve compositional generalization.

3 PROVABLE LENGTH AND COMPOSITIONAL GENERALIZATION

We are given a dataset comprising of a sequence of inputs {x1, · · · , xt} and a corresponding se-
quence of labels {y1, · · · , yt}, where each xi ∈ Rn and yi ∈ Rm. Observe that this formulation
includes both standard downstream tasks such as arithmetic tasks, e.g., yi =

∑i
j=1 xj , yi = Πi

j=1xj
etc., as well as next-token prediction task, where {y1, · · · , yt} = {x2, · · · , xt+1}. We denote a se-
quence {s1, · · · , st} as s≤t, Xk is random variable for token at kth position and its realization is
xk. Consider a sequence {xj}∞j=1, which is sampled from PX , and a subsequence of this sequence
x≤t = {xj}tj=1, whose distribution is denoted as PX≤t

. The label yt = f(x≤t), where f is the la-

beling function. The tuple of base distribution and the labeling function is denoted as P =
{
PX , f

}
and the tuple of base distribution up to length t is denoted as P(t) =

{
PX≤t

, f
}

. The support of

kth token Xk in the sequence sampled from PX is denoted supp(Xk). Given training sequences
of length T from P(T ), we are tasked to learn a model from the dataset that takes a sequence x≤t

as input and predicts the true label yt as well as possible. If the model succeeds to predict well on
sequences that are longer than maximum training length T , then it is said to achieve length gener-
alization (a more formal definition follows later). Further, if the model succeeds to predict well on
sequences comprising of combination of tokens that are never seen under training distribution, then
it is said to achieve compositional generalization (a more formal definition follows later.). We study
both these generalization forms next.

Learning via expected risk minimization Consider a map h that accepts sequences of n-
dimensional inputs to generate a m-dimensional output. We measure the loss of predictions of
h, i.e., h(x≤t), against true labels as ℓ

(
h(x≤t), yt

)
, where yt is the true label for sequence x≤t. In

what follows, we use the ℓ2 loss. Given sequences sampled from P(T ), the expected risk across
all time instances up to maximum length T is defined as R(h;T ) :=

∑T
t=1 E

[
ℓ(h(x≤t), yt)

]
. The

learner aims to find an h∗ that solves

h∗ ∈ argmin
h∈H

R(h;T ), (1)

where H is the hypothesis class of models. We seek to understand the properties of solutions to
equation 1 through the lens of following questions.

When do common sequence-to-sequence models H succeed at length & compositional gener-
alization and when do they fail?

Definition 1. Consider the setting where a model is trained on sequences (x≤t, y≤t) of length up
to T drawn from P(T ). If the model achieves zero error on sequences (x≤t, y≤t) of length up to T̃
drawn from P(T̃ ),∀ T̃ ≥ 1, then it achieves length generalization w.r.t. P .

In the above definition of length generalization, we simply ask if the model generalizes to longer
sequences. We drop the phrase w.r.t P hereafter to avoid repetition. We now define a test distribution
that evaluates compositional generalization capabilities. We consider sequences of fixed length T .
Define a uniform distribution QX≤T

such that the support of QX≤T
equals the Cartesian product of

the support of each token Xk from PX , we write this joint support as ΠT
j=1supp(Xj). In this case

as well, the labeling function continues to be f . Hence, we obtain the tuple Q(T ) = {QX≤T
, f}.

Definition 2. Consider the setting where a model is trained on sequences (x≤t, y≤t) of length up
to T drawn from P(T ). If the model achieves zero error on sequences (x≤t, y≤t) of length up to T
drawn from Q(T ), then it achieves compositional generalization.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x1
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(a) Compositional generalization 
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(b) Length generalization 

a

b b a
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b a b a a

ba b b a a
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 T

T̃

Figure 1: Illustrating support of train vs test distribution for (a) compositional generalization and (b)
length generalization.

This definition of compositionality above is based on Wiedemer et al. (2023b); Brady et al. (2023).
In this definition, we ask if the model generalizes to new combinations of seen tokens.

Illustrative example We teach the model multiplication on sequences of length 2 , where each
xj is a scalar, yi = Πi

j=1xj . Say the support of the entire sequence drawn from PX is{
x
∣∣ ∥(x1, x2) − 1

21∥1 ≤ 1
2 , xk ∈ [0, 1], ∀k ≥ 3

}
. The support of training distribution PX≤2

is
{
x
∣∣∥(x1, x2) − 1

21∥1 ≤ 1
2

}
shown in the pink region in Figure 1a. In Figure 1a, we illustrate

compositional generalization, the model is trained on pink region and asked to generalize to the
yellow region. Further, if the model continues to correctly multiply on longer sequence lengths in
PX≤T̃

for T̃ ≥ T , then it achieves length generalization shown in Figure 1b.

A preview of the technical challenges Both notions of compositional generalization and length
generalization introduced above involve testing on distributions whose support is not contained in
the training distributions. The long line of work on distribution shifts (Sugiyama et al., 2007; David
et al., 2010; Ben-David & Urner, 2014; Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Ahuja
et al., 2021) assume the support of test is contained in the support of train distribution. In recent
years, there has been development of theory for distribution shifts under support mismatch Dong &
Ma (2022); Abbe et al. (2023); Wiedemer et al. (2023b); Netanyahu et al. (2023); Shen & Mein-
shausen (2023). Our work is closer to the latter line of work but it comes with its own technical
challenges, which involve building new proofs different from the above line of work, as we study
a new family of models, i.e., sequence-to-sequence models, and a new form of generalization, i.e.,
length generalization.

RASP conjecture Zhou et al. (2023) propose a conjecture backed by empirical evidence, which
delineates the conditions that suffice for length generalization for transformers. The conjecture
places three requirements – a) realizability: the task of interest is realizable on the transformer, b)
simplicity: the task can be expressed as a short program in RASP-L language, c) diversity: the
training data is sufficiently diverse such that there is no shorter program that achieves in-distribution
generalization but not OOD generalization. We leverage assumptions similar to a) and b). We
assume realizability, which means labeling function f is in the hypothesis class H. As to simplicity,
we consider hypothesis class H with limited capacity, e.g., we study one block transformer, or RNNs
with a limit on hidden state dimension. We emphasize that the third assumption c) on diversity from
Zhou et al. (2023) is quite strong. In our setting, we do not invoke it and instead, we require that the
support of test distribution is not larger than the Cartesian product of the marginal distribution of the
tokens. We now move to proving simplified versions of this conjecture for different architectures.

3.1 DEEP SETS

Deep sets are a natural first choice of architecture to study here. These take sets as inputs and thus
handle inputs of arbitrary lengths. These were introduced in Zaheer et al. (2017). Informally stated,
Zaheer et al. (2017) show that a large family of permutation-invariant functions can be decomposed
as ρ

(∑
x∈X ϕ(x)

)
. Consider the examples of the sum operator or the multiplication operator, which

take {x1, x2, · · · , xk} as input, and return the sum y =
∑k

j=1 xj or the product y = Πk
j=1xj . These
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operations are permutation invariant and can be expressed using the decomposition above. For
the sum operator ρ and ϕ are identity and for the multiplication operator ρ = exp and ϕ = log.
Consider another example from language. We construct a bag of words sentiment classifier, where
{x1, x2, · · · , xi} is the set of words that appear in the sentence, ϕ(xj) is the feature embedding for
word j.

∑
j≤i ϕ(xj) is the representation of the entire sentence which is passed to the final layer

ρ that generates the sentiment label. In what follows, we aim to understand when such a classifier
generalizes to sentences beyond training lengths and to new sentences comprised of unseen word
combinations.
Assumption 1. Each function in the hypothesis class H takes a sequence {x1, · · · , xi} as input and

outputs h(x1, · · · , xi) = ω
(∑

j≤i ψ(xj)
)

, where ω is a single layer perceptron with a continuously
differentiable bijective activation (e.g., sigmoid) and ψ is a map that is differentiable.

A simple mathematical example of a function from the above family when ψ(xj) = [xj , x
2
j , x

3
j ] is

a polynomial map of degree 3 and each xj is a scalar – σ
(
a
∑

j≤i xj + b
∑

j≤i x
2
j + c

∑
j≤i x

3
j

)
.

In the assumption that follows, we assume that the support of the sequences is regular closed in the
standard topology, i.e., the set is equal to the closure of its interior.
Assumption 2. The joint support supp(X≤i) is a regular closed set for all i ≤ T .

In most of our results in the main body, we invoke Assumption 2. This assumption is satisfied in
many cases if the tokens are continuous random variables but it is not satisfied for discrete random
variables. In the Appendix, we extend several of our key results to discrete tokens.

Linear identification Each architecture that we study in this work relies on a hidden represen-
tation that is passed on to a non-linearity to generate the label. Under the realizability condition
for deep sets, the labeling function takes the form f(X ) = ρ(

∑
x∈X ϕ(x)), where ϕ(x) is the hid-

den representation. If the learned deep set is denoted by ω(
∑

x∈X ψ(x)), then the learned hidden
representation is ψ(x). If ψ(x) = Aϕ(x), then the learned representation is said to linearly iden-
tify the true data generating representation ϕ(x). We borrow this definition from the representation
identification literature (Khemakhem et al., 2020; Roeder et al., 2021).
Theorem 1. If H follows Assumption 1, the realizability condition holds, i.e., f ∈ H, supp(Xj) =
[0, 1]n, ∀j ≥ 1, and the regular closedness condition in Assumption 2 holds, then the model
trained to minimize the risk in equation 1 with ℓ2 loss generalizes to all sequences in the hyper-
cube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional generalization.

The detailed proof is in Section C.1. In the above result, we require the support of the marginal
distribution of each token to be [0, 1]n. The support of T token length sequence under the joint
training distribution can still be a much smaller subset of [0, 1]nT , as illustrated in Figure 1a (and
Figure 4 in the Appendix). Despite this the model generalizes to all sequences in [0, 1]nt for all t.
An important insight from the proof is that the hidden representation learned by the model is a linear
transform of the true hidden representation, i.e., it achieves linear identification ψ = Aϕ (Further
details are in Corollary 1).

Extensions of Theorem 1 In Theorem 8, we extend Theorem 1 to ω from C1-diffeomorphisms1.
As a by product, we obtain length & compositional generalization for multiplication operator. In
Theorem 7, we extend the above result to discrete tokens. Further, most results in this work translate
to settings where we do not observe labels at all lengths from 1 to T (further discussion in Appendix).

High capacity deep sets In the above results, we operated with some constraints on the deep
sets. In Theorem 1, we used limited capacity ω that are represented via a single layer perceptron.
In Theorem 8, we used ω that are represented via C1-diffeomorphisms, which implies the output
dimension of ψ equals label dimension m and cannot be larger. What happens when we work with
deep sets with arbitrary capacity, i.e., no constraints on ω and ψ? These models then express a large
family of permutation invariant maps (Zaheer et al., 2017). Suppose H is the class of all permutation
invariant maps and the labeling function f ∈ H. Consider a map h such that h = f for all sequences
of length up to T , and h = f+c otherwise. Observe that h is permutation invariant and also belongs

1C1-diffeomorphism - a continuously differentiable map that has a continuously differentiable inverse.
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to H. h achieves zero generalization error on training sequences of length T but a non-zero error on
longer sequences. Thus in the setting of high capacity deep sets, there exist solutions to equation 1,
which do not achieve length generalization. We can construct the same argument for compositional
generalization as well and say h = f on the training distribution (pink region) in Figure 1a and
h = f + c on the testing distribution (yellow region) in Figure 1a. In order to show successful
generalization (length or compositional) in Theorem 1, we require all solutions to risk minimization
in equation 1 to match the predictions of true labeling function on data beyond the support of the
training distribution. In order to show that high capacity models are not guaranteed to succeed,
we focused on showing that there exists a solution to equation 1 that does not generalize beyond
the support of training distribution. A more nuanced argument for failure should show that there
exist solutions reachable via gradient descent that do not generalize. We leave a rigorous theoretical
exploration of this to future work. However, we conduct experiments with high capacity models in
the Appendix (Section D.3) to illustrate failures in high capacity regime.

3.2 TRANSFORMERS

Ever since their introduction in Vaswani et al. (2017), transformers have revolutionized all domains
of AI. In this section, we seek to understand length generalization for these models. Transformer
architectures are represented as alternating layers of attention and position-wise non-linearity. We
drop layer norms for tractability. Following similar notation as previous section, we denote position-
wise non-linearity as ρ and attention layer as ϕ. We obtain the simplest form of causal transformer
model as ρ

(∑i
j=1

1
i ·ϕ(xi, xj)

)
. This decomposition captures linear attention, ReLU attention, sig-

moid attention, ReLU squared attention, which were studied previously in Wortsman et al. (2023);
Hua et al. (2022); Shen et al. (2023) and found to be quite effective in several settings. This decom-
position does not capture softmax-based attention and developing provable length generalization
guarantees for the same is an exciting future work. Other works (Bai et al., 2023) also replaced soft-
max with other non-linear attention for a more tractable analysis. We illustrate the sigmoid-based
transformer from Wortsman et al. (2023) below. Let Wq ∈ Rk×n, Wk ∈ Rk×n, and Wv ∈ Rk×n be
the query, key and value matrices. ρ is parametrized via a multi-layer perceptron denoted as MLP.

qi =Wqxi, kj =Wkxj , vj =Wvxj , ϕ(xi, xj) = σ

(
q⊤i kj√
d

)
vj , MLP

( i∑
j=1

1

i
· ϕ(xi, xj)

)
. (2)

In the above feedforward computation, the output of attention for the current query is computed and
sent to the MLP to generate the label.
Assumption 3. Each function in the hypothesis class H takes a sequence {x1, · · · , xi} as input

and outputs h(x1, · · · , xi) = ω
(∑

j≤i
1
i · ψ(xi, xj)

)
, where ω is a single layer perceptron with

continuously differentiable bijective activation (e.g., sigmoid) and ψ is a map that is differentiable.

We denote the joint support of two tokens Xi, Xj as supp(Xi, Xj).
Theorem 2. If H follows Assumption 3, the realizability condition holds, i.e., f ∈ H,
supp(Xi, Xj) = [0, 1]2n, ∀i ̸= j and the regular closedness condition in Assumption 2 holds,
then the model trained to minimize the risk in equation 1 (with T ≥ 2) with ℓ2 loss generalizes
to all sequences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional
generalization.

Similar to Theorem 1, we observe linear identification here too, i.e., learned attention representation
denoted ψ is a linear transform of the true attention representation denoted ϕ, i.e., ψ(xi, xj) =
Cϕ(xi, xj), (details in Section C.2, see Corollary 2). We now extend Theorem 2 from single layer
perceptron ω to C1-diffeomorphism. We also extend Theorem 2 to discrete tokens in Theorem 10.
Assumption 4. Each function in H takes {x1, · · · , xi} as input and outputs h(x1, · · · , xi) =

ω(
∑i−1

j=1
1

i−1 · ψ(xi, xj)), where ω is a C1-diffeomorphism, ω(0) = 0.

The reader would notice that the summation is up to i − 1 and hence it computes attention scores
w.r.t all other terms in the context except xi. We conjecture that the theorem that we present next
extends to the more general case where summation includes the ith term.
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Assumption 5. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of
all pairs of tokens is equal, i.e., supp(Xi, Xj) = [0, 1]2n, where i ̸= j, i ≥ 1, j ≥ 1. The support
of [ϕ(X1, X2), ϕ(X1, X3)] is R2m, where ϕ is the embedding function for the labeling function
ρ(
∑

j≤i ϕ(xi, xj)).

Theorem 3. If H follows Assumption 4, the realizability condition holds, i.e., f ∈ H, and a further
assumption on the support (Assumption 5) holds, then the model trained to minimize the risk in
equation 1 (with T ≥ 3) with ℓ2 loss generalizes to all sequences in [0, 1]nt,∀t ≥ 1 and thus
achieves length and compositional generalization.

Multiple attention heads and positional encoding While the discussion in this section used a
single attention head ϕ, the results extend to multiple attention heads as shown in Section C.2. The
model of transformers discussed so far uses the current query and compares it to keys from the
past, it does not distinguish the keys based on their positions. For many arithmetic tasks such as
computing the median, maximum etc., the positions of keys do not matter but for other downstream
tasks such as sentiment classification, the position of the words can be important. In Section C.2, we
adapt the architecture to incorporate relative positional encodings and show how some of the results
extend. We modify the model as ρ(

∑i
j=1

1
i · ϕi−j(xi, xj)), where ϕi−j(xi, xj) computes the query

key inner product while taking the relative position i− j into account. We show that if ϕi−j = 0 for
i − j > Tmax, i.e., two tokens sufficiently far apart do not impact the data generation, then length
generalization and compositional generalization are achieved.

High capacity transformers In the above results, we operated with constraints on transformers,
which limit their capacity. Similar to the setting of deep sets, observe that Assumption 3 constrains
ω to single layer perceptron, Assumption 4 constraints ω to C1-diffeomorphisms. What happens if
we work with transformers with no constraint on ω and ψ? If ψ(x, y) = ψ(x̃, y),∀x ̸= x̃, then the
decomposition for the causal transformer ω

(∑i
j=1

1
i · ψ(xi, xj)

)
becomes ω

(∑i
j=1

1
i · ψ(xj)

)
,

which is very similar to deep sets. In such a case, we can adapt arguments similar to that of arbitrary
capacity deep sets and argue that there exist solutions to equation 1 that do not achieve length and
compositional generalization. We now move to state-space models and RNNs.

3.3 STATE SPACE MODELS

In recent years, state space models Gu et al. (2021); Orvieto et al. (2023b) have emerged as a
promising competitor to transformers. In (Orvieto et al., 2023a;b), the authors used the lens of linear
recurrent layer followed by position-wise non-linearities as the main building block to understand
these models. We illustrate the dynamics of these models to show the generation of x≤t and y≤t

next. Given the current input xt, we combine it linearly with the hidden state from the past to obtain
the current hidden state. The hidden state is input to ρ, which generates the label as follows

h1 = Bx1; h2 = Λh1 +Bx2; · · · , ht = Λht−1 +Bxt,

y1 = ρ(h1); y2 = ρ(h2); · · · · · · , yt = ρ(ht),
(3)

where ht ∈ Rk is hidden state at point t, Λ ∈ Rk×k, B ∈ Rk×n and ρ : Rk → Rm. We can
succinctly write ht =

∑t−1
j=0 Λ

jBxt−j .

Assumption 6. Each function in the hypothesis class H takes a sequence {x1, · · · , xi} as input and

outputs h(x1, · · · , xi) = ω
(∑i−1

j=0 Λ
jBxi−j

)
, where ω : Rk → Rm is a C1-diffeomorphism, B

and Λ are square invertible. As a result, m = k = n.

Assumption 7. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of
X1 is Rn. For some length 2 ≤ i ≤ T an there exists in sequences x≤i such that their concatenation
forms a in× in matrix of rank in.

Theorem 4. If H follows Assumption 6, and the realizability condition holds, i.e., f ∈ H, and a
further condition on the support, i.e., Assumption 7, holds, then the model trained to minimize the
risk in equation 1 with ℓ2 loss (T ≥ 2) achieves length and compositional generalization.
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The proof is provided in Section C.3. Similar to previous theorems, the hidden state estimated by
the learned model, h̃t, and the true hidden state, ht, bear a linear relationship (Corollary 4), i.e.,
linear identification is achieved. We extend Theorem 4 to discrete tokens in Theorem 12.

High capacity SSMs In the above result, we operated with certain constraints on SSMs, i.e., the
input dimension, output dimension, and the hidden state dimension are equal. These constraints limit
their capacity. What happens if we put no constraints on Λ, B and ω? Orvieto et al. (2023a) showed
that SSMs with appropriately large Λ andB matrices can approximate a sequence-to-sequence map-
ping up to some length with arbitrary precision. Consider the true labeling function f and another
function h, which is equal to f for all sequences of length up to T and f + c for larger lengths. If we
use such arbitrary capacity SSMs as our hypothesis class, then this hypothesis class contains both f
and h. As a result, h is a solution to equation 1 and it does not achieve length generalization. We
can extend the same argument to compositional generalization as well.

3.4 VANILLA RECURRENT NEURAL NETWORKS

Standard RNNs have a non-linear recurrence unlike the linear recurrence studied in the previous
section. We use the same notation as the previous section and only add an activation for non-linear
recurrence. We illustrate the dynamics to show the generation of x≤t and y≤t below.

h1 = σ(Bx1); h2 = σ(Λh1 +Bx2); · · · , hT = σ(ΛhT−1 +BxT )

y1 = ρ(h1); y2 = ρ(h2); · · · · · · · · · , yT = ρ(hT ),
(4)

Assumption 8. Each function in the hypothesis class H is a vanilla RNN of the form equation 4,
where the position-wise non-linearity is a single layer perceptron σ ◦A, and Λ, B govern the hidden
state dynamics (equation 4). A,Λ, B are square invertible matrices, and σ is the sigmoid activation.

Theorem 5. If H follows Assumption 8, and the realizability condition holds, i.e., f ∈ H and
regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk in
equation 1 with ℓ2 loss (with T ≥ 2) achieves length and compositional generalization.

The hidden state estimated by the learned model, i.e., h̃t, and the true hidden state ht, bear a linear
relationship (See Corollary 5 in Section C.4 for details), where the linear relationship is a permuta-
tion map. We extend Theorem 5 to discrete tokens in Theorem 13.

High capacity RNNs In our result above, similar to previous sections we showed that limited ca-
pacity RNNs can achieve length and compositional generalization. How about RNNs with arbitrary
capacity, i.e., no constraint on Λ, B and ρ? These systems can approximate sequence-to-sequence
models to arbitrary precision (Sontag, 1992; Gühring et al., 2020). Hence, we can use the same
argument as previous sections to argue that if H corresponds to RNNs with arbitrary capacity, then
there exist solutions to equation 1 that do not achieve length and compositional generalization.

Remark on proofs Finally, we would like the reader to appreciate that our proofs follow different
strategies in comparison to Wiedemer et al. (2023b); Dong & Ma (2022), due to the fact that we cater
to sequence-to-sequence models. Consider the proofs in Wiedemer et al. (2023a), which reduce
the solutions of equation 1 to solutions of set of ordinary differential equations, which under their
assumptions are unique. That leads to exact identification in contrast to linear identification.

3.5 FINITE HYPOTHESIS CLASS

In the discussion so far, we have focused on different hypothesis class H of infinite size. In this
section, we focus on finite hypothesis class, i.e., the set H has a finite size. We can construct such
a finite hypothesis class for any architecture by restricting the parameter vectors (weights, biases
etc.) to assume a finite set of values. Each possible parameter configuration denotes one distinct
element in H. Unlike the previous sections, we do not impose any futher restrictions on H other
than the finite size. This allows us to consider arbitrary sequence to sequence models – RNNs, deep
sets, transformers (e.g., with hard-coded positional encodings as in (Vaswani et al., 2017)) without
restrictions on the depth and width as seen in the previous sections.
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Figure 2: Length generalization: Test ℓ2 loss on sequences of different lengths. The models are
trained only on sequences of length up to T = 10. All models achieve small error values ≈ 10−4 −
10−7 at all sequence lengths and thus length generalize. Since the error values are already quite
small, the increasing or decreasing trends are not numerically significant.

Theorem 6. If H is a finite hypothesis class, the realizability condition holds, i.e., f ∈ H, then
∃ T0 < ∞ such that the model trained to minimize the risk in equation 1 with ℓ2 loss and T > T0
achieves length generalization.

The above theorem states that for a finite hypothesis class, length generalization is provably achieved
provided the training length is sufficiently large. Observe that the above theorem only focuses on
length generalization and does not apply to compositional generalization. In the above result, the
value of the threshold on T , i.e., T0, can be very large, and future work should consider quantifying
bounds on T0. In previous sections, where we had more structural restrictions on H, the threshold
on T was two.

4 EXPERIMENTS

We present the empirical evaluation of compositional and length generalization capabilities of the
architectures from the previous section. All the experiments are carried out in the realizable case
where f ∈ H, i.e., depending on the architecture in question, we use a random instance of the
architecture to generate the labels. We train a model h from the same architecture class to minimize
the ℓ2 loss between h and f . Under different scenarios, we ask if h achieves length generalization
and compositional generalization. We also seek to understand the relationship between the hidden
representations of h and hidden representations of f .

4.1 LENGTH GENERALIZATION

We sample sequences x≤t of varying length with a maximum length of T = 10. Each token xi ∼
Uniform[0, 1]n, where n = 20. The sequences are then fed to the labeling f , which comes from the
hypothesis class of the architecture, to generate the labels. We minimize the empirical risk version of
equation 1 over the same hypothesis class with ℓ2 loss. For evaluation, we present the ℓ2 loss on the
test datasets. We also evaluate R2 of linear regression between the learned hidden representations
denotedψ(xi) and true hidden representations ϕ(xi) for all xi ∈ x≤t from the test dataset sequences.
This metric is often used to evaluate the claims of linear identification (Khemakhem et al., 2020), i.e.,
the higher this value, the closer the linear relationship. We present results averaged over five seeds
for models with two hidden layer MLPs for ρ (ϕ is two hidden layer MLP for deep sets). Figure
2 shows a very small test loss of models on increasing sequence lengths when only trained with
sequences of up to length T = 10, which is in agreement with Theorem 1-5. Further, in Figure 3,
we show an exemplar sequence from test set and how the trained transformer tracks it. Table 1
shows the average of R2 score of ψ(xi), ϕ(xi) across different positions i at test time. These results
demonstrate a linear relationship between learned and true hidden representations, which agrees
with our theoretical claims. In Section D, we show that when realizability condition does not hold,
i.e., f ̸∈ H, then length generalization is not achieved. We also present additional experiments with
discrete tokens, failures in the high capacity settings, and other experimental details in Section D.
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Model R2 (t = 20) R2 (t = 100)
Deep set 0.97± 0.01 0.97± 0.01

Transformer 0.99± 0.01 0.99± 0.01

SSM 0.99± 0.01 0.99± 0.01

RNN 0.99± 0.01 0.99± 0.01

Table 1: Average test R2 of true and learned
hidden representations ψ(xi), ϕ(xi) across
all positions i at various lengths unseen dur-
ing training. A strong linear relationship is
observed for all models across lengths.

Model Test Loss ×106 R2

Deep set 0.08± 0.02 0.96± 0.01

Transformer 3.06± 1.11 1.00± 0.00

SSM 5.92± 2.47 1.00± 0.00

RNN 0.35± 0.17 0.96± 0.01

Table 2: Compositional generalization: Test
ℓ2 loss andR2 score for models with two hid-
den layers on sequences of length T = 10. A
strong linear relationship is observed for all
models for new sequences made of unseen
token combinations.
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Figure 3: A transformer model with softmax attention with two hidden layer MLP for ω trained on
sequences of length up to T = 10 length generalizes to sequences of length up to 100.

4.2 COMPOSITIONAL GENERALIZATION

For compositional generalization, we generate data following the illustration in Figure 1a. During
training, we sample each component k of a token from Uniform[0, 1] and accept the sampled se-
quences that satisfy the following for all components i: −0.5 ≤ ∑T

j=1(x
k
j − 0.5) ≤ 0.5 ∀k, where

xkj is the kth component of token j. During testing, we sample x≤t from the complementary set of
the training set, i.e., corners of hypercube [0, 1]nt. We present the ℓ2 loss on the test dataset, as well
as the mean R2, where the results are averaged over 5 seeds. The rest of the details are the same as
the previous section, i.e., T = 10, n = 20, ρ is a two hidden layer MLP (ϕ is also a two hidden layer
MLP for deep sets). Table 2 shows the test ℓ2 loss and R2 scores for linear identification.

5 DISCUSSION AND LIMITATIONS

Our work is a step towards theoretical foundations of successes and failures of length and composi-
tional generalization in sequence-to-sequence models. We prove simplified versions of the recently
proposed RASP conjecture under weaker data diversity assumptions. In our analysis, we make cer-
tain simplifications, e.g., on the architectures considered, which motivates some of the important
conjectures for future work. The main conjectures go as follows – a) Conjecture 1: Theorem 2
and 3 currently incorporate different non-linear attentions but not the softmax attention. We believe
these guarantees on transformers extend to softmax attention given the experimental evidence in
Section 4. b) Conjecture 2: Theorem 2 and 3 use one block of attention and one block of non-
linearity. We believe that it is possible to extend these results to more expressive H, e.g., with more
alternating blocks. c) Conjecture 3: Our results focus on the generalization properties of all the
possible solutions to risk minimization equation 1. However, in practice the optimization procedure
may be biased towards a subset of those. Does accounting for the bias of optimization procedure
give way to explaining the success of generalization in even higher capacity architectures?
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks. arXiv
preprint arXiv:2007.04759, 34, 2020.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Geoffrey E Hinton. Mapping part-whole hierarchies into connectionist networks. Artificial Intelli-
gence, 46(1-2):47–75, 1990.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with turing programs. arXiv preprint arXiv:2407.03310, 2024.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Inter-
national Conference on Machine Learning, pp. 9099–9117. PMLR, 2022.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.
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Figure 4: Illustration of observed support and its Cartesian product. These examples illustrate the
support of the observed training data distribution can be much smaller than the Cartesian product of
the support of the individual tokens.

A ILLUSTRATION OF THE TEST SUPPORT FOR COMPOSITIONAL
GENERALIZATION

The notion of compositional generalization we study requires us to evaluate the model on the Carte-
sian product of the support of individual token distributions. In Figure 4, we give some additional
examples besides the ones shown in Figure 1a to illustrate the difference between the Cartesian
product set and the observed support. These examples illustrate the support of the observed training
data distribution can be much smaller than the Cartesian product of the support of the individual
tokens.

B SUPPLEMENT ON RELATED WORKS

We briefly discuss some other relevant works here, which could not be mentioned in the main body
due to space constraints. In Schug et al. (2023), the authors exploit compositionality in the context
of meta learning, where each task parameter is specified via a linear combination of some basis
module parameters. They construct an approach that achieves provable compositional guarantees
and outperforms meta-learning approaches such as MAML and ANIL. In a concurrent work Hou
et al. (2024) propose an interesting scratch pad strategy inspired from the operation of Turing ma-
chines. They call this strategy Turing programs. The scratch pad emulates the operation of a Turing
machine. The authors argue that there exist short RASP program (O(n) length) that can simulate
the operation of a Turing machine for sufficiently long number of steps (O(exp(n))). Our current
framework does not incorporate scratchpad strategies into it, and it is a promising future work to
investigate provable length generalization guarantees with scratchpad.

C PROOFS

In all the results that follow, we work with standard topology in Rnt, where n is dimension of each
token and t is the sequence length. We remind the reader of the definition of a regular closed set
– if a set is equal to the closure of its interior, then it is said to be a regular closed set. In all the
results that follow, we either work with continuous random variables for which the Radon-Nikodym
derivative of X≤t is absolutely continuous w.r.t Lebesgue measure ∀t or we work with discrete
random variables for which the Radon-Nikodym derivative of X≤t is absolutely continuous w.r.t
counting measure ∀t.
Lemma 1. Let X ⊆ Rn. If f : X → Rm and g : X → Rm are continuously differentiable functions
that satisfy f(x) = g(x) almost everywhere in X , where X is a regular non-empty closed set, then
f(x) = g(x),∀x ∈ X and ∇f(x) = ∇g(x),∀x ∈ X , where ∇ is the Jacobian w.r.t x.
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Proof. Let us consider the interior of X and denote it as X int. We first argue that the two functions
f and g are equal at all points in the interior. Suppose there exists a point x ∈ X int at which
f(x) ̸= g(x). Consider a ball centered at x of radius r denoted as B(x, r) ⊂ X int (such a ball exists
as this point is in the interior of X .). We argue that there exists at least one point x1 in this ball at
which f(x1) = g(x1). If this were not the case, then the equality will not hold on the entire ball,
which would contradict the condition that the equality f(x) = g(x) can only be violated on a set
of measure zero. Note this condition holds true for all r > 0. Suppose the distance of x1 from x is
r1 ≤ r. Consider another ball with radius r2 < r1 and let x2 ∈ B(x, r2) where the equality holds.
By repeating this argument, we can construct a sequence {xk}k∈N that converges to x, where N is
the set of natural numbers. On this sequence, the following conditions hold.

f(xk) = g(xk),∀k ∈ N (5)

Further, from the continuity of f and g it follows that

lim
k→∞

f(xk) = f(x), lim
k→∞

g(xk) = g(x) (6)

Combining the above two conditions, we get that f(x) = g(x). This leads to a contradiction since
we assumed that f(x) ̸= g(x). Thus there can be no such x in the interior at which f(x) ̸= g(x).
From this it follows that f(x) = g(x) for all x ∈ X int. Now let us consider the closure of X int,
which is X itself since it is a regular closed set. Every point x ∈ X in the closure can be expressed
as limit of points in X int. Consider an x ∈ X and from the definition of regular closed set it follows
that limk→∞ xk = x, where xk ∈ X int. We already know from the fact that f and g are equal in the
interior

f(xk) = g(xk),∀k ∈ N (7)

From the continuity of f and g it follows

lim
k→∞

f(xk) = f(x), lim
k→∞

g(xk) = g(x) (8)

Combining the above two we get that f(x) = g(x) for all x ∈ X . After this we can use Lemma 6
from (Lachapelle et al., 2023) to conclude that ∇f(x) = ∇g(x),∀x ∈ X . We repeat their proof here
for completeness. For all points in the interior of X , it follows that ∇f(x) = ∇g(x),∀x ∈ X int.

Now consider any point x ∈ X . Since X is a regular closed set, limk→∞ xk = x. Since each xk is
in the interior of X it follows that

∇f(xk) = ∇g(xk),∀k ∈ N (9)

From the continuity of ∇f and ∇g it follows that

lim
k→∞

∇f(xk) = ∇f(x), lim
k→∞

∇g(xk) = ∇g(x) (10)

Combining the above conditions, we get that ∇f(x) = ∇g(x). This completes the proof.

C.1 DEEP SETS

In this section, we provide the proofs for length and compositional generalization for deep sets. We
first provide the proof for Theorem 1, followed by Corollary 1, where we establish linear identifica-
tion. We then present the discrete tokens counterpart to Theorem 1 in Theorem 7. In the next part of
this section, we extend Theorem 1 with ω from C1-diffeomorphism in Theorem 8.

We restate the theorems from the main body for convenience of the reader. In what follows, we
remind the reader that we denote the labeling function f(X ) = ρ(

∑
x∈X ϕ(x)) and the function

learned is denoted as h(X ) = ω(
∑

x∈X ψ(x)).

Theorem 1. If H follows Assumption 1, the realizability condition holds, i.e., f ∈ H, supp(Xj) =
[0, 1]n, ∀j ≥ 1, and the regular closedness condition in Assumption 2 holds, then the model
trained to minimize the risk in equation 1 with ℓ2 loss generalizes to all sequences in the hyper-
cube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional generalization.
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Proof. Consider any h that solves equation 1. Since ℓ is ℓ2 loss and realizability condition holds,
f is one of the optimal solutions to equation 1. For all x≤T ∈ supp(X≤T ) except over a set of
measure zero the following condition holds

h(x≤T ) = f(x≤T ). (11)

The above follows from the fact that h solves equation 1, i.e., E[∥h − f∥2] = 0 and from The-
orem 1.6.6. (Ash & Doléans-Dade, 2000). Since supp(X≤T ) is regular closed, f, h are both
continuously differentiable, we can use Lemma 1, it follows that the above equality holds for all
x≤T ∈ supp(X≤T ). From realizability condition it follows that true f(x≤T ) = ρ

(∑
j≤T ϕ(xj)

)
.

We substitute the functional decomposition from Assumption 1 to get

ω
(∑

j≤T

ψ(xj)
)
= ρ

(∑
j≤T

ϕ(xj)
)
. (12)

ω and ρ are both single layer perceptron with a bijective activation σ. We substitute the parametric
form of ω and ρ to obtain

σ
(
A
∑
j≤T

ψ(xj)
)
= σ

(
B

∑
j≤T

ϕ(xj)
)

=⇒ A
∑
j≤T

ψ(xj) = B
∑
j≤T

ϕ(xj). (13)

The second equality in the above simplification follows from the fact that the activation σ is bijective,
the inputs to σ are equal. We take the derivative of the expressions above w.r.t xr to get the following
condition and equate them (follows from Lemma 1). For all xr ∈ supp(Xr), i.e., xr ∈ [0, 1]n,

∇xr

(
A
∑
j≤T

ψ(xj)
)
= ∇xr

(
B

∑
j≤T

ϕ(xj)
)
. (14)

We drop the subscript r to simplify the notation. Therefore, for all x ∈ [0, 1]n

A∇xψ(x) = B∇xϕ(x), (15)

where ∇xψ(x) is the Jacobian of ψ(x) w.r.t x and ∇xϕ(x) is the Jacobian of ϕ(x) w.r.t x. We now
take the derivative w.r.t some component xk of vector x = [x1, · · · , xn]. Denote the components
other than k as x−k = x \ xk. From the above condition, it follows that for all x ∈ [0, 1]n

A
∂ψ(x)

∂xk
= B

∂ϕ(x)

∂xk
. (16)

Using fundamental theorem of calculus, we can integrate both sides for fixed x−k and obtain the
following for all xk ∈ [0, 1],

Aψ(xk, x−k) = Bϕ(xk, x−k) + Ck(x
−k) =⇒ Aψ(x)−Bϕ(x) = Ck(x

−k). (17)

The above condition is true of all k ∈ {1, · · · , n}. Hence, we can deduce that for all x ∈ [0, 1]n and
for k ̸= j, where j, k ∈ {1, · · · , d},

Aψ(x)−Bϕ(x) = Ck(x
−k) = Cj(x

−j). (18)

Take the partial derivative of Ck(x
−k) and Cj(x

−j) w.r.t xj to obtain, for all xj ∈ [0, 1],

18
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∂Ck(x
−k)

∂xj
=
∂Cj(x

−j)

∂xj
= 0. (19)

In the above simplification, we use the fact that ∀xj ∈ [0, 1],
∂Cj(x

−j)
∂xj = 0. Therefore, Ck(x

−k)

cannot depend on xj . We can apply the same condition on all j ̸= k. As a result, Ck(x
−k) is a fixed

constant vector denoted as C. We write this as

Aψ(x) = Bϕ(x) + C. (20)

Substitute the above into A
∑

j≤T ψ(xj) = B
∑

j≤T ϕ(xj) to obtain

B
∑
j≤T

ϕ(xj) + CT = B
∑
j≤T

ϕ(xj) =⇒ C = 0. (21)

Therefore, we get
∀x ∈ [0, 1]n, Aψ(x) = Bϕ(x). (22)

We now consider any sequence x≤T̃ from [0, 1]nT̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xj)
)
= f(x≤T̃ ). (23)

We use equation 22 in the simplification above. From the above, we can conclude that h continues
to be optimal for distribution PX≤T̃

.

Corollary 1. If H follows Assumption 1 with the condition that the output layer weight matrix is
left invertible, the realizability condition holds, i.e., f ∈ H, supp(Xj) = [0, 1]n, ∀j ≥ 1, and the
regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk in
equation 1 with ℓ2 loss achieves linear identification. Further, under the stated conditions linear
identification is necessary for compositional and length generalization.

Proof. We follow the exact same steps as in the previous proof of Theorem 1 up to equation 22. We
restate equation 22 below.

∀x ∈ [0, 1]n, Aψ(x) = Bϕ(x)

ψ(x) = A−1Bϕ(x)
(24)

The above condition establishes linear identification, i.e., the learned model’s representation for a
token is a linear transform of the true model’s representation. From the above, we can write that
x≤T̃ from [0, 1]nT̃ ∑

j≤T̃

ψ(xj) = A−1B
∑
j≤T̃

ϕ(xj) (25)

The above shows linear relationship holds for the entire sequence as well.

Now let us turn to the part on necessity. From the proof of previous theorem, we know that

∀x≤T ∈ supp(X≤T ), σ
(
A
∑
j≤T

ψ(xj)
)
= σ

(
B

∑
j≤T

ϕ(xj)
)

=⇒ ∀x ∈ [0, 1]n, Aψ(x) = Bϕ(x)

(26)

Thus if ∀x ∈ [0, 1]n, Aψ(x) = Bϕ(x) is not true, then σ
(
A
∑

j≤T ψ(xj)
)
= σ

(
B
∑

j≤T ϕ(xj)
)

cannot be true either. Therefore, in the absence of linear identification neither length nor composi-
tional generalization are achievable.
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Remarks A few remarks and observations from the proof are in order. Firstly, observe that we do
not require ϕ and ψ to have the same output dimension for the above proof to go through. Secondly,
in Theorem 1, we observe all the labels from t = 1 to T , i.e., y1 to yT . The result continues to hold
if we only observe label at length T , i.e., yT . Finally, we make an observation in this result, which
would apply to all the subsequent theorems. The definition of compositional generalization requires
generalization to the Cartesian product over sequences of length T , where T is the training length.
Since our model generalizes to the hypercube [0, 1]nt,∀t, we achieve compositional generalization
even beyond the training lengths.

C.1.1 EXTENDING THEOREM 1 TO DISCRETE TOKENS

In our discussion, we have focused on settings where the support of each token has a non-empty
interior (Assumption 2). In practice of language modeling, we use discrete tokens and hence As-
sumption 2 does not hold anymore. In this section, we discuss the adaptation of results for deepsets
to setting when the the support of tokens is a finite set.
Assumption 9. The marginal support of token for all positions is the same and denoted as X . The
joint support of first and second token is X × X .
Theorem 7. If H follows Assumption 1, the realizability condition holds, i.e., f ∈ H, and Assump-
tion 9 holds, then the model trained to minimize the risk in equation 1 with ℓ2 loss generalizes
to all sequences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional
generalization.

Proof. Consider any h that solves equation 1. Since ℓ is ℓ2 loss and realizability condition holds, f
is one of the optimal solutions to equation 1. For all x≤T ∈ supp(X≤T )

h(x≤T ) = f(x≤T ). (27)

The above follows from the fact that h solves equation 1, i.e., E[∥h − f∥2] = 0 and the fact that
tokens are discrete random vectors. From realizability condition it follows that true f(x≤T ) =

ρ
(∑

j≤T ϕ(xj)
)

. We substitute the functional decomposition from Assumption 1 to get

ω
(∑

j≤T

ψ(xj)
)
= ρ

(∑
j≤T

ϕ(xj)
)
. (28)

ω and ρ are both single layer perceptron with a bijective activation σ. We substitute the parametric
form of ω and ρ to obtain

σ
(
A
∑
j≤T

ψ(xj)
)
= σ

(
B

∑
j≤T

ϕ(xj)
)

=⇒ A
∑
j≤T

ψ(xj) = B
∑
j≤T

ϕ(xj). (29)

The second equality in the above simplification follows from the fact that the activation σ is bijective,
the inputs to σ are equal.

From Assumption 9, it follows that for all x1, x2 ∈ X × X

Aϕ(x1) +Aϕ(x2) = Bψ(x1) +Bψ(x2) (30)

Set x1 = x2 = x (we can set this value due to Assumption 9) we get

∀x ∈ X , Aψ(x) = Bϕ(x). (31)

We now consider any sequence x≤T̃ from X T̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xj)
)
= f(x≤T̃ ). (32)
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We use equation 22 in the simplification above. From the above, we can conclude that h continues
to be optimal for distribution PX≤T̃

.

C.1.2 EXTENDING THEOREM 1 TO ω FROM C1-DIFFEOMORPHISMS CLASS

Assumption 10. Each function in H is expressed as h(x1, · · · , xi) = ω(
∑i

j=1 ψ(xj)), where ω is
a C1-diffeomorphism.

Assumption 11. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of
all tokens is equal, i.e., supp(Xj) = [0, 1]n, where j ≥ 1. The support of [ϕ(X1), ϕ(X2)] is R2m,
where ϕ is the embedding function for the labeling function f(X ) = ρ(

∑
x∈X ϕ(x)).

We provide a remark on the assumption and where it is used following the proof of the next theorem.

Theorem 8. If H follows Assumption 10, the realizability condition holds, i.e., f ∈ H, and a
further assumption on the support (Assumption 11) holds, then the model trained to minimize the
risk in equation 1 (with T ≥ 2) with ℓ2 loss generalizes to all sequences in [0, 1]nt,∀t ≥ 1 and thus
achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first
use the fact h(x≤i) = f(x≤i) everywhere in the support. For all x≤i ∈ supp(X≤i)

ω
(∑

j≤i

ψ(xj)
)
= ρ

(∑
j≤i

ϕ(xj)
)

=⇒
∑
j≤i

ψ(xj) = ω−1 ◦ ρ
(∑

j≤i

ϕ(xj)
)

=⇒

∑
j≤i

ψ(xj) = a
(∑

j≤i

ϕ(xj)
)
,

(33)

where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling
function and the learned labeling function and use the invertibility of ω. Let us consider the setting
when i = 1. In that case summation involves only one term. Substitute x1 = x. We obtain
∀x ∈ [0, 1]n,

ψ(x) = a(ϕ(x)). (34)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 2.
Substitute x1 = x and x2 = y. We obtain

a(ϕ(x)) + a(ϕ(y)) = a
(
ϕ(x) + ϕ(y)

)
. (35)

We now use the that assumption [ϕ(x), ϕ(y)] spans R2m, where ϕ(x) and ϕ(y) individually span
Rm. Substitute ϕ(x) = α and ϕ(y) = β. We obtain ∀α ∈ Rm, ∀β ∈ Rm

a(α) + a(β) = a
(
α+ β

)
. (36)

Observe that a(0) = 0 (substitute α = β = 0 in the above).

We use equation 36 to show that a is linear. To show that, we need to argue that a(cα) = ca(α) as
we already know a satisfies additivity condition.

From the identity above, we want to show that equation 70 a(pα) = pa(α), where p is some integer.

Substitute β = −α in a(α+ β) = a(α) + a(β). We obtain a(0) = a(α) + a(−α) =⇒ a(−α) =
−a(α). Suppose p is a positive integer. We simplify a(pα) as follows a(α + (p − 1)α) = a(α) +
a((p− 1)α). Repeating this simplification, we get a(pα) = pa(α). Suppose p is a negative integer.
We can write a(pα) = a(−p×−α) = −pa(−α). Since a(−α) = −a(α), we get a(pα) = pa(α).
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Suppose c is some rational number, i.e., c = p/q, where p and q are non-zero integers. We already
know a(pα) = pa(α). Further, we obtain

a(q 1
qα) = qa( 1qα) =⇒ a( 1qα) =

1
qa(α), where q is some integer.

Now combine these a(p/qα) = pa(1/qα) = p
qa(α). We have established the homogeneity condi-

tion for rationals.

We will now use the continuity of the function a and density of rationals to extend the claim for
irrationals. Suppose c is some irrational. Define a sequence of rationals that approach c (this follows
from the fact that rationals are dense in R).

a(cα) = a(limn→∞ qnα) = limn→∞ a(qnα).

In the second equality above, we use the definition of continuity (a is continuous since composition
of continuous functions is continuous). We can also use the property that we already showed for
rationals to further simplify

limn→∞ a(qnα) = a(α) limn→∞ qn = ca(α).

Observe that a : Rm → Rm and for any α, β ∈ Rm a(α + β) = a(α) + a(β) and a(cα) = ca(α).
From the definition of a linear map it follows that a is linear. As a result, we can write ∀x ∈ [0, 1]n

ψ(x) = A(ϕ(x)) (37)

Observe that a is invertible because both ρ and ω are invertible. As a result, we know that A is an
invertible matrix. From this we get

ϕ(x) = A−1ψ(x) = C(ψ(x)) (38)

For all z ∈ Rm, we obtain

a(z) = ρ−1 ◦ ω(z) = Cz =⇒ ω(z) = ρ(Cz)

Let us consider any sequence x≤T̃ ∈ [0, 1]nT̃ . We use the above conditions

ω
(∑
j≤T̃

ψ(xj)
)
= ρ(C

∑
j≤T̃

ψ(xj)) = ρ
(∑
j≤T̃

ϕ(xj)
)

Thus we obtain length and compositional generalization.

Remark on Assumption 11 In Assumption 11, we require that the support of [ϕ(X1), ϕ(X2)] is
R2m. This assumption is used in the proof in equation equation 36. We used this assumption to
arrive at a(α+β) = a(α)+a(β),∀α, β ∈ Rm. We then used continuity of a to conclude a is linear.
Now suppose [ϕ(X1), ϕ(X2)] is some subset Z ⊆ R2m. We believe that it is possible to extend the
result to more general Z , it might still be possible to arrive at a is linear. We leave this investigation
to future work.

Remark on expressivity under Assumption 10 and Assumption 11 Assumption 11 requires ω
is a C1-diffeomorphism. Suppose the label is one dimensional, i.e., m = 1. From Assumption 11
output dimension of ϕ is restricted to be one dimensional. Consider the map h(x1, · · · , xi) =
ρ(
∑

j≤i ϕ(xj)). The output dimension of ϕ is required to grow with sequence length to express all
permutation invariant maps (See Theorem 7 in (Zaheer et al., 2017)). Thus by restricting the output
dimension of ϕ to one, we cannot express all the permutation invariant maps.
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Multiplication operator Consider the multiplication operator yi = Πi
j=1xi, where each xi > 0.

Observe that we can rewrite this as yi = exp(
∑i

j=1 log(xj)). This operator is realizable on deep sets
from hypothesis class described by Assumption 10 with ω = exp and ψ = log. In Assumption 11,
we require the support of [ϕ(X1), ϕ(X2)] to be R2. We let the support of X1 and X2 be (0,∞). In
Assumption 11 we require that the support of each token was equal to [0, 1]. However, the proof of
Theorem 8 still goes through even if support is (0,∞). Hence, we can use Theorem 8 to conclude
that deep sets trained to predict the output of multiplication can multiply longer sequences and also
multiply new token combinations.

C.2 TRANSFORMERS

In this section, we provide the proofs for length and compositional generalization for transformers.
We first provide the proof for Theorem 2, followed by Corollary 2, where we establish linear iden-
tification. We present an extention of Theorem 2 to incorporate positional encoding in Theorem 9.
We then present the discrete tokens counterpart to Theorem 2 in Theorem 10. In the next part of this
section, we extend Theorem 2 with ω from C1-diffeomorphism in Theorem 3. Theorem 11 adapts
Theorem 3 to incorporate positional encodings.

We restate the theorems from the main body for convenience of the reader. In what follows, we want
to remind the reader we denote the labeling function f(x1, · · · , xi) = ρ(

∑
j≤i ϕ(xi, xj)) and the

function learned is denoted as h(x1, · · · , xi) = ω(
∑

j≤i ψ(xi, xj)).

Theorem 2. If H follows Assumption 3, the realizability condition holds, i.e., f ∈ H,
supp(Xi, Xj) = [0, 1]2n, ∀i ̸= j and the regular closedness condition in Assumption 2 holds,
then the model trained to minimize the risk in equation 1 (with T ≥ 2) with ℓ2 loss generalizes
to all sequences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional
generalization.

Proof. Consider any h that solves equation 1. Since ℓ is ℓ2 loss and realizability condition holds, f
is one of the optimal solutions to equation 1. For all i ≤ T, x≤i ∈ supp(X≤i) except over a set of
measure zero the following condition holds

h(x≤i) = f(x≤i). (39)

The above follows from the fact that h solves equation 1, i.e., E[∥h − f∥2] = 0 and from The-
orem 1.6.6. (Ash & Doléans-Dade, 2000). Since supp(X≤i) is regular closed, f, h are both
continuously differentiable, we can use Lemma 1, it follows that the above equality holds for all
x≤i ∈ supp(X≤i). From realizability condition it follows that true f(x≤i) = ρ

(∑
k≤i ϕ(xi, xk)

)
.

We substitute the parametric forms from Assumption 3 to get

ω
(∑

k≤i

1

i
· ψ(xi, xk)

)
= ρ

(∑
k≤i

1

i
· ϕ(xi, xk)

)
. (40)

Since ω and ρ are single layer perceptron with bijective activation σ. We substitute the parametric
form of ω and ρ to obtain the following condition. For all x≤i ∈ supp(X≤i),

σ
(
A
∑
k≤i

1

i
· ψ(xi, xk)

)
= σ

(
B
∑
k≤i

1

i
· ϕ(xi, xk)

)
=⇒ A

∑
k≤i

ψ(xi, xk) = B
∑
k≤i

ϕ(xi, xk).

(41)

The second equality follows from the fact that the activation σ is bijective and hence the inputs to σ
are equal. We take the derivative of the expressions above w.r.t xj to get the following (follows from
Lemma 1). For j < i (there exists a j < i as T ≥ 2 and we can set i ≥ 2) and for all xj ∈ supp(Xj),
i.e., xj ∈ [0, 1]n,
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∇xj

(
A
∑
k≤i

ψ(xi, xk)
)
= ∇xj

(
B
∑
k≤i

ϕ(xi, xk)
)

=⇒

A∇xjψ(xi, xj) = B∇xjϕ(xi, xj),

(42)

where ∇xj
ψ(xi, xj),∇xj

ϕ(xi, xj) are the Jacobians of ψ and ϕ w.r.t xj for a fixed xi. Note
that A∇xj

ψ(xi, xj) = B∇xj
ϕ(xi, xj) holds for all xi ∈ [0, 1]n, xj ∈ [0, 1]n (here we use the

fact that joint support of every pair of tokens spans 2n dimensional unit hypercube assumed in
the Theorem 9). In this equality, we now consider the derivative w.r.t some component xkj of
xj . Denote the remaining components as x−k

j . From the above condition it follows that for all
xi ∈ [0, 1]n, xj ∈ [0, 1]n,

A
∂ψ(xi, xj)

∂xkj
= B

∂ϕ(xi, xj)

∂xkj
. (43)

Using fundamental theorem of calculus, we can integrate both sides for fixed x−k
j and obtain the

following for all xkj ∈ [0, 1],

Aψ
(
xi, [x

k
j , x

−k
j ]

)
= Bϕ

(
xi, [x

k
j , x

−k
j ]

)
+ Ck

(
xi, x

−k
j

)
=

Aψ(xi, xj) = Bϕ(xi, xj) + Ck(xi, x
−k
j ).

(44)

The same condition is true of all k. Hence, ∀xi ∈ [0, 1]d,∀xj ∈ [0, 1]d and for k ̸= q, where
q, k ∈ {1, · · · , d},

Aψ(xi, xj)−Bϕ(xi, xj) = Ck(xi, x
−k
j ) = Cq(xi, x

−q
j ). (45)

Take the partial derivative of both sides w.r.t xqj to obtain, ∀xqj ∈ [0, 1],

∂Ck(xi, x
−k
j )

∂xqj
=
∂Cq(xi, x

−q
j )

∂xqj
= 0. (46)

Therefore, Ck(xi, x
−k
j ) cannot depend on xqj . We can apply the same condition on all q ̸= k. As

a result, Ck(xi, x
−k
j ) is only a function of xi denoted as C(xi). Therefore, for j < i and for all

xi ∈ [0, 1]n, xj ∈ [0, 1]n

Aψ(xi, xj) = Bϕ(xi, xj) + C(xi). (47)
If we substitute xi = xj = x, then the above equality extends for i = j and thus we get

Aψ(xi, xi) = Bϕ(xi, xi) + C(xi). (48)

Substitute the above equation 47, equation 48 intoA
∑

k≤i ψ(xi, xk) = B
∑

k≤i ϕ(xi, xk) to obtain

B
∑
k≤i

ϕ(xi, xk) + (i)C(xi) = B
∑
k≤i

ϕ(xi, xk) =⇒ C(xi) = 0. (49)

Thus we obtain
∀xi ∈ [0, 1]n, xj ∈ [0, 1]n Aψ(xi, xj) = Bϕ(xi, xj). (50)

We now consider any sequence x≤T̃ ∈ [0, 1]nT̃ . The prediction made by h is
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h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xT̃ , xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xT̃ , xj)
)
= f(x≤T̃ ) (51)

We use equation 50 in the simplification above. From the above, we can conclude that h continues
to be optimal for all sequences in [0, 1]nT̃ .

Corollary 2. If H follows Assumption 3 with the condition that the output layer weight matrix is
left invertible, the realizability condition holds, i.e., f ∈ H, supp(Xi, Xj) = [0, 1]2n, ∀i ̸= j and
the regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk
in equation 1 (with T ≥ 2) with ℓ2 loss achieves linear identification. Further, linear identification
is necessary for both length and compositional generalization.

Proof. We follow the exact same steps as in the previous proof of Theorem 2 up to equation 50. We
restate equation 50 below.

∀xi ∈ [0, 1]n, xj ∈ [0, 1]n Aψ(xi, xj) = Bϕ(xi, xj)

ψ(xi, xj) = A−1Bϕ(xi, xj)
(52)

In the second step above, we use left invertibility of A. The above condition establishes linear
identification, i.e., the learned model’s representation is a linear transform of the true model’s repre-
sentation. From this we obtain that for any sequence x≤T̃ ∈ [0, 1]nT̃

∑
j≤T̃

ψ(xT̃ , xj) = A−1B
(∑

j≤T̃

ψ(xT̃ , xj)
)

(53)

The above establishes a linear relationship between the learned representation of the sequence and
the representation of the sequence under the true model. Now let us turn to the part on necessity.
From the proof of previous theorem, we know that

ω
(∑

k≤i

1

i
·ψ(xi, xk)

)
= ρ

(∑
k≤i

1

i
·ϕ(xi, xk)

)
=⇒ ∀xi ∈ [0, 1]n, xj ∈ [0, 1]n Aψ(xi, xj) = Bϕ(xi, xj)

(54)

Thus from the above it follows that in the absence of linear identification neither length nor compo-
sitional generalization are achievable.

On the absence of labels at all lengths from t = 1 to t = T A few important remarks are to
follow. In the proof above, we do not require to observe all the labels from t = 1 to t = T , where
T ≥ 2. The proof goes through provided we observe data at two different lengths.

C.2.1 EXTENSION OF THEOREM 2 TO INCORPORATE POSITIONAL ENCODINGS

In what follows, we extend the above result (Theorem 2) to incorporate positional encoding. We
start with extension of the hypothesis class to incorporate positional encoding.
Assumption 12. Each function in the hypothesis class H used by the learner is given as
h(x1, · · · , xi) = ω

(∑
j≤i

1
iψi−j(xi, xj)

)
, where ω is a single layer perceptron with continuously

differentiable bijective activation (e.g., sigmoid) and each ψk is a map that is differentiable. Also,
ψk = 0 for k ≥ Tmax, i.e., two tokens that are sufficiently far apart do not interact.

In the above assumption, we incorporate relative positional encodings by making the function ψi−j

depend on the relative positional difference between token xi and token xj . We would like to
emphasize the reasons why we assume that the tokens that are sufficiently far apart do not interact.
Suppose Tmax = ∞, which implies tokens at all positions interact. As a result, during training since
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we only see sequences of finite length T , we will not see the effect of interactions of tokens that
are separated at a distance larger than T on the data generation, which makes it impossible to learn
anything about ϕi−j , where i− j ≥ T − 1.

In the theorem that follows, we show that we can achieve length and compositional generalization
for the above hypothesis class.

Theorem 9. If H follows Assumption 12, the realizability condition holds, i.e., f ∈ H,
supp(Xi, Xj) = [0, 1]2n, ∀i ̸= j ∈ {1, · · · ,∞}, the regular closedness condition in Assumption 2
holds and T ≥ Tmax ≥ 2, then the model trained to minimize the risk in equation 1 with ℓ2 loss gen-
eralizes to all sequences in the hypercube [0, 1]nt, ∀t and thus achieves length and compositional
generalization.

Proof. Consider any h that solves equation 1. Since ℓ is ℓ2 loss and realizability condition holds, f
is one of the optimal solutions to equation 1. For all i ≤ T and for all x≤i ∈ supp(X≤i) except over
a set of measure zero the following condition holds

h(x≤i) = f(x≤i). (55)

The above follows from the fact that h solves equation 1, i.e., E[∥h − f∥2] = 0 and from Theorem
1.6.6. (Ash & Doléans-Dade, 2000). Since supp(X≤i) is regular closed, f, h are both continu-
ously differentiable, we can use Lemma 1, it follows that the above equality holds for all x≤i ∈
supp(X≤i). From realizability condition it follows that true f(x≤i) = ρ

(∑
k≤i ϕi−k(xi, xk)

)
. We

substitute the parametric forms from Assumption 3 to get

ω
(∑

k≤i

1

i
· ψi−k(xi, xk)

)
= ρ

(∑
k≤i

1

i
· ϕi−k(xi, xk)

)
. (56)

Since ω and ρ are single layer perceptron with bijective activation σ. We substitute the parametric
form of ω and ρ to obtain the following condition. For all x≤i ∈ supp(X≤i),

σ
(
A
∑
k≤i

1

i
· ψi−k(xi, xk)

)
= σ

(
B
∑
k≤i

1

i
· ϕi−k(xi, xk)

)
=⇒

A
∑
k≤i

ψi−k(xi, xk) = B
∑
k≤i

ϕi−k(xi, xk).
(57)

The second equality follows from the fact that the activation σ is bijective and hence the inputs to
σ are equal. We take the derivative of the expressions above w.r.t xj to get the following (follows
from Lemma 1). The equality holds true for all i ≤ T .

From the above, we can use i = 1 and obtain

Aψ0(x1, x1) = Bϕ0(x1, x1),∀x1 ∈ [0, 1]n.

From i = 2, we obtain

Aψ0(x2, x2) +Aψ1(x2, x1) = Bϕ0(x2, x2) +Bϕ1(x2, x1),∀x1 ∈ [0, 1]n, x2 ∈ [0, 1]n

Combining the two conditions we get

Aψ1(x2, x1) = Bϕ1(x2, x1),∀x1 ∈ [0, 1]n, x2 ∈ [0, 1]n.

We can use this argument and arrive at

Aψi−1(xi, x1) = Bϕi−1(xi, x1),∀xi ∈ [0, 1]n, x1 ∈ [0, 1]n,∀i ≤ T.
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Thus we obtain

∀i− j ≤ T − 1,∀xi ∈ [0, 1]n, xj ∈ [0, 1]n, Aψi−j(xi, xj) = Bϕi−j(xi, xj). (58)

From Assumption 12 and T ≥ Tmax, we already know that

∀i− j ≥ T, ∀xi ∈ [0, 1]n, xj ∈ [0, 1]n, Aψi−j(xi, xj) = Bϕi−j(xi, xj) = 0. (59)

If A is left invertible, then the above condition implies that linear representation identification is
necessary for both compositional and length generalization.

We now consider any sequence x≤T̃ ∈ [0, 1]nT̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψT̃−j(xT̃ , xj)
)
= σ

(
B

∑
j≤T̃

ϕT̃−j(xT̃ , xj)
)
= f(x≤T̃ ) (60)

We use equation 50 in the simplification above. From the above, we can conclude that h continues
to be optimal for all sequences in [0, 1]nT̃ .

C.2.2 EXTENDING THEOREM 2 TO DISCRETE TOKENS

In the above result we used Assumption 2. In practice of language modeling, we use discrete tokens
and hence Assumption 2 does not hold anymore. In this section, we discuss the adaptation of results
for transformers to setting when the the support of tokens is a finite set.
Assumption 13. The marginal support of token for all positions is the same and denoted as X . The
joint support of first three tokens is X × X × X .
Theorem 10. If H follows Assumption 3, the realizability condition holds, i.e., f ∈ H, and As-
sumption 13 holds, then the model trained to minimize the risk in equation 1 (with T ≥ 2) with
ℓ2 loss generalizes to all sequences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and
compositional generalization.

Proof. Consider any h that solves equation 1. Since ℓ is ℓ2 loss and realizability condition holds,
f is one of the optimal solutions to equation 1. For all i ≤ T, x≤i ∈ supp(X≤i) the following
condition holds

h(x≤i) = f(x≤i). (61)
The above follows from the fact that h solves equation 1, i.e., E[∥h − f∥2] = 0 and from the
fact that the tokens are discrete random vectors. From realizability condition it follows that true
f(x≤i) = ρ

(∑
k≤i ϕ(xi, xk)

)
. We substitute the parametric forms from Assumption 3 to get

ω
(∑

k≤i

1

i
· ψ(xi, xk)

)
= ρ

(∑
k≤i

1

i
· ϕ(xi, xk)

)
. (62)

Since ω and ρ are single layer perceptron with bijective activation σ. We substitute the parametric
form of ω and ρ to obtain the following condition. For all x≤i ∈ supp(X≤i),

σ
(
A
∑
k≤i

1

i
· ψ(xi, xk)

)
= σ

(
B
∑
k≤i

1

i
· ϕ(xi, xk)

)
=⇒ A

∑
k≤i

ψ(xi, xk) = B
∑
k≤i

ϕ(xi, xk).

(63)

The second equality follows from the fact that the activation σ is bijective and hence the inputs to σ
are equal.
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From Assumption 13, it follows that for all x1, x2, x3 ∈ X × X × X

Aψ(x3, x1) +Aψ(x3, x2) = Bϕ(x3, x1) +Bϕ(x3, x2) (64)

Set x1 = x2 (we can do so owing to Assumption 13).

Thus we obtain
∀xi ∈ X , xj ∈ X Aψ(xi, xj) = Bϕ(xi, xj). (65)

We now consider any sequence x≤T̃ ∈ X T̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xT̃ , xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xT̃ , xj)
)
= f(x≤T̃ ) (66)

We use equation 65 in the simplification above. From the above, we can conclude that h continues
to be optimal for all sequences in [0, 1]nT̃ .

C.2.3 EXTENDING THEOREM 2 TO ω FROM C1-DIFFEOMORPHISMS

Theorem 3. If H follows Assumption 4, the realizability condition holds, i.e., f ∈ H, and a further
assumption on the support (Assumption 5) holds, then the model trained to minimize the risk in
equation 1 (with T ≥ 3) with ℓ2 loss generalizes to all sequences in [0, 1]nt,∀t ≥ 1 and thus
achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We
first use the fact h(x≤i) = f(x≤i),∀i ≤ T almost everywhere in the support. We can use the
continuity of h, f and regular closedness of the support to extend the equality to all points in the
support (follows from the first part of Lemma 1) to obtain the following. For all x≤i ∈ supp(X≤i)

ω
(∑

j<i

1

i− 1
· ψ(xi, xj)

)
= ρ

(∑
j<i

1

i− 1
· ϕ(xi, xj)

)
=⇒

∑
j<i

1

i− 1
ψ(xi, xj) = ω−1 ◦ ρ

(∑
j<i

1

i− 1
· ϕ(xi, xj)

)
=⇒

∑
j<i

1

i− 1
ψ(xi, xj) = a

(∑
j<i

1

i− 1
ϕ(xi, xj)

)
,

(67)

where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling
function and the learned labeling function and use the invertibility of ω. Let us consider the setting
when i = 2. In that case summation involves only one term. Substitute x1 = y and x2 = x. We
obtain ∀x ∈ [0, 1]n, y ∈ [0, 1]n,

ψ(x, y) = a(ϕ(x, y)). (68)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 3
(this is possible since T ≥ 3). We substitute x3 = x, x2 = y, x1 = z and obtain

1

2

[
a(ϕ(x, y)) + a(ϕ(x, z))

]
= a

(1
2

(
ϕ(x, y) + ϕ(x, z)

))
. (69)

Substitute ϕ(x, y) = α and ϕ(x, z) = β. In the simplifcation that follows, we use the that assump-
tion [ϕ(x, y), ϕ(x, z)] spans R2m, where ϕ(x, y) and ϕ(x, z) individually span Rm.
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1

2
(a(α) + a(β)) = a

(1
2
(α+ β)

)
. (70)

Observe that a(0) = 0 because ω−1 ◦ ρ(0) = 0 because ω−1(0) = ρ(0) = 0.

1

2
(a(2α) + a(0)) = a

(1
2
(2α+ 0)

)
a(2α) = 2a(α)

(71)

Next, substitute α with 2α and β with 2β in equation 70 to obtain

1

2
(a(2α) + a(2β)) = a

(1
2
(2α+ 2β)

)
a(α+ β) = a(α) + a(β)

(72)

We use equation 72 to show that a is linear. To show that, we need to argue that a(cα) = ca(α) as
we already know a satisfies additivity condition.

Suppose c is some rational number, i.e., c = p/q, where p and q are non-zero integers.

From the identity it is clear that a(pα) = pa(α), where p is some integer.

a(q 1
qα) = qa( 1qα) =⇒ a( 1qα) =

1
qa(α), where q is some integer.

Now combine these a(p/qα) = pa(1/qα) = p
qa(α). We have established the homogeneity condi-

tion for rationals.

We will now use the continuity of the function a and density of rationals to extend the claim for
irrationals. Suppose c is some irrational. Define a sequence of rationals that approach c (this follows
from the fact that rationals are dense in R).

a(cα) = a(limn→∞ qnα) = limn→∞ a(qnα).

In the second equality above, we use the definition of continuity (a is continuous since composition
of continuous functions is continuous). We can also use the property that we already showed for
rationals to further simplify

limn→∞ a(qnα) = a(α) limn→∞ qn = ca(α).

Observe that a : Rm → Rm and for any α, β ∈ Rm a(α + β) = a(α) + a(β) and a(cα) =
ca(α). From the definition of a linear map it follows that a is linear. As a result, we can write
∀x ∈ [0, 1]n, y ∈ [0, 1]n

ψ(x, y) = A(ϕ(x, y)) (73)

Observe that a is invertible because both ρ and ω are invertible. As a result, we know that A is an
invertible matrix. From this we get

∀x ∈ [0, 1]n, y ∈ [0, 1]n, ϕ(x, y) = A−1ψ(x, y) = C(ψ(x, y)) (74)

For all z ∈ Rm, we obtain

a(z) = ρ−1 ◦ ω(z) = Cz =⇒ ω(z) = ρ(Cz)

Let us consider any sequence x≤T̃ ∈ [0, 1]nT̃ . We use the above conditions

ω
(∑
j<T̃

ψ(xT̃ , xj)
)
= ρ(C

∑
j<T̃

ψ(xT̃ , xj)) = ρ
(∑
j<T̃

ϕ(xT̃ , xj)
)
.
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Thus we obtain length and compositional generalization.

Corollary 3. If H follows Assumption 4, the realizability condition holds, i.e., f ∈ H, and a
further assumption on the support (Assumption 5) holds, then the model trained to minimize the risk
in equation 1 (with T ≥ 3) with ℓ2 loss achieves linear identification. Further, under the stated
conditions linear identification is necessary for both length and compositional generalization.

Proof. We follow the exact same steps as in the previous proof of Theorem 3 up to equation 74. We
restate equation 74 below.

∀x ∈ [0, 1]n, y ∈ [0, 1]n, ϕ(x, y) = C(ψ(x, y)) (75)

The above condition directly implies linear identification. We can use this to obtain that for any
sequence x≤T̃ ∈ [0, 1]nT̃ ∑

j<T̃

ψ(xT̃ , xj) =
∑
j<T̃

ϕ(xT̃ , xj) (76)

To show necessity of linear identification, from the proof of Theorem 3 observe that

∀i ≤ T, ∀x≤i ∈ supp(X≤i), ω
(∑

j<i

1

i− 1
· ψ(xi, xj)

)
= ρ

(∑
j<i

1

i− 1
· ϕ(xi, xj)

)
=⇒

∀x ∈ [0, 1]n, y ∈ [0, 1]n, ϕ(x, y) = C(ψ(x, y))

(77)

Thus from the above it follows that in the absence of linear identification neither length nor compo-
sitional generalization are achievable.

On absence of labels at all lengths from 1 to T We argue that the above proof can be adapted
to the setting where we do not observe labels at all lengths from 1 to T . Suppose we only observe
label at length T . Take equation equation 67 and substitute xi = x and xj = y for all j < i to
obtain the same condition as equation equation 68. Suppose T is odd and larger than or equal to 3.
Fix xi = x, x2j−1 = y,∀j ∈ {1, · · · , (T − 1)/2}, x2j = z,∀j ∈ {1, · · · , (T − 1)/2}. We obtain
the same condition as equation equation 69. Rest of the proof can be adapted using a similar line of
reasoning.

Remark on Assumption 4 We require that the support of [ϕ(X1, X2), ϕ(X1, X3)] is R2m. This
assumption is used in the proof in equation equation 72. We used this assumption to arrive at
a(α + β) = a(α) + a(β),∀α, β ∈ Rm. We then used continuity of a to conclude a is linear.
Now suppose [ϕ(X1, X2), ϕ(X1, X3)] is some subset Z ⊆ R2m. We believe that it is possible to
extend the result to more general Z , it might still be possible to arrive at a is linear. We leave this
investigation to future work.

C.2.4 EXTENDING THEOREM 3 TO INCORPORATE POSITIONAL ENCODINGS

We next present the result when ω is continuously differentiable and invertible.
Assumption 14. Each function in the hypothesis class H used by the learner is given as
h(x1, · · · , xi) = ω

(∑
j≤i ψi−j(xi, xj)

)
, where ω is a C1-diffeomorphism. Also, ψi−j = 0 for

i− j > Tmax− 1, i.e., two tokens that are sufficiently far apart do not interact. For all k ≤ Tmax− 1
each x ∈ [0, 1]n, ∃ y ∈ [0, 1]n we ψk(x, y) = 0.

In the theorem that follows, we require the support of training distribution under consideration is
already sufficiently diverse and hence we only seek to prove length generalization guarantees.
Assumption 15. The joint support supp(X≤T ) = [0, 1]T . The support of
[ϕ1(X1, X2), ϕ2(X1, X3)] is R2k, where ϕi−j is the embedding function for the labeling
function ρ(

∑
j≤i ϕi−j(xi, xj)).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Theorem 11. If H follows Assumption 14, the realizability condition holds, i.e., f ∈ H, Assump-
tion 15 holds and T ≥ Tmax, then the model trained to minimize the risk in equation 1 (with T ≥ 2)
with ℓ2 loss achieves length generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first
use the fact h(x≤i) = f(x≤i) almost everywhere in the support. We can use the continuity of h, f
and regular closedness of the support to extend the equality to all points in the support (follows from
the first part of Lemma 1) to obtain the following. For all x≤i ∈ supp(X≤i)

ω
(∑

j<i

1

i− 1
ψi−j(xi, xj)

)
= ρ

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

∑
j<i

1

i− 1
ψi−j(xi, xj) = ω−1 ◦ ρ

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

∑
j<i

1

i− 1
ψi−j(xi, xj) = a

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

(78)

where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling
function and the learned labeling function. We also used the invertibility of ρ. Let us consider the
setting when i = 2. In that case summation involves only one term. Substitute x1 = y and x2 = x.
We obtain ∀x ∈ [0, 1]n, y ∈ [0, 1]n,

ψ1(x, y) = a(ϕ1(x, y)). (79)

For i = 3, substitute x1 = x, x3 = z and set x2 = y in such a way that ϕ1(x, y) = 0 (follows from
Assumption 14). Thus we obtain

ψ2(x, y) = a(ϕ2(x, y)). (80)

Similarly, we can obtain the following. For all k ≤ Tmax

ψk(x, y) = a(ϕk(x, y)). (81)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 3
(this is possible since T ≥ 3). We substitute x3 = x, x2 = y, x1 = z to give

1

2

(
a(ϕ1(x, y)) + a(ϕ2(x, z))

)
= a

(1
2
(ϕ1(x, y) + ϕ2(x, z))

)
. (82)

We now use the that assumption [ϕ1(x, y), ϕ2(x, z)] spans R2k and substitute ϕ1(x, y) = α and
ϕ2(x, z) = β

1

2
(a(α) + a(β)) = a

(1
2
(α+ β)

)
. (83)

Rest of the proof follows the same strategy as proof of Theorem 3.

C.2.5 EXTENDING THEOREM 3 TO INCORPORATE MULTIPLE ATTENTION HEADS

Our choice of the archictecture did not invoke multiple attention heads. If we include multiple at-
tention heads, then also we can arrive at the same length generalization guarantees. The model class
with two attention heads ψ1, ψ2 can be stated as follows ω

(∑
j<iA[ψ1(xi, xj), ψ2(xi, xj)]

⊤
)

,
where A combines the outputs of the attention heads linearly. Following the same steps of proof of
Theorem 3, we obtain the following.
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ω
(∑

j<i

A[ψ1(xi, xj), ψ2(xi, xj)]
⊤
)
= ρ

(∑
j<i

B[ϕ1(xi, xj), ϕ2(xi, xj)]
⊤
)
,

ω
(∑

j<i

ψ̃(xi, xj)
)
= ρ

(∑
j<i

ϕ̃(xi, xj)
)
,

∑
j<i

ψ̃(xi, xj) = a
(∑

j<i

ϕ̃(xi, xj)
)
,

(84)

where a = ω−1 ◦ ρ. In the above simplification, the RHS shows the labeling function and the RHS
is the function that is learned. We can follow the same strategy as the proof of Theorem 3 for the
rest of the proof. We set i = 2 and obtain a condition similar to equation 68 and for i = 3 we obtain
a condition similar to equation 69. Following a similar proof technique, we obtain a is linear and
the proof extends to multiple attention heads.

C.3 STATE SPACE MODELS

In this section, we first provide the proof to Theorem 4. We then provide Corollary 4, where we
describe how the learned representations linearly identify the true representations. In Theorem 12,
we present the discrete tokens counterpart to Theorem 4.

Theorem 4. If H follows Assumption 6, and the realizability condition holds, i.e., f ∈ H, and a
further condition on the support, i.e., Assumption 7, holds, then the model trained to minimize the
risk in equation 1 with ℓ2 loss (T ≥ 2) achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first
use the fact h(x≤i) = f(x≤i),∀i ≤ T almost everywhere in the support. We can use the continuity
of h, f and regular closedness of the support to extend the equality to all points in the support (from
first part of Lemma 1) to obtain the following. For all x≤i ∈ supp(X≤i).

f(x≤i) = h(x≤i) =

ρ(

i−1∑
j=0

ΛjBxi−j) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) =⇒

ω−1 ◦ ρ(
i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =

c(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j

(85)

For i = 1, ∀x1 ∈ Rn, c(Bx1) = B̃x1. Substitute Bx1 = x, we obtain ∀x ∈ Rn, c(x) = B̃B−1x =
Cx, where we use the fact that Bx1 spans Rn as B is invertible.

From linearity of c, we obtain

ω−1 ◦ ρ(z) = Cz =⇒ ρ(z) = ω(Cz),∀z ∈ Rn (86)
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We use this linearity of c to simplify

c(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =⇒

C(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =⇒

[CB,CΛB,CΛ2B, · · · , CΛi−1B]


xi
xi−2

...
x1

− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]


xi
xi−2

...
x1

 = 0 =⇒

[
[CB,CΛB,CΛ2B, · · · , CΛi−1B]− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
X = 0,

(87)

where X =


xi
xi−2

...
x1

.

Denote R =
[
[CB,CΛB,CΛ2B, · · · , CΛi−1B] − [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
. We collect a set

of points X+ = [X(1), · · · ,X(l)] where l ≥ ni and rank of X+ = ni (from Assumption 7). Since
the matrix X+ is full rank, we have

RX+ = 0 =⇒ R = 0.

This yields

CB = B̃, CΛB = Λ̃B̃, · · · , CΛiB = Λ̃iB̃. (88)

Observe that from the second equality, we get Λ̃ = CΛC−1. Given the parameters (Λ, B), the set of
parameters (Λ̃, B̃) that solve the first two equalities are – {B̃ is an arbitrary invertible matrix, Λ̃ =

CΛC−1, where C = B̃B−1}.

Take any solution of the first two equalities and compute

Λ̃iB̃ = CΛiC−1B̃ = CΛiB, ∀i ≥ 1 (89)

From equation 89 and equation 86, we obtain that for all x≤i ∈ Rni

h(x≤i) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) = ω(C

i−1∑
j=0

ΛjBxi−j) = ρ(

i−1∑
j=0

ΛjBxi−j) = f(x≤i) (90)

This establishes both compositional and length generalization.

Corollary 4. If H follows Assumption 6, and the realizability condition holds, i.e., f ∈ H, and a
further condition on the support, i.e., Assumption 7, holds, then the model trained to minimize the
risk in equation 1 with ℓ2 loss (T ≥ 2) achieves linear identification. Further, under the stated
conditions linear identification is necessary for both length and compositional generalization.

Proof. We follow the same steps as proof of Theorem 4 up to equation 89. From that we obtain that
for all x≤i ∈ Rni

i−1∑
j=0

Λ̃jB̃xi−j = C(

i−1∑
j=0

ΛjBxi−j) (91)
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Recall that
∑i−1

j=0 Λ̃
jB̃xi−j = h̃j and

∑i−1
j=0 Λ

jBxi−j = hj . From this it follows that h̃j = Chj ,
which proves that learned hidden state are a linear transform of the hidden state underlying the
labeling function. This establishes linear identification.

To show the necessity of linear identification, from the proof of Theorem 4 it follows that

∀i ≤ T, ∀x≤i ∈ supp(X≤i), ρ(

i−1∑
j=0

ΛjBxi−j) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) =⇒

∀i ≥ 1,∀x≤i ∈ Rni, h̃j = Chj

(92)

If the latter conditon in the above implication does not hold, then the former condition cannot hold.
Hence, linear identification is necessary.

C.3.1 EXTENDING THEOREM 4 TO DISCRETE TOKENS

In our discussion, we have focused on settings where the support of each token has a non-empty
interior (Assumption 2). In practice of language modeling, we use discrete tokens and hence As-
sumption 2 does not hold anymore. In this section, we discuss the adaptation of results for SSMs to
setting when the the support of tokens is a finite set.

Assumption 16. Each function in the hypothesis class H takes a sequence {x1, · · · , xi} as input

and outputs h(x1, · · · , xi) = ω
(∑i−1

j=0 Λ
jBxi−j

)
, where ω : Rk → Rm is a single layer percep-

tron denoted as σ ◦A. A, B and Λ are square invertible. As a result, k = m = n.

Assumption 17. For some length 2 ≤ i ≤ T an there exists in sequences x≤i such that their
concatenation forms a in× in matrix of rank in.

Theorem 12. If H follows Assumption 16, and the realizability condition holds, i.e., f ∈ H, and a
further condition on the support, i.e., Assumption 17, holds, then the model trained to minimize the
risk in equation 1 with ℓ2 loss (T ≥ 2) achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first
use the fact h(x≤i) = f(x≤i),∀i ≤ T almost everywhere in the support. We can use the continuity
of h, f and regular closedness of the support to extend the equality to all points in the support (from
first part of Lemma 1) to obtain the following. For all x≤i ∈ supp(X≤i).

f(x≤i) = h(x≤i) =

ρ(

i−1∑
j=0

ΛjBxi−j) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) =⇒

σ(A

i−1∑
j=0

ΛjBxi−j) = σ(Ã

i−1∑
j=0

Λ̃jB̃xi−j) =

C(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j ,

(93)

where C = Ã−1A.
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We simplify the last identity in the above further.

C(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =⇒

[CB,CΛB,CΛ2B, · · · , CΛi−1B]


xi
xi−2

...
x1

− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]


xi
xi−2

...
x1

 = 0 =⇒

[
[CB,CΛB,CΛ2B, · · · , CΛi−1B]− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
X = 0,

(94)

where X =


xi
xi−2

...
x1

.

Denote R =
[
[CB,CΛB,CΛ2B, · · · , CΛi−1B] − [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
. We collect a set

of points X+ = [X(1), · · · ,X(l)] where l ≥ ni and rank of X+ = ni (from Assumption 7). Since
the matrix X+ is full rank, we have

RX+ = 0 =⇒ R = 0.

This yields

CB = B̃, CΛB = Λ̃B̃, · · · , CΛiB = Λ̃iB̃. (95)

Observe that from the second equality, we get Λ̃ = CΛC−1. Given the parameters (Λ, B), the set of
parameters (Λ̃, B̃) that solve the first two equalities are – {B̃ is an arbitrary invertible matrix, Λ̃ =

CΛC−1, where C = B̃B−1}.

Take any solution of the first two equalities and compute

Λ̃iB̃ = CΛiC−1B̃ = CΛiB, ∀i ≥ 1 (96)

From equation 96, we obtain that for all x≤i ∈ Rni

h(x≤i) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) = ω(C

i−1∑
j=0

ΛjBxi−j) = ρ(

i−1∑
j=0

ΛjBxi−j) = f(x≤i) (97)

This establishes both compositional and length generalization.

C.4 VANILLA RNNS

In this section, we discuss RNNs and present the proof of Theorem 5. We first build some lemmas
in the form of Lemma 2 and 3 that are used to prove Theorem 5. In Corollary 5, we explain the
learned hidden state are a permutation transform of the true hidden state and also show that its a
necessary condition for length and compositional generalization. Finally, in Theorem 13, we present
the discrete token counterpart to Theorem 5.

Lemma 2. The kth derivative of sigmoid function denoted ∂kσ(s)
∂sk

is not zero identically.

Proof. The first derivative of the sigmoid function ∂σ(s)
∂s = σ(s)(1−σ(s)). We argue that the ∂kσ(s)

∂sk

is a polynomial in σ(s) with degree k + 1. Consider the base case of k = 1. This condition is true
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as ∂σ(s)
∂s = σ(s)(1− σ(s)). Now let us assume that ∂kσ(s)

∂sk
is a polynomial of degree at most k + 1

denoted as Pk+1(σ(s)). We simplify

∂kσ(s)

∂sk
= Pk+1(σ(s)) =

k+1∑
j=1

aj(σ(s))
j

We take another derivative of the term above as follows.

∂k+1σ(s)

∂sk+1
=
∂Pk+1(σ(s))

∂s
=

k+1∑
j=1

aj
∂(σ(s))j

∂s
=

k+1∑
j=1

ajjσ(s)
j−1(σ(s)(1− σ(s)))

Observe that the ∂k+1σ(s)
∂sk+1 is also a polynomial in σ(s). Observe that the degree k + 2 term has one

term with coefficient −ak+1 ·(k+1). Since ak+1 ̸= 0, the coefficient of degree k+2, −ak+1 ·(k+1),
is also non-zero. Since ∂kσ(s)

∂sk
is a polynomial in σ(s) with degree k + 1 and hence, it cannot be

zero identically.

Lemma 3. Let x ∈ Rn and A ∈ Rn×n. Suppose Ax = 0,∀x ∈ X , where X has a non-empty
interior. Under these conditions A = 0.

Proof. Since X has a non-empty interior, we can construct a ℓ∞ ball centered on θ, defined as
follows – X̃ = {θ+∑n

j=1 αjej |∥α∥∞ ≤ αmax }, where ej is a vector that is zero in all components
and one on the jth component. Suppose A was non-zero. One of the columns say aj is non-zero.
Consider two points in the ball X̃ such that jth coefficients are non-zero but rest of the coefficients
are zero. We denote the jth components for the two components as αj and α̃j , where αj ̸= α̃j . We
now plug these two points into the condition that Ax = 0

A(θ + αjej) = 0 =⇒ Aθ = αjaj ,

A(θ + α̃jej) = 0 =⇒ Aθ = α̃jaj ,
(98)

We take a difference of the two steps above and obtain

(αj − α̃j)aj = 0 =⇒ aj = 0

This is a contradiction. Hence, A = 0.

Theorem 5. If H follows Assumption 8, and the realizability condition holds, i.e., f ∈ H and
regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk in
equation 1 with ℓ2 loss (with T ≥ 2) achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f everywhere
in the support of the training distribution (using first part of Lemma 1). We start with equating label
at length 1, i.e., y1. For all x1 ∈ supp(X1)

σ(Aσ(Bx1)) = σ(Ãσ(B̃x1)) =⇒ Aσ(Bx1) = Ãσ(B̃x1) =⇒
σ(BB̃−1B̃x1) = A−1Ãσ(B̃x1)

(99)

Say y = B̃x1, A−1Ã = U , BB̃−1 = V . We substitute these expressions in the simplificaction
below. We pick a y in the interior of B̃ · supp(X1).

σ(V y) = Uσ(y) (100)

Take the first row of V and U as v⊤ and u⊤ to obtain

σ(v⊤y) = u⊤σ(y) (101)

Suppose there is some non-zero component of v say i but the corresponding component is zero in u.
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∂σ(viyi + v−iy−i)

∂yi
= σ

′
(viyi + v−iy−i)vi =

∂u⊤−iσ(y−i)

∂yi
= 0 (102)

From the above we get σ
′
(v⊤y) = 0. But sigmoid is strictly monotonic on R, σ

′
(x) > 0,∀x ∈ R

and v⊤y ∈ R. Hence, σ
′
(v⊤y) = 0 is not possible. Similarly, suppose some component is non-zero

in u and zero in v.

∂σ(v⊤−iy−i)

∂yi
= 0 =

∂(uiσ(yi) + u⊤−iσ(y−i))

∂yi
= uiσ

′
(yi) (103)

Since the derivative of σ cannot be zero, the above condition cannot be true.

From the above, we can deduce that both u and v have same non-zero components.

Let us start with the case where p ≥ 2 components of u, v are non-zero. Below we equate the partial
derivative w.r.t all components of y that have non-zero component in u (since y is in the interior of
the image of B̃x1, we can equate these derivatives).

σ(v⊤y) = u⊤σ(y),

∂pσ(s)

∂sp

∣∣∣∣
s=v⊤y

(
Πvi ̸=0vi

)
= 0 =⇒ ∂pσ(s)

∂sp
= 0.

(104)

Since support X1 has a non-empty interior, the set of values v⊤y takes also has a non-empty interior
in R. Hence, the above equality is true over a set of values s, which have a non-empty interior.
Since σ(s) is analytic, ∂pσ(s)

∂sp is also analytic. From (Mityagin, 2015), it follows that ∂pσ(s)
∂sp = 0

everywhere. From Lemma 2, we know this condition cannot be true.

We are left with the case where u and v have one non-zero component each.

1

1 + e−vy
=

u

1 + e−y
=⇒ 1 + e−y = u+ ue−vy

In the simplification above, we take derivative w.r.t y to obtain e−(v−1)y = 1/uv. We now again
take derivative again w.r.t y to get v = 1 and substitute it back to get u = 1. Note that no other
row of U or V can have same non-zero element because that would make matrix non invertible.
From this we deduce that U and V are permutation matrices. From σ(V y) = Uσ(y) it follows that
U = V = Π. Thus B = ΠB̃ and Ã = AΠ.

Next, we equate predictions for y2 to the ground truth (label y2 exists as T ≥ 2). For all x1 ∈
supp(X1)

σ(Aσ(Λσ(Bx1) +Bx2)) = σ(Ãσ(Λ̃σ(B̃x1) + B̃x2)) =⇒
Aσ(Λσ(Bx1) +Bx2) = Ãσ(Λ̃σ(B̃x1) + B̃x2) =⇒
Ãσ(Λ̃σ(B̃x1) + B̃x2) = AΠσ(Λ̃Π⊤σ(Bx1) + Π⊤Bx2) = Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2).

(105)

We use the simplification in the second step to equate to LHS in the first step as follows.

Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2) = Aσ(Λσ(Bx1) +Bx2)

=⇒ (ΠΛ̃Π⊤ − Λ)σ(Bx1) = 0.
(106)

Since σ(Bx1) spans a set that has a non-empty interior, we get that Λ̃ = Π⊤ΛΠ (from Lemma 3).

From the above conditions, we have arrived at Λ̃ = Π⊤ΛΠ, B̃ = Π⊤B, Ã = AΠ.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

We want to show that for all k ≥ 1

hk = Πh̃k, (107)

where hk = σ(Λhk−1 + Bxk) and h̃k = σ(Λ̃h̃k−1 + B̃xk) and h0 = h̃0 = 0. In other words, we
define Tk as a mapping that takes x≤k as input and outputs hk, i.e., Tk(x≤k) = hk. Similarly, we
write T̃k(x≤k) = h̃k. We want to show

Tk = ΠT̃k,∀k (108)

We show the above by principle of induction. Let us consider the base case below. For all x1 ∈ Rn

Ãσ(B̃x1) = AΠσ(Π⊤Bx1) = Aσ(Bx1) = Ah1 =⇒ h1 = Πh̃1 =⇒ T1(x1) = ΠT̃1(x1)
(109)

Suppose ∀j ≤ k, Tj = ΠT̃j .

Having shown the base case and assumed the condition for j ≤ k, we now consider the mapping
T̃k+1

ΠT̃k+1(x≤k+1) = Πσ(Λ̃h̃k+B̃xk+1) = Πσ(Π⊤ΛΠh̃k+Π⊤Bxk) = σ(Λhk+Bxk) = Tk+1(x≤k+1).
(110)

The prediction from the model (Ã, Λ̃, B̃) at a time step k is denoted as ỹk and it relates to h̃k
as follows ỹk = σ(Ãh̃k). We use the above condition in equation equation 126 to arrive at the
following result. For all x≤k ∈ Rnk

ỹk = σ(Ãh̃k) = σ(ÃT̃ (x≤k)) = σ(AΠT̃ (x≤k)) = σ(AT (x≤k)) = yk

This completes the proof.

Corollary 5. If H follows Assumption 8, and the realizability condition holds, i.e., f ∈ H and
regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk in
equation 1 with ℓ2 loss (with T ≥ 2) achieves permutation identification. Further, under the stated
conditions permutation identification is necessary for both length and compositional generalization.

Proof. We follow the exact steps from the proof of Theorem 5 up to equation 128. From equa-
tion 128 it follows that for all x≤k ∈ Rnk

Tk(x≤k) = ΠT̃ (x≤k) =⇒ hk = Πh̃k (111)

The above implies permutation identification. To show the necessity of permutation identification,
from the proof of Theorem 5 observe that

∀i ≤ T, ∀x≤i ∈ supp(X≤i), σ(Aσ(Bxi+Λhi−1)) = σ(Ãσ(B̃xi+Λh̃i−1)) =⇒ Tk(x≤k) = ΠT̃ (x≤k)
(112)

The latter condition implies permutation identification. If it does not hold, then the condition in LHS
cannot hold and hence neither length nor compositional generalization can be achieved.

C.4.1 EXTENDING THEOREM 5 TO DISCRETE TOKENS

In our discussion, we have focused on settings where the support of each token has a non-empty
interior (Assumption 2). In practice of language modeling, we use discrete tokens and hence As-
sumption 2 does not hold anymore. In this section, we discuss the adaptation of results for vanilla
RNNs to setting when the the support of tokens is a finite set.

Define S = {y = Bx | x ∈ X}, where X is the marginal support of each token.
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Assumption 18. a) For each component i of y, S contains two pairs where the first coordinate
differs by the same amount. Mathematically stated, the two pairs are

(
(yi, y−i), (yi+ δ, y−i))

)
and(

(y
′

i, y
′

−i), (y
′

i + δ, y
′

−i))
)

.

b)For every pair of components i, j of y, S contains a point y that satisfies the following. There
exists three points in S such that they only differ in yi, yj , and form a rectangle, (yi, yj), (y

′

i, yj),

(yi, y
′

j), (y
′

i, y
′

j). Similarly, there exists another set of points where y
′

i < yi and y
′

j < yj .
Theorem 13. If H follows Assumption 8, and the realizability condition holds, i.e., f ∈ H and
regular closedness condition in Assumption 2 holds, then the model trained to minimize the risk in
equation 1 with ℓ2 loss (with T ≥ 2) achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f everywhere
in the support of the training distribution. We start with equating label at length 1, i.e., y1. For all
x1 ∈ supp(X1)

σ(Aσ(Bx1)) = σ(Ãσ(B̃x1)) =⇒ Aσ(Bx1) = Ãσ(B̃x1) =⇒
Ã−1Aσ(Bx1) = σ(B̃B−1Bx1)

(113)

Say y = Bx1, Ã−1A = U , B̃B−1 = V . We substitute these expressions in the simplificaction
below. We pick a y in the interior of B̃ · supp(X1).

σ(V y) = Uσ(y) (114)
Take the first row of V and U as v⊤ and u⊤ to obtain

σ(v⊤y) = u⊤σ(y) (115)

Say vi ̸= 0 and ui = 0. We consider a (yi, y−i) and (y
′

i, y−i) satisfying Assumption 18 a. We
substitute these points in equation 115 and take the difference of the LHS and RHS in equation 115
to obtain.

σ(viy
′

i + v−iy−i)− σ(viyi + v−iy−i) = 0 (116)

σ is strictly monotonic and thus the above cannot be true. Similarly, we can rule out the case when
ui ̸= 0 and vi = 0. Thus we can deduce that both u and v have same non-zero components.

Let us start with the case where p ≥ 2 components of u, v are non-zero. Without loss of generality
say the first two components are among coordinates that are non-zero. Pick a y ∈ S that satisfies
Assumption 18 b. Suppose v⊤y ≥ 0. We select the neighbors of y that form the rectangle such that
each coordinate is greater than y. We substitute these points in equation 115 and the simplification
procedure works as follows. Let

s1 = v1y
′

1 + v2y
′

2 + · · · vnyn, s3 = v1y
′

1 + v2y2 + · · · vnyn
s2 = v1y1 + v2y

′

2 + · · · vnyn, s4 = v1y1 + v2y2 + · · · vnyn
(117)

Observe that s1 > s2 > s4 and s1 > s3 > s4. It is possible that s2 ≥ s3 or s3 > s2. Suppose
s2 ≥ s3.

We can write

σ(s1) = u1σ(y
′

1) + u2σ(y
′

2) + · · ·+ unσ(yn), σ(s2) = u1σ(y1) + u2σ(y
′

2) + · · ·+ unσ(yn)

σ(s3) = u1σ(y
′

1) + u2σ(y2) + · · ·+ unσ(yn), σ(s4) = u1σ(y1) + u2σ(y2) + · · ·+ unσ(yn)
(118)

We take a difference of the first two and the latter two, and subtract these differences to get

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

(
σ(s1)− σ(s2)

)
−

(
σ(s3)− σ(s4)

)
= 0 (119)

From mean value theorem, we get that σ
′
(s̃) = σ

′
(s†), where σ

′
is the derivative of σ, s̃ is a value

between s1 and s2, and s† is a value between s3 and s4. Since s1 > s2 > s3 > s4 > 0, s̃ > s† > 0.
Since σ

′
strictly decreases on positive values, the above equality σ

′
(s̃) = σ

′
(s†) is not possible.

Similarly, we can tackle the case v⊤y < 0.

We are left with the case where u and v have one non-zero component each. From Assumption 18a,
we select two pairs that differe exactly in the non-zero component. We can resort to dealing with
scalars as follows. We start with first pair (y, y + δ).

σ(vy) = uσ(y) =⇒ 1

1 + e−vy
=

u

1 + e−y
=⇒ 1− u = ue−vy − e−y

σ(v(y + δ)) = uσ(y + δ) =⇒ 1− u = ue−v(y+δ) − e−(y+δ)

(120)

By equating the RHS in the above, we obtain

1− e−δ

1− e−vδ
= ue−(v−1)y (121)

For the second pair (y
′
, y

′
+ δ), we obtain

1− e−δ

1− e−vδ
= ue−(v−1)y

′

(122)

If we compare the RHS of equation 121 and equation 122, we obtain ue−(v−1)y = ue−(v−1)y
′

.
Since u is non-zero, we obtain that v = 1. Substituting this into σ(vy) = uσ(y), we also obtain
u = 1.

Note that no other row of U or V can have same non-zero element because that would make matrix
non invertible. From this we deduce that U and V are permutation matrices. From σ(V y) = Uσ(y)

it follows that U = V = Π. Thus B = ΠB̃ and Ã = AΠ.

Next, we equate predictions for y2 to the ground truth (label y2 exists as T ≥ 2). For all x1 ∈
supp(X1)

σ(Aσ(Λσ(Bx1) +Bx2)) = σ(Ãσ(Λ̃σ(B̃x1) + B̃x2)) =⇒
Aσ(Λσ(Bx1) +Bx2) = Ãσ(Λ̃σ(B̃x1) + B̃x2) =⇒
Ãσ(Λ̃σ(B̃x1) + B̃x2) = AΠσ(Λ̃Π⊤σ(Bx1) + Π⊤Bx2) = Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2).

(123)

We use the simplification in the second step to equate to LHS in the first step as follows.

Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2) = Aσ(Λσ(Bx1) +Bx2)

=⇒ (ΠΛ̃Π⊤ − Λ)σ(Bx1) = 0.
(124)

Since σ(Bx1) spans a set that has a non-empty interior, we get that Λ̃ = Π⊤ΛΠ (from Lemma 3).

From the above conditions, we have arrived at Λ̃ = Π⊤ΛΠ, B̃ = Π⊤B, Ã = AΠ.

We want to show that for all k ≥ 1

hk = Πh̃k, (125)
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where hk = σ(Λhk−1 + Bxk) and h̃k = σ(Λ̃h̃k−1 + B̃xk) and h0 = h̃0 = 0. In other words, we
define Tk as a mapping that takes x≤k as input and outputs hk, i.e., Tk(x≤k) = hk. Similarly, we
write T̃k(x≤k) = h̃k. We want to show

Tk = ΠT̃k,∀k (126)

We show the above by principle of induction. Let us consider the base case below. For all x1 ∈ Rn

Ãσ(B̃x1) = AΠσ(Π⊤Bx1) = Aσ(Bx1) = Ah1 =⇒ h1 = Πh̃1 =⇒ T1(x1) = ΠT̃1(x1)
(127)

Suppose ∀j ≤ k, Tj = ΠT̃j .

Having shown the base case and assumed the condition for j ≤ k, we now consider the mapping
T̃k+1

ΠT̃k+1(x≤k+1) = Πσ(Λ̃h̃k+B̃xk+1) = Πσ(Π⊤ΛΠh̃k+Π⊤Bxk) = σ(Λhk+Bxk) = Tk+1(x≤k+1).
(128)

The prediction from the model (Ã, Λ̃, B̃) at a time step k is denoted as ỹk and it relates to h̃k
as follows ỹk = σ(Ãh̃k). We use the above condition in equation equation 126 to arrive at the
following result. For all x≤k ∈ X k

ỹk = σ(Ãh̃k) = σ(ÃT̃ (x≤k)) = σ(AΠT̃ (x≤k)) = σ(AT (x≤k)) = yk

This completes the proof.

C.5 FINITE HYPOTHESIS CLASS

Before we present the proof of Theorem 6, we revisit some basics of convergence of sets. Consider
a sequence of sets (An) which are a subset of Ω, i.e., An ⊆ Ω. We define the lim inf first and then
the lim sup.

lim inf
n→∞

An =
⋃
n≥1

⋂
j≥n

Aj

lim sup
n→∞

An =
⋂
n≥1

⋃
j≥n

Aj

The limit of this sequence of sets exists provided the lim inf and lim sup are equal, i.e.,

lim
n→∞

An =
⋃
n≥1

⋂
j≥n

Aj =
⋂
n≥1

⋃
j≥n

Aj

If the sequence comprises of non-increasing sets, i.e., An+1 ⊆ An, then the limit exists. For this
non-increasing sequence observe that ⋂

j≥n

Aj =
⋂
j≥1

Aj

⋃
j≥n

Aj = An

We combine the above two observations to see both lim inf and lim sup are equal and thus the
limit of non-increasing sets exists. There is another way to define the limit of sets using indicator
functions that goes as follows. 1A(·) is the indicator function that checks if input belongs to the set
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or not and takes the value of one if the input is in the set and zero otherwise. We define the limit
using indicator functions as follows.

lim
n→∞

An = {ω ∈ Ω, lim
n→∞

1An(ω) = 1},

where 1An(ω) is one if ω ∈ An and zero otherwise. The limit of sequence of sets An exists if and
only if limn→∞ 1An(ω) exists for all ω ∈ Ω.
Theorem 6. If H is a finite hypothesis class, the realizability condition holds, i.e., f ∈ H, then
∃ T0 < ∞ such that the model trained to minimize the risk in equation 1 with ℓ2 loss and T > T0
achieves length generalization.

Proof. Let HT be the set of solutions to equation 1, where T is the maximum length of the sequence
in the training distribution. Observe that each HT can take one of the possible values in the power
set 2H, i.e., the set of all the possible subsets of H. Since the objective at length T in equation 1
evaluates the model at all lengths up to length T we obtain that HT+1 ⊆ HT . Since the sequence
HT indexed by T is non-increasing, the limit of the above sequence exists and is denoted as H⋆.
From the indicator function definition of the limit, we can write H⋆ as

H⋆ = {h ∈ H, lim
T→∞

1HT
(h) = 1}

Since the limit of the sequence HT exists, for each h ∈ H, the limit limT→∞ 1HT
(h) exists denoted

as p(h). Each element of this sequence 1HT
(h) indexed by T takes a value of one or zero. From

the standard definition of limit, we know that for each ϵ, there exists T (h, ϵ) such that T > T (h, ϵ),
|1HT

(h)−p(h)| < ϵ. Both 1HT
(h) and p(h) can only take a value of 0 or 1 (for p(h) if there is any

other value it takes, then the distance of sequence terms 1HT
(h) from p(h) will be bounded away

from zero, which is not possible). If ϵ < 1, then for all T > T (h, ϵ), 1HT
(h) = p(h).

Define T0 = suph∈H T (h, ϵ). Since H is finite, T0 <∞.

We can write the set HT as

HT = {h ∈ H,1HT
(h) = 1}

If T > T0, then

HT = {h ∈ H, p(h) = 1} = {h ∈ H, lim
T→∞

1HT
(h) = 1} = H⋆

We now argue that H⋆ contains all length generalizing solutions. Since f ∈ Ht for all t ≥ 1,
f ∈ H⋆. Now let us suppose that there is a g ∈ H⋆, which does not length generalize. In other
words, this g leads to a non-zero error for some finite length T̃ . Thus g cannot be in HT̃ . From the
definition of limit, it follows that H⋆ ⊆ Ht for all t. This leads to contradiction. Hence, such a g
cannot exist. Thus all the solutions in H⋆ the set length generalize, which proves the claim.

D EXPERIMENTS

Here we provide additional experimental results as well as the training details.

Model Architecture In all the architectures, there are two types of non-linearities, ω that generates
the target label, ψ that operates on inputs (used in deep sets and transformers). We use MLPs to
implement these non-linearities. We instantiate MLPs with l hidden layers, and the input, output,
and hidden dimensions are all the same m = n = k. Recall that under the realizability assumption
f ∈ H. Therefore, we need to select the labeling function from H. To do so, the weights of MLP
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Figure 5: Length generalization: Test ℓ2 loss on sequences of different lengths. The models are
trained only on sequences of length up to T = 10. All models achieve small error values ≈ 10−5 −
10−6 at all sequence lengths and thus length generalize. Since the error values are already quite
small, the increasing or decreasing trends are not numerically significant.

are initialized according to N (µ, σ2), where µ = 0.0, σ = 0.6. For RNNs and SSMs, A,B,Λ are
initialized separately for the learner and true generating process as orthogonal matrices. All hidden
layers, as well as the output layer are followed by a sigmoidal activation function.

Training Details and Hyperparameter Selection We train all models with AdamW optimizer
(Loshchilov & Hutter, 2019) with a learning rate of 10−3, weight decay of 0.01, ϵ = 10−8, β1 =
0.9, β2 = 0.95. We reduce the learning rate by a factor of 0.8 if the validation loss is not improved
more than 10−6 for 1 epoch. This drop is followed by a cool-down period of 1 epoch, and the
learning rate cannot decrease to lower than 10−7. For all datasets we use a streaming dataset where
each epoch contains 100 batches of size 256 sampled online from the specified training and test
distributions, and we train all models for 100 epochs. Therefore, the size of the training dataset is
256 × 104 and the size of the testing dataset is 256 × 102. Since our models are generally small,
running the experiments is rather inexpensive, and we carried out each experiment on 4 CPU cores
using 20 GB of RAM. For inference, specially for SSM and RNN with very long sequences, we use
RTX8000 GPUs.

D.1 LENGTH GENERALIZATION

In Figure 5, we present additional findings for length generalization capability of all architectures
when both the learner and the generating process MLPs all consist of one hidden layers with input,
output, and hidden size matching n = m = k = 20.

To complement Figure 3, in Figures 6, 7 we present the prediction behaviour of SSM and RNN
architectures with two hidden layer MLPs for ω trained on sequences output by two hidden layer
MLPs for ρ.

Figures 8, 9, 10, 11 present the prediction behaviour of deep set, Transformer with softmax attention,
SSM, and RNN architectures with one hidden layer in ρ (and one hidden layer MLPs for the learner
ω). Training procedure remains the same. We can observe that all models length generalize.

Additionally, to support the theory on other types of attention, Figures 12, 13 demonstrate the loss
and prediction of a Transformer with ReLU attention and one hidden layer MLPs for ω, ψ trained
on output sequences of a Transformer with ReLU attention and one hidden layer MLP for ρ, ϕ.
Similarly, all these models were trained to predict sequences of length up to T = 10 output by a
true labeling function f in their respective hypothesis classes H, and were tested with sequences
of length up to 100. As a reminder, the output tokens yi ∈ Rm, where m = 20, and the figures
below show only one representative dimension for illustration. All models demonstrate strong length
generalization capacity.

Discrete Tokens In Table 3 we present the results for successful length generalization of the dif-
ferent architectures when the inputs are discrete. We sample all components from [0, 1] interval and
discretize the values to one of the 5 levels in [0.0, 0.2, 0.4, 0.6, 0.8]. Note that the small scale of
values of loss at longer lengths indicate successful generalization. For a visual depiction of results,
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Model Test Loss ×106 (t = 10) Test Loss ×106 (t = 90)
Deep set 3.48± 0.15 52.7± 0.88
Transformer 1.72± 0.27 48.8± 2.44
SSM 0.2± 0.0 4.06± 0.0
RNN 0.22± 0.0 1.3± 0.0

Table 3: Length generalization of different architectures when the input tokens are discrete. Models
are trained in sequences of length up to T = 10 and show successful generalization on much longer
sequences.
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Figure 6: A SSM model with two hidden layer MLP for ω trained on sequences of length up to
T = 10 length generalizes to sequences of length up to 100.

please see Fig. 14. Also note that in all architectures ρ in f and ω in h are comprised of two hidden
layers.

D.2 COMPOSITIONAL GENERALIZATION

Here we present the prediction behavior of different architectures on the test sequences that consist
of unseen token combinations during training. This helps us better interpret qualitatively how the
model actually performs in following the true labels. Figures 16- 19 show the prediction trajectories
for different architectures. We can observe that not only do these models perform quite well on
unseen sequences of length up to T = 10, but they also length generalize and continue to remain
consistent with the true labels on unseen combinations at longer lengths than the training. Table 4
presents the test loss and R2 on the test set when the model is only trained on the red region in

0 20 40 60 80 100
Sequence Length

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

V
al

ue
of

tr
ue

/p
re

di
ct

ed
la

be
l Train Test True Label

Predicted Label

Figure 7: A RNN model with two hidden layer MLP for ω trained on sequences of length up to
T = 10 length generalizes to sequences of length up to 100.
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Figure 8: A deep set model with one hidden layer MLP for ψ, ω trained on sequences of length up
to T = 10 shows perfect generalization to sequences of length up to 100.
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Figure 9: A Transformer model with softmax attention and one hidden layer MLP trained on se-
quences of length up to T = 10 shows perfect generalization to sequences of length up to 100.
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Figure 10: A SSM model with one hidden layer MLP for ω trained on sequences of length up to
T = 10 length generalizes to sequences of length up to 100.
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Figure 11: A RNN model with one hidden layer MLP for ω trained on sequences of length up to
T = 10 length generalizes to sequences of length up to 100.
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Figure 12: Test loss of a transformer model with ReLU attention and one hidden layer MLP for ω, ψ
trained on sequences of length up to T = 10 length generalizes to sequences of length up to 100.
The results are averaged over five seeds.
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Figure 13: A transformer model with ReLU attention and one hidden layer MLP for ω, ψ trained on
sequences of length up to T = 10 length generalizes to sequences of length up to 100.
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Figure 14: Successful length generalization of different architectures (with 2 hidden layers for ρ)
when the input is discrete. From the left: Deep set, Transformer, SSM, RNN.

Model Test Loss ×106 R2

Deep set 1.27± 0.24 0.96± 0.01
Transformer 4.50± 3.28 1.00± 0.00
SSM 11.00± 10.92 1.00± 0.00
RNN 1.22± 0.12 0.99± 0.00

Table 4: Compositional generalization: Test ℓ2 loss and R2 score for models with one hidden layers
on sequences of length T = 10. A strong linear relationship is observed for all models for new
sequences made of unseen token combinations.

Figure 15. All models generalize to unseen combination of tokens and the learned representations
linearly identify the true hidden representations.

Figures 20, 21, 22, 23 present the prediction behaviour of deep set, transformer with softmax at-
tention, SSM, and RNN architectures with two hidden layers in ρ (and two hidden layer MLPs for
the learner ω) when trained on sequences of length up to T = 10 sampled from the red region in
Figure 15. We can observe that all models continue to generalize to unseen combinations beyond
their training length.

Discrete Tokens Evaluating compositional generalization with discrete tokens introduces addi-
tional challenges. This is because we have to sample the training and test distribution according
to Fig. 1 (and 15). There are multiple ways to achieve this but they become infeasible with long
sequences of interest in practice:

• We could continuously sample from the regions in Fig. 1 and 15 and then round up or down
the components to one of the predefined set of values. However, with longer sequences
this translates to sampling and then rounding values in a high-dimensional hyper-diamond
where points are increasingly spread out toward the boundaries. Rounding up results in
corners becoming part of the training samples, corrupting the test set. Rounding down will
result in a training set in which the support of tokens no longer follows Fig. 1 (i.e., does not
cover the discrete set of values predefined in [0, 1]).

• We could instead sample continuously and then discretize based on finding the nearest
neighbour of each point to the points in a discrete grid of values in RT . Having as few as
5 discrete levels renders this sampling procedure impossible for long sequences due to the
complexity of finding nearest neighbours.

• Lastly, one could construct the set of discrete points in RT that satisfy the constraints in
Fig. 1 and then sample from this set, however, this enumeration also proves infeasible as
the search space grows exponentially.

Therefore, evaluating compositional generalization in the discrete case is not straightforward beyond
very short sequences.

Practical Considerations For training and evaluating compositional aspect of generalization, we
follow the sampling procedure described in Figure 1 with a slight modification that allows for faster
sampling and easier training. This procedure is illustrated in Figure 15, and results in a more difficult
testing strategy, as the test set spans a smaller area than the complement of the training set.

We opted for such a procedure because rejection sampling from the complement of the training set
given in Figure 1 is extremely slow. In particular, given our batch size of 256, token dimension n =
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Figure 15: Illustrating the modified support of train vs test distribution for compositional general-
ization. This enables speed up in the sampling procedure, while keeping the challenging aspect of
generalization to the corners.
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Figure 16: A deep set model with one hidden layer MLP for ω, ψ trained on sequences of length
up to T = 10 sampled according to Figure 15 can generalize to unseen test sequences (Figure 15).
Additionally, the compositional generalization holds even beyond the training length.

20, and having 100 batches per epoch, constructing the full test set requires finding 256× 100× 20
sequences of length t ≤ T that are rejected by the original constraints. This becomes quite inefficient
and slow specially in higher dimensions as the sum of the sequence along each component tends to
concentrate more around t/2, therefore it becomes harder to find such sequences (the sum follows
Irwin-Hall distribution since the components come from the Uniform distribution). To improve
the speed of sampling the test dataset, we sample token dimensions xki from the smaller corners
shown in Figure 15 which allows for parallel sampling. These corners correspond to sampling xki ∼
Uniform[0, 1/2T ] or xki ∼ Uniform[1/2 + 1/2T, 1]. This way we can sample token components
independently and in parallel without having to reject any samples, since by construction no test
sequence coincides with the training set. This procedure leaves a gap (see Figure 15) that will not
be sampled neither during training nor testing.

D.3 FAILURE CASES

Although most of our focus has been on the success scenarios for length and compositional gener-
alization, here we provide examples to show how a model might fail.
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Figure 17: A Transformer model with softmax attention and one hidden layer MLP for ω trained
on sequences of length up to T = 10 sampled according to Figure 15 can generalize to unseen
test sequences (Figure 15). Additionally, the compositional generalization holds even beyond the
training length.
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Figure 18: A SSM model with one hidden layer MLP for ω trained on sequences of length up
to T = 10 sampled according to Figure 15 can generalize to unseen test sequences (Figure 15).
Additionally, the compositional generalization holds even beyond the training length.
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Figure 19: A RNN model with one hidden layer MLP for ω trained on sequences of length up
to T = 10 sampled according to Figure 15 can generalize to unseen test sequences (Figure 15).
Additionally, the compositional generalization holds even beyond the training length.
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Figure 20: A deep set model with two hidden layer MLP for ω, ψ trained on sequences of length up
to T = 10 sampled according to Figure 15 can generalize to unseen test sequences. Additionally,
the compositional generalization holds even beyond the training length.
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Figure 21: A Transformer model with softmax attention and two hidden layer MLP for ω trained
on sequences of length up to T = 10 sampled according to Figure 15 can generalize to unseen test
sequences. Additionally, the compositional generalization holds even beyond the training length.
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Figure 22: A SSM model with two hidden layer MLP for ω trained on sequences of length up to
T = 10 sampled according to Figure 15 can generalize to unseen test sequences. Additionally, the
compositional generalization holds even beyond the training length.
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Figure 23: A RNN model with two hidden layer MLP for ω trained on sequences of length up to
T = 10 sampled according to Figure 15 can generalize to unseen test sequences. Additionally, the
compositional generalization holds even beyond the training length.

f is not realizable in H In Figures 25, 26, 27, 28, we present the predictions of learned models
from different architectures initialized in their respective H that does not contain the true f . In
particular, we have the following for the different architectures:

• Deep set: The true labeling function f is a deep set with one hidden layer MLPs for ρ, ϕ,
but the learner uses h, a deep set model for which the MLPs ψ, ω have no hidden layers.

• Transformer: The true labeling function f is a Transformer with 1 hidden layer in ρ, but
the learner uses h, an RNN with 1 hidden layer in ω.

• SSM: The true labeling function f is an SSM with 1 hidden layer in ρ, but the learner uses
h, an RNN without any hidden layers in ω.

• RNN: The true labeling function f is an RNN with 1 hidden layer in ρ, but the learner uses
h, a Transformer with 1 hidden layer in ω.

In each case, the learner is trained on sequences of length up to T = 10 and its performance on the
test set at longer lengths indicates whether generalization is possible or not. For a visual illustration
of such failures beyond the training length, see Figures 25, 26, 27, 28. We can observe that the
model can predict the test sequence well up to the length it has learned during training, but starts to
diverge from the true labels beyond that. This demonstrates a failure case in which the realizability
condition is violated.

f is realizable in a high capacity H For a given H, if all solutions to 1 achieve length generaliza-
tion or compositional generalization, then we can guarantee length or compositional generalization
regardless of the training procedure. When the capacity of H becomes very large, it continues to
contain the right solutions but it starts to contain many incorrect solutions that match the true solu-
tion only on the support of training distribution. In such a case, there is no reason to presume that
our learning procedure picks the right solution to 1 that also achieves length and compositional gen-
eralization. Figure 24 show experiments illustrating the above. We experiment with the following
scenarios for deep sets and transformers:

• Deep set: We use the labeling function that takes the following form f = ρ(
∑

i≤t ϕ(xi))

for t ≤ T and f = ρ(
∑

i≤t ϕ(xi)) + c for t > T with c = 0.2, T = 5. We use 1 hidden
layer MLPs for ρ, ϕ (with no activation on the output of ρ). We use 2 hidden layer MLPs
for ω, ψ for h so that it can express the above labeling function. The input, hidden, and
output dimensions are all equal m = n = k = 20 for f, h. We train on sequences of
length longer than T to demonstrate this expressivity claim. When the model is trained on
sequences of length less than T , due to the simplicity bias of the training procedure model
learns ρ(

∑
i≤t ϕ(xi)) and uses it on longer sequences and hence fails.

• Transformer: We use the labeling function that takes the following form f =

ρ(
∑i

j=1
1
iϕ(xi, xj)) for t ≤ T and f = ρ(

∑i
j=1

1
iϕ(xi, xj)) + c for t > T with
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Deep set Loss (t < T0) Loss (t ≥ T0)
Fig 2-a 0.001± 10−4 0.002± 3× 10−4

Fig 2-b 0.0007± 10−4 0.007± 0.001

Transformer Loss (t < T0) Loss (t ≥ T0)
Fig 2-c 0.0006± 10−4 0.006± 3× 10−3

Fig 2-d 10−5 ± 10−6 0.01± 0.003

Table 5: Length generalization of different architectures when the hypothesis class H is highly
expressive. For further details see Fig. 24
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Figure 24: A failure case of length generalization under arbitrary expressive generative model with
(a,b) Deep sets, (c,d) and Transformer. The generative function on both cases introduces an offset
to sequences longer than some critical length (T0). The learner is once trained on sequences longer
than T0 and successfully generalizes (a,c), and once is trained only on sequences shorter than T0
where the offset never appears, and hence fails to generalize beyond that.

c = 0.1, T = 10. We use 1 hidden layer MLPs for ρ (with no activation on the output of
ρ). We use a Transformer with 3 hidden layer MLPs for ω so that it can express the above
labeling function. The input, hidden, and output dimensions are all equalm = n = k = 20
for f, h. We train on sequences of length longer than T to demonstrate this expressivity
claim. When the model is trained on sequences of length less than T , due to the simplicity
bias of the training procedure model learns f = ρ(

∑i
j=1

1
iϕ(xi, xj)) and uses it on longer

sequences and hence fails.

The failures of such degenerate solutions can be visualized in Figure 24 (right), where the predic-
tions diverge from the true values when the model is only trained on sequences shorter than T0.
Figure 24 (left) shows that when the model is trained on sequences longer than T0, it can success-
fully generalize to longer lengths. Table 5 further validates this observation numerically. It presents
the test loss of each model at lengths shorter and longer than T0 under the two training schemes: a)
When trained only on sequences of length shorter than T0 (rows corresponding to Fig 2-b and 2-d
which result in failure due to degenerate solution), b) when trained on sequences of length longer
than T0 (rows corresponding to Fig 2-a and 2-c which result in successful generalization).
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Figure 25: A failure case of length generalization in the unrealizble setting: The predictions come
from a deep set with linear layers for ψ, ω trained to predict the sequences (of length up to T ) output
by a deep set with 1 hidden layer MLPs for ϕ, ρ. In this case the realizability condition does not
hold, and the learner fails to length generalize.
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Figure 26: A failure case of length generalization in the unrealizble setting: The predictions come
from an RNN with 1 hidden layer in ω trained to predict the sequences (of length up to T = 10)
output by a Transformer with 1 hidden layer in ρ. In this case the realizability condition does not
hold, and the learner fails to length generalize.
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Figure 27: A failure case of length generalization: The predictions come from an RNN without any
hidden layers in ω trained to predict the sequences (of length up to T = 10) output by an SSM with
1 hidden layer in ρ. In this case the realizability condition does not hold, and the learner fails to
length generalize.
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Figure 28: A failure case of length generalization: The predictions come from a Transformer with
1 hidden layer in ω trained to predict the sequences (of length up to T = 10) output by an RNN
with 1 hidden layer in ρ. In this case the realizability condition does not hold, and the learner fails
to length generalize.
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