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Abstract

In streaming data, distributional shifts can appear both in the univariate dimensions
and in the joint distributions with the labels. However, in many real-time scenarios,
labels are often either missing or delayed; Unsupervised drift detection methods
are desired in those applications.
We design slidSHAPs, a novel representation method for unlabelled data streams.
Commonly known in machine learning models, Shapley values offer a way to
exploit correlation dependencies among random variables; We develop an unsuper-
vised sliding Shapley value series for categorical time series representing the data
stream in a newly defined latent space and track the feature correlation changes.
The slidSHAP series allows us to track how distributional shifts affect the corre-
lations among the input variables independently from any kind of labeling. We
show how abrupt distributional shifts in the input variables are transformed into
smoother changes in the slidSHAP series, allowing for an intuitive visualization of
the shifts when they are not observable in the original data.

1 Introduction

Time series analysis includes forecasting, anomaly detection, and concept drift identification. Concept
drifts in time series refer both to distributional changes in the labels and in the input variables of the
time series; Distributional shifts in the input variables gain traction in the unsupervised case when
labels are not available, delayed and when unreliable or expensive to obtain.

Commonly used in machine learning applications, Shapley values gained increased popularity [25].
Not yet widely spread in time series, they are recently timidly appearing for anomaly detection, label
prediction, and interpretability [5, 31, 26, 30]. The challenge to face in streaming data is the pairing
of Shapley values as importance scores with the time-dependence. Distributional shifts have not yet
been fairly explored using Shapley values; While some attempts refer to drifts in label-input variables
distribution, to the best of our knowledge, none contextualize them for shifts in the input variables.
Due to the chaotic structure of the data streams, changes in correlation among input variables can be
hard to visualize, making the detection itself a jump of trust in the concept drift detector. Hence, we
introduce th slidSHAP series, a time-dependent series representing the distributions and correlations
among subsets of the streaming data’s input variables. Based on Shapley Values, we obtain an
unsupervised tool for visualizing and detecting distributional shifts in the original N -dimensional
time series through a new N -dimensional latent space. This preliminary work is a representation
method for unlabeled discrete time series; Although we now focus on time series whose dimension
assumes a finite number of values, future work generalizes the approach to a broader application.
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2 Methods

A cooperative game is a pair (P, ν) where P = {X1, . . . , XN} is the set of players and ν a value
function, i.e., a set function ν : P(P ) → R+. Shapley values SV [27] are computed for each player
Xi ∈ P as

ϕ(Xi) =
∑

A⊆P\{Xi}

kA · (ν(A ∪ {Xi})− ν(A)) (1)

where kA depends on N and the size of A. SVs have been used as a mean for achieving interpretability
of black-box models [17, 28] but, more generally, they represent a way of distributing resources
among players in a game. Balestra et al. [4] proposed SVs within an unsupervised feature selection
method; the authors used them to encode the structure and the correlations within subsets of features
of an unlabelled tabular data set with categorical entries. Given a set of N discrete random variables
F = {X1, . . . , XN}, the authors propose to interpret F as a set of players; In order to encode the
data structure and the correlations within subsets of F , they argued in favor of using as value function
a correlation metric. They proposed for their categorical context the total correlation, i.e.,

ν(A) = H(A)−
∑
X∈A

H(X) (2)

where H(·) is the discrete Shannon entropy [4]. The encoding of the correlations using the total
correlation and the use of Shapley values enables to extract information from the data set based on the
correlations’ structure; the result is that features obtaining high Shapley values are highly correlated
with subsets of the other variables while features with lower Shapley values are uncorrelated with the
other variables.

2.1 Time series and sliding windows

Let X = (X1, . . . , XN ) be a multivariate N -dimensional discrete time series, Xi the i-th univariate
dimension of the time series. We indicate with t1 the first timestamp on which the time series is
defined. For each timestamp tk > t1, X(tk) is a N -dimensional vector of discrete values, i.e.,
Xi(tk) ∈ Di and the cardinality of Di is finite.

We define overlapping sliding windows as a series of time windows {ws}s∈N through a window
length d and overlap a among adjacent windows, i.e.,

ws = {ts(d−a), . . . , ts(d−a)+d−1}. (3)

Each window ws contains d timestamps, and a is the number of timestamps lying in the overlap
among adjacent windows, i.e., |ws ∩ ws+1| = a for each s ∈ N. After fixing a and d, at the current
timestamp tT we have created M(T ) =

⌊
T−d+1
d−a

⌋
time windows; hence, for a fixed windows’ length

d, the larger is the overlap a, the higher the number of windows created and for fixed overlap a, the
number of windows decreases for increasing d. Note that a, d ∈ N+.

1

2d-a

and overlap a

d-a

Figure 1: Construction of the slidSHAPs.
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Figure 2: COR3: In the upper plot, the slidSHAP series; in the lower plot, the original time series in
the interval {2900, . . . , 3100} where the distributional shifts happen.

2.2 slidSHAPs

Given a multivariate time series X with N -dimensions we can interpret the value the i-th dimension
at timestamp tk Xi(tk) as the realization of a discrete (categorical) random variable Xi; hence,
given the set of timestamps {t1, . . . , tT }, {Xi(t1), . . . , Xi(tT )} are T independent realizations of
the random variable Xi. Similarly, we can interpret {X(t1), . . . , X(tT )} as the set of realizations of
a N -dimensional discrete random variable. This interpretation allows us to study the correlations
among the univariate dimensions of X .

We interpret the realizations of a time series on a time window ws as a discrete tabular data set
with N columns and d rows; this allows us to compute a Shapley value for each column, i.e., for
each univariate dimension of the time series using [4]. Our goal remains the one of visualizing the
correlations’ structure among dimensions of streaming data; thus, we want to keep a trace of the
distributional changes over time. We use the sliding time windows {ws}s∈N defined in Section 2.1
and compute Shapley values of the univariate dimensions of X when restricted to the wss; Hence,
we compute the Shapley values for each univariate dimension Xi of the streaming data in the time
window ws, i.e., Si(s) = ϕ(Xi

ws
). For each time window ws, we obtain a vector of Shapley values

S(s) = [S1(s), . . . , SN (s)] ∈ RN and each Si(s) consider the correlations of Xi with the other
dimensions of the time series in ws.

As described in Section 2.1, the computation of the Shapley values inherits from the ws the same
time-dependency. Figure 1 represents a visual schema for the slidSHAPs series construction process.
From the original discrete time series X assuming finite values, we extrapolate information about
the univariate dimensions’ correlations and transfer the structure of the data stream to a new N -
dimensional real-valued series, i.e., each slidSHAP value is a N -dimensional real-valued vector.
We interpret the space on which the slidSHAP values are defined as a latent space where we have
projected the correlation structure of the original time series. As the sliding windows are partly
overlapping, given two close-by indices s1, s2, the information conveyed by S(s1) and S(s2) relate
to partly overlapping time windows of the original time series X; Hence, the set up of the parameters
a and d for the windows’ creation is essential to set up the granularity for the Shapley values’
computations.

Finally, we underline that the slidSHAP series is not dependent on the same time notion of the
original time series; when we write S(s), s represents the index of the time window on which the
Shapley values have been computed, i.e., S(s) is the vector of Shapley values in the time window
ws = {ts(d−a), . . . , ts(d−a)+d−1} while X(tk) is the value of the time series at the time stamp tk
and it is a N -dimensional discrete-valued vector.

2.3 Distributional shifts in the univariate dimensions

When dealing with real-world time series, often only a few of the input variables are subject to
distributional changes; on the other hand, those changes could affect the correlation structure of the
whole set of input variables. We use slidSHAPs as an unsupervised tool for unlabelled time series
obtained sliding over time windows of fixed amplitude to visualize the correlation structure in the
time series. Targeting to detect distributional shifts of the input variables in an unsupervised manner,
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Figure 3: Feature importance before and after the first concept drift in each dataset; The color
represents the average value of each sliding window corresponding to the slidSHAP value.

we employ the non-parametric and distribution-free two-sample Kolmogorov-Smirnov Test (K-S
Test) and the classical t-test. We slide windows on the slidSHAP series and perform the statistical
testing on each of the univariate variables following the approach proposed in [23].

3 Experiments

Datasets: We use synthetic datasets and a common benchmarking dataset to show the performances
of slidSHAPs. We first create two 10-dimensional synthetic datasets; in COR3, the correlations
among the input variable change every 3000 data instances, while in COR20 the changes happen every
5000 instances. Furthermore, we employ the standard benchmark dataset LED where distributional
shifts happen every 9000 instances. The concepts underlying the input variables’ distributions in all
datasets change abruptly at specific time stamps. More details on the dataset construction and their
characteristics can be found in Appendix C.

Results: We used the datasets to show our representation of the time series correlations on the latent
space. Figure 2 shows how the slidSHAP series are visually more appealing than the original data
streams in visualizing distributional shifts. In COR3 the distributional shifts happen at the time stamps
3000 and 6000. Using slidSHAPs (a = 900, d = 1000), we see that the abrupt changes are smoothed
out in the upper plot; in the lower plot, the original time series data, where, although containing a
significant distributional shift, it is not possible to observe any. Figure 5 (in the Appendix) shows the
slidSHAP series for the other two datasets; we plotted dashed lines, where the shifts happen, and
where they have been detected using statistical testing.
We checked for changes in the slidSHAP series and plotted them against the changes in the range
of values in which the dimensions of the time series vary. The values of the sliSHAPs in the time
windows are averaged and color-coded in the plots. Intuitively, a distributional drift in the input
space causes a change in the slidSHAP values, which can be detected as concept drift (e.g., X4

and X7 in LED). Figure 3 shows this comparison in the LED and COR20 datasets before and after
the first distributional shift. Furthermore, the slidSHAP series also clearly show the shifts of some
non-observable input space drifts, where the amplitude of features stays in the same range while the
feature correlation changes. Significant changes can still be observed in the slidSHAP values (e.g.,
X10 in COR20).

4 Discussion and conclusions

In real-time applications, streaming data appear with or without labels. In this second case, distribu-
tional shifts can appear in one or more of the input dimensions. We propose the slidSHAP series,
a new representation of the time-dependent correlations among input variables of unlabelled time
series; slidSHAPs allow for visualizing distributional changes in the input features as well as keeping
track of the correlations changes among the input dimensions. We base our approach on a feature
correlation-based value function, hence being completely unsupervised. The visualization of the
slidSHAP series provides additional understanding of the often non-observable correlational shifts in
the input variables. The experimental results show our approach’s effectiveness in various synthetic
data sets. Future work will include the study slidSHAPs in real-world scenarios.
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A Related work

Several approaches are proposed in the state-of-the-art literature to deal with concept drifts in time
series. Many approaches are based on prediction error rate, where the distributional shift appears
in P(y|X) instead of in the input variables P(X) [16, 7, 15]. However, the increasing number of
scenarios where time series data are collected and no labels are provided increased fast; the necessity
of dealing with distributional shifts on input variables forced the development of unsupervised concept
drift detection methods. Among the several representation learning approaches used for detecting
drift, we recall the most common. Bifet et al. [7] use the mean values of defined adaptive windows
to represent the univariate dimensions of the time series, while Cavalcante et al. [8] employ a few
linear and non-linear features to represent the whole time series. Da Costa et al. [10] propose to
apply multidimensional Fourier transformation to get information about the frequency domain. More
recently, a combination of multiple statistical features of the time series data has been proposed as
meta-information vectors [16]. Other approaches measure the distributional discrepancy between
data from different periods: It is the case in HDDDM [12] that measures the Hellinger distance
between two distributions and Dasu et al. [11] that partition data via constructing a Kdq-Tree and
generalize the Kulldorff’s spatial scan statistic, allowing to identify regions in the Kdq-Tree with
the most considerable changes quantitatively. Unfortunately, all the methods above do not explicitly
monitor the correlation changes between features and may miss some drifts appearing in this domain.
In the state-of-the-art literature, feature correlation in time series is mainly studied using covariance.
Attempts to extend the limitation of using only covariance appeared in [2], where both mean, and
covariance is used to represent the concepts in multivariate data streams. Qahtan et al. [22] detect
concept drifts using the covariance matrix, tracking covariance changes in a transformed artificial
low-dimensional space obtained applying PCA on the original time series data; thus, their approach
does not explicitly reflect the correlation change in the original input space. A few works are worth
to be mentioned where Shapley values have been applied for drift detection: Zheng et al. [33] show
that the traditional Shapley value in a classification context can also be used for drift detection.
Zhao et al. [32] employ Wasserstein distance and Energy distance to detect feature drifts without
label and apply Shapley value and LIME [24] as post-hoc interpretation for the detected drifts.
Moreover, supervised and unsupervised distributional shift detection are of great importance in
many critical contexts, for example, in time series for health applications. Applications vary among
surgery prediction, medical triage, heart diseases prediction [1, 6, 13]. Also, in the medical context,
unsupervised distributional shifts are getting more and more importance [14].

Introduced by Shapley in 1953 [27], Coalitional Game Theory became popular in machine learning
in the early 2000s. Cohen et al. [9] introduced Shapley values as a fair evaluation for features’
contributions in order to achieve supervised feature selection. Later, Shapley values were applied to
interpret black-box models by Lundberg et al. [17]. The success of their use in machine learning,
brought to further extensions and applications both in the machine learning community [20, 21]
and in bioinformatics [29, 18]. In recent years, Shapley values also started being applied to time
series data. TimeSHAP [5] being one of the first extensions of Shapley values to time series is based
on KernelSHAP [17]; The authors propose a method to compute Shapley values to get event- and
feature-level explanations and provide insights on reducing Shapley computation’s computational
complexity. Saluja et al. [26] propose an application for prediction and forecasting of the income of a
consulting company; Antwarg et al.[3] introduce two different methods. The first approach looks for
anomalies through the reconstruction error and the autoencoder; the method is based on comparing
the Shapley values of the original features and the reconstructed ones. Taikeish [30] studies the
difference among Shapley values of single instances before and after a change in one feature that
makes the instance itself anomalous. Nguyen et al. [19] explain the anomalies by analyzing the
gradients to identify the main features affecting the anomalies.
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B Experiments

Evaluation metric For each synthetic dataset, the slidSHAP series are computed with various
combinations of sliding window lengths and overlaps, i.e., the parameters a and d. In order to evaluate
the concept drift detection on the newly defined slidSHAP series, we need to include labels from
the ground truth from the original time series; since we built the time series with drifts happening at
specific timestamps, we need to transfer the induced labeling to the new slidSHAP series.

B.1 Distributional shifts detection

We apply a sliding window with window length d = 1000 over each time series dataset, and we
examine the detection performance under different sliding window ovrerlap sizes a ∈ {990, 900, 500}.
We conduct the K-S tests at significance level α = 0.05 with buffers of length 5. As shown in Table 1,
higher a leads to more false positive detection and slightly better accuracy. We are able to figure out
that the model becomes more sensitive to drifts due to the increase of slidSHAP curve smoothness.

Table 1: Drift detection performance (α = 0.05)

a = 990 a = 900 a = 500

TP FP FN ACC TP FP FN ACC TP FP FN ACC

COR3 0 6 2 0.990 1 2 1 0.958 1 1 1 0.714
COR20 7 115 12 0.987 19 43 0 0.956 17 1 2 0.984
LED 0 22 9 0.997 3 5 6 0.988 2 2 7 0.947

The step size is considered a factor of granularity in the slidSHAPs. For each concept drift, a smaller
d leads to more sliding windows, thus more slidSHAP instances containing the same drift event so
that the trend in slidSHAPs becomes smoother. As in Figure 4, we plot the nearby slidSHAP values
of the first distributional shift in each dataset. As the overlap size a decreases, the shift becomes more
abrupt in the slidSHAP space.

Note that even if only a few dimensions are affected by distributional shifts, all slidSHAPS are
affected. This happens as Shapley values evaluate how the dimensions are correlated; when some
dimension Xi shifts to another distribution, all the other input dimensions which were correlated with
Xi or that are correlated with Xi after the shift has happened are affected (cf. Appendix C).
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Figure 4: slidSHAP evolution of the first concept drift in each dataset: Each solid line denotes the
slidSHAP values on a feature dimension. The dashed blue line depicts the first concept drift position.

B.2 sildSHAP visualization

In Figure 5, we visualize complete slidSHAPS series.
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Figure 5: slidSHAPs of the LED dataset and the COR20 dataset both using windows’ length 1000
and overlap = 100. The blue dashed lines indicate the true position of the distributional drifts, while
the grey dashed lines are where they have been detected using the t-test on the slidSHAPs.

C Dataset details

COR3 contains 9000 instances and 10 dimensions; two distributional shifts happen respectively at
timestamp 3000 and 6000, involving only 3 of the dimensions of the time series data. In COR3, the
first 3 dimensions are randomly and individually sampled integers, X1 ∈ [1, 30], X2 ∈ [−20,−10],
X3 ∈ [1, 10]. Moreover, we define an integer random noise ϵ ∈ [1, 3]. The remaining dimensions are
correlated with the first dimensions,

• X4 = X1 −X3 + ϵ

• X5 = X1 + ϵ

• X6 = X1 + ϵ

• X7 = X1 +X3 + ϵ

• X8 = X2 +X3

• X9 = 2×X3 −X2

• X10 = 2×X2 + 3×X3

3000 data instances are generated in this way in the first 3000 timestamps. To simulate a distrubutional
shift, we change the following four dimensions to,
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• X4 = X1

• X5 = X1

• X6 = X1

• X7 = X1

The new concept also lasts 3000 timestamps. Finally, the first concept reappears again as the third
distributional shift. The three concepts are concatenated directly at the timestamps 3000 and 6000,
respectively.

COR20 contains 20 different 10-dimensional concept, each concept lasts 10000 timestamps. The first
3 dimensions are also randomly and individually sampled integers, d1, X2, X3 ∈ [1, 10]. To generate
each concept, we randomly select Xa, Xb ∈ {X1, X2, X3}, and define the remaining dimensions as,

• X4 = Xa −Xb

• X5 = Xa +Xb

• X6 = X3

• X7 = Xa

• X8 = Xb

• X9 = 2×Xa −Xb

• X10 = 3×Xa + 2×Xb

All concepts are concatenated directly as abrupt concept drift. To be noticed, if Xa = Xb, X4

becomes constant. We enforce that adjacent concepts cannot have the same Xa and Xb. The first
concept reappears at every 5th concept.
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