
LangCompress: Language-Aware Compression of Large Language Models

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) demonstrate002
strong multilingual capabilities but are costly003
to deploy due to their size and computational004
demands. To mitigate this, compression tech-005
niques such as pruning and quantization are006
widely used. However, these methods face two007
key limitations: (1) they assume access to high-008
quality instruction or calibration data, which is009
often unavailable for low-resource languages;010
and (2) they aim to preserve multilingual gen-011
erality, making them inefficient for language-012
specific applications. We introduce LANG-013
COMPRESS, a language-aware compression014
framework that enhances existing compression015
methods for targeted deployment. LANGCOM-016
PRESS is method-agnostic and improves state-017
of-the-art pruning and quantization approaches.018
It features two core components: an iterative019
self-supervised pipeline for generating instruc-020
tion data in the target language, and a vocab-021
ulary simplification strategy that reduces the022
LM head to focus on key tokens. Experiments023
on perplexity, translation, and summarization024
tasks show that LANGCOMPRESS improves025
performance in the target language. The code026
and data is publicly available.027

1 Introduction028

Large Language Models (LLMs) are massive neu-029

ral networks, often comprising billions of parame-030

ters and trained on trillions of tokens. Due to the031

immense cost of training such models from scratch,032

the community has largely adopted the founda-033

tion model paradigm, in which a single pre-trained034

LLM is reused across a wide range of downstream035

tasks. Despite their versatility, LLMs are computa-036

tionally expensive to deploy, both in terms of mem-037

ory usage and inference time. This high inference038

cost has driven widespread interest in model com-039

pression techniques to reduce the computational040

and memory requirements of LLMs without signif-041

icantly degrading performance.042

Ours: LangCompress Model Compression

Compressed

LLM

Original

LLM

Prune/Quantize

Recovered

LLM

Compressed

LLM

Original

LLM

Prune/Quantize

Recovered

LLM

Simplify LM Head Simplify LM Head

Recovery train

State-of-the-art Model Comression

Recovery train

Key Token
Analyze

Instruct Data
Synthesis

Calibrate onInstruct data

not available
Recovery on

Instruct data

Calibrate on Recovery on

Key Tokens

Figure 1: Model compression in a specific language
(Japanese in the example) using SOTA compression
approach and our LANGCOMPRESS approach.

Two of the most common model compression 043

strategies are pruning (Frantar and Alistarh, 2023; 044

Zhang et al., 2024; Sun et al., 2024) and quantiza- 045

tion (Frantar et al., 2023; Lin et al., 2024). While 046

pruning removes less important weights or neurons 047

from the model, quantization reduces the precision 048

of weights and activations. Pruning approaches 049

typically require recovery fine-tuning to maintain 050

performance, while quantization techniques often 051

need calibration data to determine optimal quantiza- 052

tion scales. While these approaches show great effi- 053

ciency in English, they are not designed to maintain 054

performance in other languages (Figure 1, Top). In 055

real-world applications—especially under resource- 056

constrained conditions—users often wish to de- 057

ploy LLMs for one or a few specific languages 058

rather than all languages supported by the LLM. 059

Unfortunately, current compression methods are 060

not designed to be language-adaptive. For example, 061

abundant instruction-tuning datasets are available 062

1

in English, facilitating efficient recovery training063

and calibration. In contrast, such data is scarce064

or non-existent in many low-resource languages,065

hindering the application of existing compression066

techniques.067

Another source of inefficiency lies in the final068

layer of an LLM: the language modeling (LM)069

head, which maps hidden representations to a large070

vocabulary covering many languages. Our analy-071

sis reveals that for a given language, a very small072

subset of the full vocabulary is actually used. For073

instance, just 5% of the model’s vocabulary can074

often cover more than 95% of the tokens used in075

a specific language. This insight motivates a new076

approach to simplify the LM head and adapt it to077

a specific language, both to reduce model size and078

improve performance.079

We propose LANGCOMPRESS, a language-080

aware compression framework tailored for adapting081

LLMs to a specific language or a small set of target082

languages (Figure 1, Bottom). LANGCOMPRESS is083

method-agnostic and can be integrated into state-of-084

the-art compression methods, including structured085

pruning techniques such as SliceGPT and LLM-086

Pruner, semi-structured pruning like SparseGPT,087

and quantization approaches such as GPTQ and088

AWQ.089

To address the scarcity of instruction-tuning data090

in many languages, LANGCOMPRESS uses the091

LLM itself to iteratively generate synthetic instruc-092

tion datasets in the target language. Furthermore,093

we introduce a vocabulary simplification technique094

that identifies key tokens sufficient for representing095

the language and modifies the LM head accord-096

ingly. This dual approach reduces the model’s size097

and improves its focus on the target language. This098

study has the following contributions.099

• A self-supervised pipeline for generating in-100

struction data in any language, enabling recov-101

ery training and calibration in the absence of102

publicly available resources.103

• A method for analyzing and selecting core104

vocabulary tokens in a target language, and105

adapting the LM head of an LLM to focus on106

these tokens.107

• Empirical evaluations demonstrating that108

LANGCOMPRESS can be effectively applied109

to state-of-the-art pruning and quantization110

techniques, yielding substantial performance111

improvements on language-specific tasks.112

2 Preliminaries 113

LLM and Vocabulary. Let M denote a pre- 114

trained LLM with vocabulary V . The model com- 115

prises transformer decoder layers that operate on 116

d-dimensional hidden states. The final layer’s out- 117

put is projected through a language modeling (LM) 118

head with weight matrix WLM ∈ R|V|×d, produc- 119

ing logits over the vocabulary. 120

M includes a vocabulary dictionary (tokenizer) 121

that bijectively maps tokens to their IDs. At each 122

generation step, the model outputs logits l ∈ R|V| 123

representing the next-token distribution. Generated 124

token IDs are subsequently mapped back to natural 125

language tokens via the vocabulary dictionary. 126

Unstructured Pruning. Pruning reduces model 127

size and computation by removing unimportant 128

weights or structures. It can be categorized into un- 129

structured, semi-structured, and structured pruning. 130

Unstructured and semi-structured pruning methods 131

(Hassibi et al., 1993; Li and Louri, 2021; Fran- 132

tar and Alistarh, 2023; Sun et al., 2024; Zhang 133

et al., 2024; Le et al., 2025) zero out weights in 134

the model, creating sparsity. Semi-structured prun- 135

ing imposes an N :M constraint, where at least N 136

out of every M consecutive weights are pruned. 137

In practice, only semi-structured pruning achieves 138

speedup on compatible NVIDIA hardware (Mishra 139

et al., 2021). We adopt SparseGPT (Frantar and 140

Alistarh, 2023) for semi-structured pruning in our 141

experiments. These methods rely on calibration 142

data, and the data’s domain or language can signifi- 143

cantly affect pruning outcomes. 144

Structure Pruning. Structured pruning removes 145

entire model components (layers, attention heads) 146

to reduce model size (Ashkboos et al., 2024; Ma 147

et al., 2023). This approach requires both calibra- 148

tion data during pruning and recovery fine-tuning 149

on task-specific data to restore performance. 150

Quantization. Quantization compresses models 151

by reducing parameter precision, typically convert- 152

ing 16/32-bit floats to 8/4-bit integers. For a weight 153

matrix W, each element w is mapped to integer 154

values ŵ = round(w/s) + z using scale s and 155

zero-point z, then dequantized as w̃ = s(ŵ − z) 156

during inference. Optimal scaling requires cali- 157

bration data, posing challenges for low-resource 158

languages where such data is scarce. 159

2

Add to data

<|start|>system<|end|>

System prompt

(in target language)

<|start|>user<|end|>

LLM's Chat Template

Sampling with
temperature

Language
Filtering

LLM

<|start|>assistant<|end|>

<|start|>assistant<|end|>

Instruction

Instruction &

Response

+

+

Instruction Data

in target language

Add as few-shot

Filtered

Instruction

Generate
response

Raw corpus of
target language

(Wiki, Fineweb, etc.)

Tokens

Token

Distributions

Sorted

Token

Distributions

Apply chat template

Instruction Data Synthesis Key Token Analysis

Key Tokens

Figure 2: Instruction data synthesis pipeline in the target language, with an example of Japanese language.

3 LANGCOMPRESS160

3.1 Overview161

LANGCOMPRESS is designed to be applied on162

top of any existing compression technique—such163

as structured pruning, semi-structured pruning, or164

quantization—which we refer to as the backbone165

method. The LANGCOMPRESS pipeline consists of166

two main components: instruction data synthesis167

and vocabulary simplification. At the beginning168

of the compression process, we use the original169

pretrained LLM to synthesize instruction data in170

the target language. This synthetic dataset is sub-171

sequently employed in the calibration and recov-172

ery fine-tuning stages of the backbone method, en-173

abling effective compression even in low-resource174

language settings. Concurrently, we perform vo-175

cabulary analysis to identify a compact set of key176

tokens that cover the majority of the target lan-177

guage’s usable vocabulary. After the compression178

step is complete, we simplify the language mod-179

eling (LM) head by retaining only the parameters180

corresponding to these key tokens. This modifica-181

tion reduces the model size and enhances its focus182

on the target language.183

3.2 Data Synthesis for Target Language184

Figure 2 (left) shows the process of instruction data185

synthesis for a target language with an example of186

Japanese. Previous study shows that because of187

the auto-regressive nature of LLM, with a suitable188

system prompt, it can generate the instruction when189

we input only the pre-query templates up to the190

position reserved for user messages. One problem191

is that the although the system prompt is in the192

target language, the LLM does not guarantee to193

generate the instruction in the target language. We194

address this using an iterative pipeline to gradually195

add few-shot examples to the chat template until 196

the LLM’s probability of generating instruction 197

data in the target language is stable. 198

Algorithm 1 Data Synthesis for Target Language
Require: Target language L
Require: System prompt in target language SL
Require: Original LLMM
Require: Language filter function ffilter
Require: Chat template function ftemplate
Require: Maximum few-shot examples K
Require: Number of examples to generate N
1: Initialize dataset D ← ∅
2: Initialize few-shot counter k ← 0
3: Initialize prompt p← ftemplate(SL)
4: while |D| < N do
5: Sample instructions I←M(p, temp = 1.0)
6: Filter instructions I← ffilter(I, target = L)
7: for i = 1 to |I| do
8: Ri ←M(Ii) ▷ Generate response
9: if k < K then ▷ Append few-shot example

10: p← p⊕ ftemplate(Ii,Ri)
11: k ← k + 1
12: end if
13: D ← D ∪ {(Ii,Ri)}
14: end for
15: end while
16: return D

Algorithm 2 Key Token for Target Language
Require: Target language L
Require: Original LLMM
Require: Tokenizer Ftoken ofM
Require: Raw corpus CL in language L
Require: Number of desired key tokens k
1: Tokenize corpus: T← Ftoken(CL)
2: Initialize frequency map: F ← ∅
3: for each token t ∈ T do
4: F [t]← F [t] + 1
5: end for
6: Sort tokens by frequency: S← SortDescending(F)
7: Select top-k tokens: Vsimplify ← {S1,S2, . . . ,Sk}
8: return Vsimplify

Algorithm 1 outlines the instruction data synthe- 199

sis process. We begin by initializing the system 200

3

0 1 2 3 4 5
N-shot

0

20

40

60

80

100
Pr

ob
ab

ilit
y

(%
)

26%

77% 79% 73%
88% 87%

Figure 3: Few-shot Japanese count in the prompt ver-
sus probability of Japanese instruction generation on
Llama3-8B-Instruct

prompt in the target language and applying the201

chat template. The LLM then samples a batch of202

instructions using a temperature-based decoding203

strategy. These instructions may appear in various204

languages, commonly English or the target lan-205

guage. A probabilistic N-gram language filter is206

applied to retain only those in the target language.207

The LLM subsequently generates responses for the208

filtered instructions, forming instruction–response209

pairs.210

These pairs are stored as instruction data and211

also appended to the prompt as few-shot examples212

using the chat template, improving the quality of213

future generations. The process iteratively repeats:214

each round samples new instructions using the up-215

dated prompt, continuing until a desired number of216

samples is collected. During the early iterations,217

new few-shot examples are continually added un-218

til the probability of generating instructions in the219

target language exceeds a set threshold. Figure 3220

illustrates the relationship between the number of221

few-shot Japanese examples and the probability of222

generating instructions in Japanese. In most cases,223

we use 10 as the maximum number of few-shot224

examples.225

3.3 Vocabulary Simplification226

Figure 2 (right) and Algorithm 2 illustrate the vo-227

cabulary analysis process used to select key tokens228

for simplifying the LM head. Starting from a raw229

target-language corpus (e.g., Wikipedia, multilin-230

gual C4, FineWeb), we sample and tokenize the231

data to compute token frequencies. Sorting these,232

we select the top k most frequent tokens as key233

tokens. Figure 4 shows that the top 5% of tokens234

cover over 95% of tokens in FineWeb. We then235

reshape the LM Head to retain only rows for these236

key tokens.237

1% 5% 10% 20%
Percentage of full vocabulary size

75

80

85

90

95

100

Co
ve

ra
ge

 o
n

Fin
eW

eb
 (%

)

Figure 4: Coverage on FineWeb of the top 1% to 20%
highest-frequency vocabulary tokens, averaged across
six languages: German, Spanish, French, Japanese, Chi-
nese, and Vietnamese.

3.4 LANGCOMPRESS’s Compression 238

With both the instruction data D and key tokens 239

Vsimplify in the target language, we compress the 240

LLM using a chosen backbone method. To simplify 241

the LM head, we follow prior work on vocabulary 242

reduction (Zhao et al., 2025) by constructing a new 243

matrix W̃LM ∈ R|Vsimplify|×d from the original LM 244

head WLM ∈ R|V|×d: 245

W̃LM[i, :] = WLM[Vsimplify[i], :] 246

where i = 1, . . . , |Vsimplify|. We then replace the 247

original LM head with W̃LM. 248

Finally, we perform compression using the back- 249

bone method and the instruction dataset D. For 250

pruning methods, D is used for recovery training; 251

for quantization methods, it serves as the calibra- 252

tion set. 253

4 Experiments 254

4.1 Models 255

We evaluate the following model families: 256

Llama 3 Llama-3-8B, Llama-3-8B-Instruct, and 257

Llama-3.1-8B (Grattafiori et al., 2024), each with 258

a 128K-token vocabulary. 259

Llama 2 Llama-2-7B with a 32K vocabulary. 260

Qwen 2.5 Qwen-2.5-7B (Bai et al., 2023) with 261

a vocabulary of approximately 152K tokens. 262

Phi 3 Phi-3-mini-4k-instruct (Abdin et al., 2024) 263

with a 32K-token vocabulary. 264

4.2 Tasks and Datasets 265

Perplexity. We measure the perplexity of LLMs 266

using Wikipedia in the target language. Lower 267

4

Method DE ES FR JA ZH VI

Llama3-8B
Original 5.08 5.13 5.40 6.34 8.46 6.44

GPTQ 49.25 64.52 781.84 14.79 36.60 67.48
GPTQ-LC 30.22 6.41 71.61 9.56 14.45 47.15

AWQ 5.62 5.64 5.90 7.22 9.52 7.34
AWQ-LC 5.55 5.52 5.82 7.16 9.47 7.22

SparseGPT 32.60 22.85 25.01 130.19 136.78 61.87
SparseGPT-LC 14.81 12.60 16.55 22.04 29.28 17.87

SliceGPT 156.19 162.34 86.33 65K 41K 2K
SliceGPT-LC 17.57 14.80 15.25 37.41 87.13 22.48

LLM-Pruner 8.06 7.62 8.03 10.18 14.90 11.25
LLM-Pruner-LC 7.84 7.53 7.87 9.78 13.52 10.17

Llama3.1-8B
Original 5.03 5.09 5.37 6.34 8.39 6.36

LLM-Pruner 7.87 7.40 7.81 10.10 14.26 10.99
LLM-Pruner-LC 7.62 7.26 7.65 9.78 13.03 9.59

Qwen2.5-7B
Original 6.22 5.75 6.02 7.31 10.15 6.32

GPTQ 6.68 6.13 6.33 8.36 11.88 7.07
GPTQ-LC 6.47 5.98 6.27 7.68 10.76 6.58

AWQ 6.62 6.05 6.35 7.82 10.73 6.69
AWQ-LC 6.61 6.04 6.05 7.80 10.72 6.68

SparseGPT 17.97 13.39 14.28 45.22 40.11 29.12
SparseGPT-LC 9.97 8.63 10.24 12.51 19.32 9.65

Llama2-7B
Original 5.67 5.06 5.32 3.43 4.26 2.53

SliceGPT 233.12 329.72 171.28 5K 8K 12.17
SliceGPT-LC 16.20 16.32 15.50 11.20 15.45 6.14

LLM-Pruner 8.74 7.50 7.60 5.18 6.70 3.69
LLM-Pruner-LC 8.29 7.26 7.52 4.86 6.70 3.32

Llama3-8B-Instruct
Original 6.71 6.95 7.18 9.16 12.39 9.22

SliceGPT 171.88 160.23 488.79 58K 29K 3K
SliceGPT-LC 20.92 15.23 15.67 86.33 103.96 28.62

LLM-Pruner 9.82 9.18 9.66 12.97 19.81 15.20
LLM-Pruner-LC 9.18 8.68 9.10 11.53 17.11 12.32

Phi3-Instruct
Original 5.83 5.15 5.49 6.63 7.80 4.77

SliceGPT 196.46 181.20 397.88 5K 3K 16.00
SliceGPT-LC 20.19 14.53 14.52 14.73 27.02 9.47

Table 1: Perplexity (lower is better) on target-language
Wikitext. ‘LC’ = LANGCOMPRESS applied. Original
models in gray , baselines in red , and LANGCOM-

PRESS results in blue .

perplexity indicates better language modeling per-268

formance.269

Summarization. For summarization, we use the270

MLSum dataset (Scialom et al., 2020) and evaluate271

performance with ROUGE scores.272

Translation. For translation, we use the FLO-273

RES dataset (Goyal et al., 2022), translating from274

English to the target language. Performance is eval-275

uated using BLEU scores.276

4.3 Model Compression Baselines 277

LANGCOMPRESS can be integrated with various 278

model compression methods to enhance perfor- 279

mance in a target language. We evaluate the fol- 280

lowing techniques: 281

Structured Pruning. We use LLM- 282

Pruner (Ma et al., 2023) (20%–50% sparsity) and 283

SliceGPT (Ashkboos et al., 2024) (10%–50% 284

sparsity). 285

Semi-Structured Pruning. We adopt 286

SparseGPT (Frantar and Alistarh, 2023) with a 2:4 287

sparsity ratio—the only scheme known to yield 288

actual speedups (Mishra et al., 2021). 289

4.4 Languages 290

We conduct experiments on Latin-based 291

scripts—German (DE), Spanish (ES), French (FR), 292

and Vietnamese (VI)—as well as logographic 293

scripts—Japanese (JA) and Chinese (ZH). 294

4.5 Experimental Settings 295

Instruction Data Synthesis. For LANGCOM- 296

PRESS, we use the Alpaca instruction tem- 297

plate (Taori et al., 2023) for foundation models 298

(e.g., LLaMA-3-8B, Qwen2.5-7B), and the default 299

chat templates for instruction-tuned models (e.g., 300

LLaMA-3-8B-Instruct, Phi3-Instruct). We apply 301

lingua-py1 as a probabilistic N-gram language fil- 302

ter. We set the few-shot maximum to K = 10. For 303

fair comparison, we generate the same amount of 304

instruction data as used in the recovery settings of 305

each baseline compression method. 306

Vocabulary Simplification. We use the 307

FineWeb2 corpus (Penedo et al., 2025) as the raw 308

data source. For LLaMA-3 and Qwen2.5 models, 309

we set the number of key tokens to k = 32,000, 310

and for LLaMA-2 and Phi3 models, we use 311

k = 16,000. 312

5 Results 313

5.1 Main Results 314

Perplexity. Table 1 reports the perplexity results. 315

LANGCOMPRESS consistently improves the per- 316

plexity of compressed models across various lan- 317

guages and architectures. For each compression 318

method—GPTQ, AWQ, SparseGPT, SliceGPT, 319

and LLM-Pruner—integrating LANGCOMPRESS 320

yields significant gains, especially for non-English 321

languages. Improvements span multiple language 322

1https://github.com/pemistahl/lingua-py

5

https://github.com/pemistahl/lingua-py

Method DE ES FR JA VI

Llama3-8B
Original 17.42 17.92 25.01 21.73 27.70

GPTQ 23.11 16.13 31.91 6.24 25.65
GPTQ - LC 23.55 18.57 32.98 17.93 35.31

AWQ 10.14 15.67 11.71 4.12 29.17
AWQ - LC 13.65 15.93 25.98 4.64 30.59

SparseGPT 0.60 0.56 0.62 0.00 0.26
SparseGPT - LC 1.26 13.34 1.06 0.00 1.23

SliceGPT 0.78 0.67 0.88 0.0 0.20
SliceGPT - LC 3.60 5.57 5.93 8.08 5.63

LLM-Pruner 13.89 18.67 25.74 24.12 23.09
LLM-Pruner - LC 17.88 19.81 26.53 32.45 30.83

Llama3.1-8B
Original 18.26 21.38 32.31 37.30 25.39

LLM-Pruner 8.87 16.87 15.58 24.17 11.47
LLM-Pruner - LC 15.51 21.87 29.18 31.73 21.16

Qwen2.5-7B
Original 19.88 15.61 12.69 39.56 13.63

GPTQ 10.98 19.60 36.35 16.86 13.29
GPTQ - LC 22.59 22.01 38.28 19.06 17.95

AWQ 3.15 16.70 11.14 6.94 11.38
AWQ - LC 3.94 31.04 36.11 15.80 13.13

SparseGPT 7.27 10.24 17.85 4.15 6.18
SparseGPT - LC 18.50 18.95 25.41 22.63 25.02

Llama2-7B
Original 23.01 25.57 38.03 21.84 34.01

SliceGPT 0.42 0.19 0.00 0.05 0.00
SliceGPT - LC 4.32 13.02 5.34 9.03 12.88

LLM-Pruner 4.06 4.46 6.21 6.82 1.76
LLM-Pruner - LC 5.64 6.65 11.26 10.47 2.36

Llama3-8B-Instruct
Original 8.56 3.97 15.35 27.46 19.04

SliceGPT 2.94 0.59 0.37 0.62 2.04
SliceGPT - LC 13.18 4.36 4.13 9.40 0.00

LLM-Pruner 1.71 5.41 7.39 7.54 9.74
LLM-Pruner - LC 20.13 17.67 12.47 20.95 17.50

Phi3-Instruct
Original 27.25 25.35 43.09 34.15 12.08

SliceGPT 2.60 1.70 2.57 1.13 0.58
SliceGPT - LC 3.26 4.95 6.02 5.18 0.00

Table 2: Translation performance (BLEU) on FLO-
RES from English to target languages. ‘LC’ indicates
LANGCOMPRESS applied to the respective compression
method. Original model results are in gray , baselines

in red , and LANGCOMPRESS results in blue .

Method DE ES FR

Llama3-8B
Original 11.36 11.18 11.08

GPTQ 12.15 10.64 14.02
GPTQ - LC 13.36 10.82 14.27

AWQ 11.80 10.78 13.85
AWQ - LC 12.62 10.62 13.31

SparseGPT 11.27 9.26 12.44
SparseGPT - LC 13.62 10.51 13.25

SliceGPT 3.38 2.36 3.49
SliceGPT - LC 10.87 11.13 11.14

LLM-Pruner 12.00 10.54 11.72
LLM-Pruner - LC 12.19 10.59 13.30

Llama3.1-8B
Original 11.15 10.91 14.91

LLM-Pruner 11.70 10.44 11.63
LLM-Pruner - LC 11.78 10.73 13.98

Llama2-7B
Original 12.56 11.82 13.97

SliceGPT 3.31 2.51 2.47
SliceGPT - LC 9.58 10.97 11.54

LLM-Pruner 8.19 10.44 10.78
LLM-Pruner - LC 8.19 10.64 10.99

Llama3-8B-Instruct
Original 16.09 13.53 14.97

SliceGPT 4.09 3.12 3.65
SliceGPT - LC 14.58 10.94 12.18

LLM-Pruner 14.52 11.87 14.82
LLM-Pruner - Ours 14.32 12.57 15.97

Phi3-Instruct
Original 14.30 12.02 13.30

SliceGPT 2.07 1.97 2.16
SliceGPT - LC 8.20 10.59 11.63

Table 3: Translation performance (ROUGE-Lsum) on
DE, ES, and FR. ‘LC’ denotes LANGCOMPRESS ap-
plied to the corresponding compression method. Origi-
nal models are highlighted in gray , baselines in red ,

and LANGCOMPRESS results in blue .

families, including European (e.g., German, Span- 323

ish, French), East Asian (e.g., Japanese, Chinese), 324

and Southeast Asian (e.g., Vietnamese), demon- 325

strating the method’s language-agnostic effective- 326

ness. These gains hold across diverse base models 327

such as LLaMA variants, Qwen2.5, and Phi3, con- 328

firming the robustness and general applicability of 329

LANGCOMPRESS under compression. 330

Downstream Tasks. Table 2 presents transla- 331

tion performance (BLEU) on FLORES from En- 332

glish to various target languages. LANGCOM- 333

PRESS tends to consistently improve the perfor- 334

mance of existing compression methods across lan- 335

guages. These gains hold across different tech- 336

6

niques—pruning and quantization—and are robust337

across model architectures including LLaMA-2,338

LLaMA-3, Qwen2.5, and Phi-3.339

5.2 Analysis340

Perplexity Across Sparsity. We evaluate LANG-341

COMPRESS under varying sparsity levels using342

two structured pruning methods—SliceGPT and343

LLM-Pruner on LLaMA-3-8B (Figure 5). LANG-344

COMPRESS consistently reduces perplexity across345

all sparsity settings. Notably, improvements with346

LLM-Pruner become more significant at higher347

sparsity, indicating that LANGCOMPRESS is es-348

pecially effective in high-sparsity regimes. For349

SliceGPT, gains are substantial and stable across350

all levels.351

Comparison with Raw Text Calibration. Quan-352

tization methods such as GPTQ and AWQ can use353

raw text (e.g., C4) for calibration. However, our354

results show that instruction-formatted data yields355

better calibration. As shown in Figure 6a, LANG-356

COMPRESS-generated instruction data consistently357

outperforms raw text, leading to improved perplex-358

ity and demonstrating its effectiveness for quanti-359

zation.360

Ablation Study. We examine the individual con-361

tributions of instruction data synthesis and vocabu-362

lary simplification in LANGCOMPRESS. Figure 6b363

shows the perplexity results using LLM-Pruner and364

SliceGPT. Both components contribute to perfor-365

mance gains, with the combination yielding the366

best results.367

6 Related Work368

Unstructured and Semi-Structured Pruning.369

Model pruning techniques include unstructured,370

semi-structured, and structured pruning. Unstruc-371

tured and semi-structured pruning (Hassibi et al.,372

1993; Li and Louri, 2021; Frantar and Alistarh,373

2023; Sun et al., 2024; Zhang et al., 2024; Le et al.,374

2025) introduce sparsity by zeroing out weights375

in the model. Semi-structured pruning imposes376

an N :M constraint, requiring N zeros in every377

M consecutive elements. In practice, only semi-378

structured pruning with hardware support (e.g.,379

NVIDIA GPUs) provides real speedup (Mishra380

et al., 2021).381

Structured Pruning. Structured pruning re-382

moves entire components (e.g., layers, atten-383

tion heads) from the model, reducing both size384

and inference cost. LLM-Pruner (Ma et al., 385

2023) prunes based on gradient importance, while 386

SliceGPT (Ashkboos et al., 2024) replaces full 387

weight matrices with smaller dense matrices. Un- 388

like unstructured methods, structured pruning phys- 389

ically removes parameters, reducing memory and 390

computation. We experiment with both LLM- 391

Pruner and SliceGPT. 392

Quantization. Quantization reduces model size 393

and computation by lowering the precision of 394

weights. GPTQ (Frantar et al., 2023) is a post- 395

training method using approximate second-order 396

information to preserve accuracy with 3–4 bit 397

weights. AWQ (Lin et al., 2024) introduces 398

an activation-aware approach, selecting salient 399

weights based on activation statistics. We experi- 400

ment with both GPTQ and AWQ. 401

Synthetic 402

7 Conclusions 403

We presented LANGCOMPRESS, a language-aware 404

compression framework that improves the effi- 405

ciency and performance of LLMs in language- 406

specific settings. By integrating self-supervised 407

instruction data generation with vocabulary simpli- 408

fication, LANGCOMPRESS overcomes key limita- 409

tions of existing compression methods, especially 410

in low-resource scenarios. It is compatible with 411

various pruning and quantization techniques and 412

consistently enhances performance on target lan- 413

guages while reducing model size. These results 414

highlight its potential for practical, multilingual, 415

and domain-specific LLM deployment. 416

8 Limitations 417

While LANGCOMPRESS shows strong potential for 418

language-specific compression, several limitations 419

remain: 420

• Language-Specific Trade-off. Vocabulary 421

simplification enhances performance in the 422

target language but reduces multilingual ca- 423

pabilities. This makes LANGCOMPRESS 424

most suitable for deployment in resource- 425

constrained, language-specific scenarios. 426

• Preprocessing Overhead. Although infer- 427

ence remains lightweight, compression in- 428

volves additional steps such as instruction data 429

synthesis and vocabulary analysis, requiring 430

7

0.2 0.3 0.4 0.5

10

20

Pe
rp

le
xi

ty
French

0.2 0.3 0.4 0.5
10

20

30
German

0.2 0.3 0.4 0.5

10

20

Pe
rp

le
xi

ty

Spanish

0.2 0.3 0.4 0.5

20

40
Japanese

0.2 0.3 0.4 0.5
Sparsity

20

40

Pe
rp

le
xi

ty

Chinese

0.2 0.3 0.4 0.5
Sparsity

20

40

Vietnamese

Normal Recovery LangCompress Recovery

(a) LLM-Pruner with Sparisty from 20% to 50%

0.2 0.4

102

Pe
rp

le
xi

ty

French

0.2 0.4

102

German

0.2 0.4
101

102

103

Pe
rp

le
xi

ty

Spanish

0.2 0.4

103

105

Japanese

0.2 0.4
Sparsity

103

105

Pe
rp

le
xi

ty

Chinese

0.2 0.4
Sparsity

102

103

104

Vietnamese

Normal Recovery LangCompress Recovery

(b) SliceGPT with Sparsity from 10% to 50%

Figure 5: Perplexity (lower is better) of pruning methods using normal recovery and LANGCOMPRESS recovery,
measured with Llama3-8B on target-language Wikitext.

Spanish Japanese Chinese
0

10

20

30

40

50

60

Pe
rp

le
xi

ty

Alpaca (English)
C4 of target language
LangCompress calibration

(a) Perplexity performance of Llama3-8B using
GPTQ Quantization with different calibration data.

FR DE ES JA ZH VI

2 × 101

3 × 101

4 × 101

LLM-Pruner

FR DE ES JA ZH VI

102

103

104

105

106

SliceGPT

Prune without recovery
Recovery (Alpaca)

LangCompress (Recovery)
LangCompress (Recovery + Key Token)

(b) Perplexity performance of Llama3-8B using pruning methods LLM-
Pruner and SliceGPT.

Figure 6: Ablation study of LANGCOMPRESS on Quantization and Pruning. (a) GPTQ with different calibration data;
(b) Pruning methods with recovery schemes: no recovery, English data recovery (Alpaca), and LANGCOMPRESS
with/without vocabulary simplification.

moderate computational resources and prepro-431

cessing time.432

• Limited Evaluation Scale. Our experiments433

focus on smaller models (7B–8B) due to re-434

source constraints. Future work will explore435

scalability to larger models and evaluate per-436

formance across more tasks and domains.437

References 438

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed 439
Awadallah, Ammar Ahmad Awan, Nguyen Bach, 440
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat 441
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, 442
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav 443
Chaudhary, Dong Chen, Dongdong Chen, and 110 444
others. 2024. Phi-3 Technical Report: A Highly 445
Capable Language Model Locally on Your Phone. 446
_eprint: 2404.14219. 447

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen- 448
nari do Nascimento, Torsten Hoefler, and James 449

8

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219

Hensman. 2024. SliceGPT: Compress Large Lan-450
guage Models by Deleting Rows and Columns. In451
The Twelfth International Conference on Learning452
Representations.453

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,454
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei455
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,456
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,457
Keming Lu, and 29 others. 2023. Qwen Technical458
Report.459

Elias Frantar and Dan Alistarh. 2023. SparseGPT: mas-460
sive language models can be accurately pruned in461
one-shot. In Proceedings of the 40th International462
Conference on Machine Learning. JMLR.org.463

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and464
Dan Alistarh. 2023. OPTQ: Accurate Quantization465
for Generative Pre-trained Transformers. In The466
Eleventh International Conference on Learning Rep-467
resentations.468

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-469
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-470
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,471
and Angela Fan. 2022. The Flores-101 Evaluation472
Benchmark for Low-Resource and Multilingual Ma-473
chine Translation. Transactions of the Association474
for Computational Linguistics, 10:522–538. Place:475
Cambridge, MA Publisher: MIT Press.476

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,477
Abhinav Pandey, Abhishek Kadian, Ahmad Al-478
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-479
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh480
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-481
tra, Archie Sravankumar, Artem Korenev, Arthur482
Hinsvark, and 542 others. 2024. The Llama 3 Herd483
of Models. _eprint: 2407.21783.484

Babak Hassibi, David G Stork, and Gregory J Wolff.485
1993. Optimal brain surgeon and general network486
pruning. In IEEE international conference on neural487
networks, pages 293–299. IEEE.488

Khang Nguyen Le, Ryo Sato, Dai Nakashima, Takeshi489
Suzuki, and Minh Le Nguyen. 2025. OptiPrune:490
Effective Pruning Approach for Every Target Spar-491
sity. In Proceedings of the 31st International Con-492
ference on Computational Linguistics, pages 3600–493
3612, Abu Dhabi, UAE. Association for Computa-494
tional Linguistics.495

Jiajun Li and Ahmed Louri. 2021. Adaprune: An496
accelerator-aware pruning technique for sustainable497
CNN accelerators. In IEEE Transactions on Sus-498
tainable Computing, volume 7, pages 47–60. Issue:499
1.500

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-501
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,502
Xingyu Dang, Chuang Gan, and Song Han. 2024.503
AWQ: Activation-aware Weight Quantization for On-504
Device LLM Compression and Acceleration. In505
Proceedings of Machine Learning and Systems, vol-506
ume 6, pages 87–100.507

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 508
LLM-Pruner: On the Structural Pruning of Large 509
Language Models. In Thirty-seventh Conference on 510
Neural Information Processing Systems. 511

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko 512
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, 513
and Paulius Micikevicius. 2021. Accelerating Sparse 514
Deep Neural Networks. _eprint: 2104.08378. 515

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, 516
Bettina Messmer, Negar Foroutan, Amir Hossein 517
Kargaran, Colin Raffel, Martin Jaggi, Leandro Von 518
Werra, and Thomas Wolf. 2025. FineWeb2: One 519
Pipeline to Scale Them All – Adapting Pre-Training 520
Data Processing to Every Language. _eprint: 521
2506.20920. 522

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, 523
Benjamin Piwowarski, and Jacopo Staiano. 2020. 524
MLSUM: The Multilingual Summarization Corpus. 525
In Proceedings of the 2020 Conference on Empirical 526
Methods in Natural Language Processing (EMNLP), 527
pages 8051–8067, Online. Association for Computa- 528
tional Linguistics. 529

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 530
2024. A Simple and Effective Pruning Approach 531
for Large Language Models. In The Twelfth Interna- 532
tional Conference on Learning Representations. 533

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 534
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 535
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: 536
An Instruction-following LLaMA model. Publica- 537
tion Title: GitHub repository. 538

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, 539
Lu Hou, and Carlo Vittorio Cannistraci. 2024. Plug- 540
and-Play: An Efficient Post-training Pruning Method 541
for Large Language Models. In The Twelfth Interna- 542
tional Conference on Learning Representations. 543

Weilin Zhao, Tengyu Pan, Xu Han, Yudi Zhang, Ao Sun, 544
Yuxiang Huang, Kaihuo Zhang, Weilun Zhao, Yux- 545
uan Li, Jianyong Wang, Zhiyuan Liu, and Maosong 546
Sun. 2025. FR-Spec: Accelerating Large-Vocabulary 547
Language Models via Frequency-Ranked Speculative 548
Sampling. _eprint: 2502.14856. 549

9

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2025.coling-main.243/
https://aclanthology.org/2025.coling-main.243/
https://aclanthology.org/2025.coling-main.243/
https://aclanthology.org/2025.coling-main.243/
https://aclanthology.org/2025.coling-main.243/
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2506.20920
https://arxiv.org/abs/2506.20920
https://arxiv.org/abs/2506.20920
https://arxiv.org/abs/2506.20920
https://arxiv.org/abs/2506.20920
https://doi.org/10.18653/v1/2020.emnlp-main.647
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/2502.14856
https://arxiv.org/abs/2502.14856
https://arxiv.org/abs/2502.14856
https://arxiv.org/abs/2502.14856
https://arxiv.org/abs/2502.14856

	Introduction
	Preliminaries
	LangCompress
	Overview
	Data Synthesis for Target Language
	Vocabulary Simplification
	LangCompress's Compression

	Experiments
	Models
	Tasks and Datasets
	Model Compression Baselines
	Languages
	Experimental Settings

	Results
	Main Results
	Analysis

	Related Work
	Conclusions
	Limitations

