Coarse-to-fine Animal Pose and Shape Estimation

Chen Li Gim Hee Lee
Department of Computer Science
National University of Singapore

{lic, gimhee.lee}@comp.nus.edu.sg

Abstract

Most existing animal pose and shape estimation approaches reconstruct animal
meshes with a parametric SMAL model. This is because the low-dimensional pose
and shape parameters of the SMAL model makes it easier for deep networks to learn
the high-dimensional animal meshes. However, the SMAL model is learned from
scans of toy animals with limited pose and shape variations, and thus may not be
able to represent highly varying real animals well. This may result in poor fittings
of the estimated meshes to the 2D evidences, e.g. 2D keypoints or silhouettes. To
mitigate this problem, we propose a coarse-to-fine approach to reconstruct 3D
animal mesh from a single image. The coarse estimation stage first estimates the
pose, shape and translation parameters of the SMAL model. The estimated meshes
are then used as a starting point by a graph convolutional network (GCN) to predict
a per-vertex deformation in the refinement stage. This combination of SMAL-based
and vertex-based representations benefits from both parametric and non-parametric
representations. We design our mesh refinement GCN (MRGCN) as an encoder-
decoder structure with hierarchical feature representations to overcome the limited
receptive field of traditional GCNs. Moreover, we observe that the global image
feature used by existing animal mesh reconstruction works is unable to capture
detailed shape information for mesh refinement. We thus introduce a local feature
extractor to retrieve a vertex-level feature and use it together with the global feature
as the input of the MRGCN. We test our approach on the StanfordExtra dataset and
achieve state-of-the-art results. Furthermore, we test the generalization capacity of
our approach on the Animal Pose and BADJA datasets. Our code is available at the
project website!.

1 Introduction

Animals play an important role in our everyday life and the study of animals has many potential
applications in zoology, farming and ecology. Although great success has been achieved for modeling
humans, progress for the animals counterpart is relatively slow mainly due to the lack of labeled
data. It is almost impossible to collect large scale 3D pose data for animals, which prevents the direct
application of many existing human pose estimation techniques to animals. Some works solve this
problem by training their model with synthetic data [4, 13, 33]. However, generating realistic images
is challenging, and more importantly, the limited pose and shape variations of synthetic data may
result in performance drop when applied to real images. Other works avoid the requirement of 3D
ground truth by making use of 2D weak supervision. For example, [2, | 2] render the estimated mesh
or project the 3D keypoints onto the 2D image space, and then compute the losses based on ground
truth silhouettes or 2D keypoints. This setting is more pragmatic since 2D animal annotations are
more accessible. In view of this, we focus on learning 3D animal pose and shape with only 2D weak
supervision in this work.

'nttps://github.com/chaneyddtt/Coarse-to-fine-3D-Animal

35th Conference on Neural Information Processing Systems (NeurIPS 2021).


https://github.com/chaneyddtt/Coarse-to-fine-3D-Animal

Figure 1: Some results of our coarse-to-fine approach. The first column is the input RGB images. The
second to fourth columns are the estimated meshes in the camera view, the projected 2D keypoints
and silhouettes from the coarse estimations. The fifth column to seventh columns are the estimated
meshes, the projected 2D keypoints and silhouettes from the refined estimations. Note that The
red and green regions in the fourth and seventh columns represent the ground truth and rendered
silhouettes, respectively, and the yellow region is the overlap between them.

Reconstruction of the 3D mesh from a single RGB image with only 2D supervision is challenging
because of the articulated structure of animals. Most existing works [4, 2] rely on the parametric
statistical body shape model SMAL [35] to reconstruct animal poses and shapes. Specifically, the low
dimensional parameterization of the SMAL model makes it easier for deep learning to learn the high
dimensional 3D mesh with 3,889 vertices for high-quality reconstruction. However, the shape space
of the SMAL model is learned from 41 scans of toy animals and thus lacks pose and shape variations.
This limits the representation capacity of the model and results in poor fittings of the estimated shapes
to the 2D observations when applied to in-the-wild animal images, as illustrated in Figure 1. Both 2D
keypoints (the left front leg in the first example and right ear in the second example) and silhouettes
rendered from the coarse estimations do not match well with the ground truth annotations (rendered
and ground truth silhouettes are denoted with green and red regions, and the yellow region is the
overlap between them). To mitigate this problem, we design a two-stage approach to conduct a
coarse-to-fine reconstruction. In the coarse estimation stage, we regress the shape and pose parameters
of the SMAL model from an RGB image and recover a coarse mesh from these parameters. The
coarse mesh is then used as a starting point by a MRGCN to predict a per-vertex deformation in the
refinement stage. This combination of SMAL-based and vertex-based representations enable our
network to benefit from both parametric and non-parametric representations. Some refined examples
are shown in Figure 1, where both keypoint locations and overall shapes are improved.

To facilitate the non-parametric representation in the refinement stage, we consider a mesh as a graph
structure and use a GCN [15] to encode the mesh topology (i.e., the edge and face information).
Existing animal mesh reconstruction estimation works [2, 12, 33] rely on a global image feature
to recover 3D meshes. However, we observe that the global feature fails to capture local geometry
information that is critical to recover shape details. To solve this problem, we introduce a local feature
extractor to retrieve a per-vertex feature and use it together with the global feature as the input of
each node in the MRGCN. The combination of the vertex-level local feature and the image-level
global feature helps to capture both overall structure and detailed shape information. Moreover, the
representation power of traditional GCNs is limited by the small receptive field since each node is
updated by aggregating features of neighboring nodes. To mitigate this, we design our MRGCN
as an encoder-decode structure. Specifically, the downsampling and upsampling operations in the
encoder-decoder structure enables a hierarchical representation of the mesh data, where features of
different mesh resolutions can be exploited for mesh refinement.

Our main contributions can be summarized as follows: 1) We propose a coarse-to-fine approach that
combines parametric and non-parametric representations for animal pose and shape estimation. 2)
We design an encoder-decoder structured GCN for mesh refinement, where both image-level global
feature and vertex-level local feature are combined to capture overall structure and detailed shape
information. 3) We achieve state-of-the-art results for animal pose and shape estimation on three
animal datasets.



2 Related work

We review works on pose and shape estimation for both human and animals since they share similar
ideas. We mainly discuss approaches that reconstruct 3D meshes which is the focus of this work.

Human pose and shape estimation We first review model-based human pose estimation. This
line of works are based on a parametric model of human body, such as SMPL [20] or SCAPE [1],
to reconstruct 3D human meshes. Bogo er al.[5] first propose a fully automatic approach SMPLity,
which fits the SMPL model to 2D locations estimated by an off-the-shelf 2D keypoint detector.
The shapes estimated by SMPLify are highly underconstrained although strong priors are added
during the fitting process. To improve this, subsequent works incorporate more information during
optimization, such as silhouettes [19] or multi-view videos [10]. The drawback of the optimization-
based approaches is that the iterative optimization process is quite slow and tends to fail when the
2D keypoints or silhouettes are noisy. On the other hand, regression-based approaches directly
regress the body model parameters from an input image, which is more computationally efficient
than optimization-based approaches. Kanazawa et al.[| |] introduce an end-to-end framework for
recovering 3D mesh of a human body by using unpaired 2D keypoints and 3D scans. Pavlakos
et al.[23] propose to employ a differentiable renderer to project the generated 3D meshes back to
2D image space such that the network can be trained with 2D supervision. Other intermediate
representations such as semantic segmentation map [22] or [UV map [3 1] are also introduced in order
to improve the robustness. Recently, Kolotouros et al.[16] propose SPIN, where the optimization
process is incorporated into the network training such that strong model-based supervision can be
exploited.

It has been observed that directly regressing model parameters is quite challenging because of the
representation issues of 3D rotation [28, 17, 7, 32, 8]. Hence, some works focus on model-free
based human pose and shape estimation, where they do not directly regress the model parameters.
Varol et al.[28] proposed BodyNet, which estimates volumetric representation of 3D human with a
Voxel-CNN. Kolotouros ef al.[17] design a graph convolutional human mesh regression model to
estimate vertex locations from a global image feature. Choi et al.[7] propose a graph convolutional
system that recovers 3D human mesh from 2D human pose. We also apply GCN in our approach
to refine the initial coarse estimation. However, we do not rely on 3D supervision as done in
[17, 7], and our mesh refinement GCN has a different architecture. Our work is also related to PIFu
[25] in terms of making use of local features to better capture shape details. Instead of using a
complete non-parametric representation as in [25], we combine the vertex-based representation with
the SMAL-based representation such that our network can be weakly supervised with 2D annotations.

Animal pose and shape estimation Animal pose estimation is less explored compared to human
pose estimation mainly because of the lack of large scale datasets. It is almost impossible to collect
thousands of 3D scan of animals as has been done in SMPL [20]. The first parametric animal model
SMAL is recently proposed by Zuffi et al.[35], which is learned from 41 scans of animal toys. The
SMAL model is further improved in [34] by fitting the model to multiple images such that it can
generalize to unseen animals. In the view of the lack of animal data, synthetic datasets are generated
in [33, 13, 4] to train their networks. However, there is domain gap between the synthetic and real
images in terms of appearance, pose and shape variations. Although the domain shift problem can be
mitigated by using a depth map [13] or silhouette[4] as the input, these information are not always
available in practice. More recently, Biggs et al.[2] collect 2D keypoint and silhouette annotations for
a large scale dog dataset and train their network with those 2D supervision. The authors observe that
the SMAL model failed to capture the large shape variations of different dog breeds, and propose to
incorporate an EM algorithm into training to update the shape priors. However, it is not guaranteed
that the priors are valid shapes since they are computed from the network predictions. We also work
on the dog category following [2] in this work, and we overcome the limited representation capacity
of the SMAL model by combining it with a vertex-based representation.

3 Our method

We propose a two-stage approach for coarse-to-fine animal pose and shape estimation. The overall
architecture is illustrated in Figure 2. The coarse estimation stage is based on the SMAL model,
where we directly regress the pose, shape and translation parameters from the input image. We
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Figure 2: Overall architecture of our network. Our network consists a coarse estimation stage and
a mesh refinement stage. The SMAL model parameters and camera parameter are regressed from
the input image in the first stage for coarse reconstruction. This coarse mesh is further refined by
an encoder-decoder structured GCN in the second stage, where the initial node feature consists of a
global feature, a local feature and the initial 3D coordinate.

concurrently estimate the camera parameter to project the estimated 3D meshes onto the image space
for the network supervision with the 2D annotations. Due to the limited representation capacity of
the SMAL model, the coarse estimations may not fit well to the 2D evidences. We mitigate this
problem by further refinement with a MRGCN in the second stage. The input feature for each node
in the MRGCN consists of both image-level global feature and vertex-level local feature retrieved
by a local feature extractor. The MRGCN is designed as an encoder-decoder structure, where the
mesh downsampling and upsampling operations enable a hierarchical representation of the mesh
data. Similar to the coarse estimation stage, the mesh refinement stage is also supervised with the 2D
annotations.

3.1 Model-based coarse estimation

We use a parametric representation based on the SMAL model in the first stage. The SMAL model
M(B,0,) is a function of shape /3, pose 6 and translation . The shape parameter 3 is a vector
of the coefficients of a PCA shape space learned from scans of animal toys. The pose parameter
6 € RV*3 is the relative rotation of joints expressed with Rodrigues vectors, where we use N = 35
joints in the kinematic tree following [33, 2]. The translation - is a global translation applied to the
root joint. Given a set of model parameters © = {3, 6 7} the SMAL model returns 3D mesh vertices
V = M(8,0,7), where V€ RE*3 and C = 3, 889 is the number of animal mesh vertices. The
body joints of the model is defined as a linear combination of the mesh vertices J € RN*3 = W x V,
where W is a linear regressor provided with the SMAL model.

As illustrated in the coarse estimation stage of Figure 2, we first extract a global feature h, from
the input image with an encoder. The global feature is fed into separate multi-layer perceptron
(MLP) heads to predict the SMAL model parameters ©' = {3, 0’, 7'} and the camera parameter f.

Following [33, 2], we use independent branches for the translation in the camera frame 7;y and depth
~.. The 3D meshes and joints can then be computed from the estimation parameters as:
ch :M(6/30I77I)7 J3D =W x ch (1)

We further project the predicted 3D joints onto 2D image space with the estimated camera parameter
and supervise them with the ground truth 2D keypoints:

Lipt = || Jap — O(J3p, £ (2)
Jop and TI(., .) denote the ground truth 2D keypoints and the camera projection function, respectively.

Existing works apply the L; [33] or Lo distance [2, 23] to compute the loss for silhouettes. As
illustrated in Figure 3, we observe that the model trained with L, or Lo loss tends to generate a 3D
mesh that has a foreground region (green region) larger than that of the ground truth silhouette (red
region) after rendering. We analyze that this may be due to the imbalance between foreground and



background pixels in the training images. Note that we crop each image according to a bounding
box during preprocessing. This causes the foreground object to occupy a larger area of an image and
thus an imbalance of more foreground than background pixels. The imbalance problem may cause
the network to estimate a mesh with larger size or larger focal length such that there will be more
foreground pixels in the rendered silhouette. To solve this problem, we adopt the Tversky loss [26]
from the semantic segmentation task:

: PG|
TGP = (ipaT v alP\al+ AICVPI)
where | PG| denotes foreground pixels present 7
in both the predicted binary mask P and the
ground truth mask G. |P\G| denotes back-
ground pixels that are predicted as foreground
and |G\ P| vice versa, i.e. false positive and
false negative predictions. « and (3 are hyper-

paramiters to control the weights for false posi- Fjgure 3: Illustration of the rendered meshes oc-
tive and false negative predictions. By setting o cupying more pixels than 2D observation when
to a value larger than f3, the Tversky loss penal-  anplving I loss for silhouette.

izes more on false positive predictions, which

corresponds to the foreground pixels that are not present in the ground truth silhouettes. Our silhouette
loss can thus be represented as:

£silh1 =1 _T(S?R(‘/Caf)?avﬁ)a (4)
where S represents the ground truth silhouette and R represents the mesh renderer, The network
may predict unrealistic shapes and poses when trained with 2D supervision alone. In view of this,
we encourage the predicted model parameters to be close to a prior distribution by computing the
Mahalanobis distance between them:

Ls= (8" —pp) S5 (8 — up), Lo=(0"—po) S5 (0" — po). ©))
The prior distributions of the shape and pose are defined by the corresponding means {1, pg } and
variances {¥3, 3¢} estimated from the SMAL training data. We also apply the pose limit prior [35],

denoted as Ly, to enforce valid pose estimations. Finally, the overall loss function for the coarse
estimation stage is computed as:

3)

L1 = Mpt Lipt + Asitnt Lsitnt + AgLg + oLy + Mim Liim, (6)
where Aip1, Asini> Ag, Ag and Ajiy are the weights to balance different loss terms.

3.2 Model-free mesh refinement

As illustrated in the coarse estimations in Figure 1, the 3D meshes estimated from the first stage may
not fit well to the 2D observations due to the limited representation capability of the SMAL model.
We thus use the coarse estimation V; as a starting point and further refine it with our MRGCN. The
GCN is able to encode the mesh topology and has been used in previous works [17, 7] for human
pose and shape estimation. However, our MRGCN differs from [17, 7] in several aspects: 1) We
incorporate a vertex-level local feature into the feature embedding of each node; 2) We design our
MRGCN as an encoder-decoder structure with skip connections to exploit features of different scales;
3) We supervise our MRGCN with only 2D weak supervision.

Combination of global and local features. The initial feature of each node in [17, 7] is either a
combination of the global image feature and the initial 3D coordinate or a combination of the 3D
coordinate and the corresponding 2D joint location. In contrast, we introduce a vertex-level local
feature to capture more detailed shape information. This is inspired by previous works [30, 29] with
the exceptions that we do not need ground truth 3D annotations or camera parameter. The local feature
extraction process is illustrated in the left bottom part of Figure 2. We first project each mesh vertex
v§ = (4, ¥, 2i) € Ve onto 2D image space with the estimate camera parameter p; = II(v¢, f) , and
then retrieve the features at p; from all feature maps of the encoder. These features are concatenated
and used as our local feature h;. Finally, the input feature for each vertex is a combination of
the global feature, the local feature and the initial 3D coordinates hY = [h,, hy, z;,y;, 2;]. This
combination of both global and local features helps to capture the overall structure and detailed shape
information.



Encoder-decoder structured GCN. We define the graph on animal mesh as G = (V, A), where
V represents the mesh vertices and A € {0, 1}¢*€ represents an adjacency matrix defining edges

of animal mesh. We adopt the graph convolutional layer H = AXW proposed in [15], where A
is symmetrically normalized from A, X is the input feature and W represents the weight matrix.
In the original GCN, features of each node are updated by averaging over features of neighboring
nodes. This results in a small receptive field and limits the representation capacity. To mitigate this
problem, we design our MRGCN as an encoder-decoder architecture to effectively exploit features of
different mesh resolutions. Specifically, the graph encoder consists of consecutive graph convolutional
layers and downsampling layers, and the decoder is a symmetry of the encoder architecture except
that the downsampling layers are replaced with upsampling layers. Following [24], the mesh
downsampling is performed by using a transformation V;, = Q4V;, where Q4 € {0, 1}**! represents
the transformation matrix, and [, k are the number of mesh vertices before and after downsampling.
The downsampling transformation matrix is obtained by contracting vertex pairs iteratively based on
quadric matrices. We show an illustration of the downsampling process in the mesh downsampling
block of Figure 2. Similarly, the upsampling is performed by V; = Q,,Vj. Furthermore, inspired by
the stacked hourglass network [2 1], we add skip connections between the encoder and decoder layers
to preserve the spatial information at each resolution.

Weakly supervised mesh refinement. Given the coarse estimation from the first stage, our MRGCN
predicts a per-vertex deformation based on the input feature:

Av; = ]-'(h?)7 where h? = [hy, hy, 24, y5, 2] @)
The final refined mesh is obtained by:
Vi =V.+ AV, where AV = [Avy,Avs,....,Avg]. (8)

Similar to the first stage, we project the mesh vertices and 3D keypoints onto 2D image space with
the estimated camera parameter f, and compute the 2D keypoints loss Lyp, and silhouette loss Lo
in the same way as Eq. (2) and Eq. (4). Note that we do not refine the camera parameter in the second
stage as we postulate that the camera parameter relies more on the global features, e.g. the global
scale. The shape and pose prior in the first stage can not be used as we are directly regressing the
vertex deformation. Without any constraint, the network is susceptible to large deformations in its
predictions in order to align perfectly with the 2D evidences. This may result in unrealistic output
meshes. In view of this problem, we add a Laplacian regularizer to prevent large deformations such
that only fine-grained details are added upon the coarse estimation. Specifically, we encourage the
Laplacian coordinates of the refined mesh to be the same as the coarse mesh by enforcing:

_ ! 2 _ 1
Liap = Z |ov] — dv5||, where dv; =v; — € Z vj. )
i JEN(3)
vf and v° represent the vertex in the refined and coarse meshes, respectively. dv; is the Laplacian
coordinate of v;, which is the difference between the original coordinate and the center of its neighbors
in the mesh. Finally, the training loss for the refinement stage can be represented as:

Lo = Ap2Lip2 + Asith2 Lsitn2 + Aap Liaps (10)
where A2, Asimz and A,y are the weights for corresponding losses.

4 [Experiments

Network details. The structure of the encoder in the first stage is similar to [33, 2]. We extract the
features of an input image of size 224 x 224 x 3 with a Resnet50 [9] module, which is followed by a
convolutional layer with group normalization and leaky ReLU. We further add two fully connected
layers to obtain the global feature. This global feature is fed into different MLP branches to estimate
the SMAL model parameters © and the camera parameter f. All intermediate feature maps of the
encoder are resized and concatenated for the local feature extraction of the refinement stage. The
encoder of our MRGCN consists of consecutive graph convolutional blocks and downsampling layers,
where the mesh graph is downsampled by a factor of 4 at each time. As in [17], the graph convolutional
block is similar to the Bottleneck residual block in [9], where the 1 x 1 convolutions are replaced by
per-vertex fully connected layers and the Batch Normalization is replaced by Group Normalization.
Similarly, the decoder consists of consecutive graph convolutional blocks and upsampling layers to
reconstruct 3D mesh in the original resolution. The skip connections are added between the encoder
and decoder layers with a concatenation operation.



Table 1: IOU and PCK@0.15 scores for the StanfordExtra dataset. ‘GT’ and ‘Pred’ represent whether
ground truth or predicted keypoints or silhouettes are used during test, and ‘-’ represents that the
corresponding information is not required. ‘Ours-coarse’ and ‘Ours’ represent the results of the
coarse and refined estimations, respectively. (Best results in bold)

Method Keypoints  Silhouette = IOU PCK@0.15
Avg Legs Tail Ears Face
3D-M [35] Pred Pred 699 697 683 68.0 57.8 937
3D-M GT GT 71.0 756 742 895 60.7 98.6
3D-M GT Pred 707 755 741 88.1 60.2 987
3D-M Pred GT 70.5 703 69.0 694 585 940
CGAS [4] CGAS Pred 635 286 307 345 259 241
CGAS CGAS GT 642 282 301 334 263 245
WLDO [2] - - 742 788 764 639 781 921
Ours-coarse - - 725 710 759 553  76.1 89.8
Ours - - 81.6 834 819 637 844 944

Training details. We train our network in three stages. We first train the coarse estimation part
with all losses in Ly except the silhouette loss Lgn; for 200 epochs. We did not include the pose
limit prior Ly, at this stage as we find the network tends to estimate invalid poses only when we
apply the silhouette loss. Subsequently, the mesh refinement part is trained with the keypoints loss
Ly for 10 epochs with the coarse estimation part kept frozen. Finally, we train the whole network
with both Ly and Ly, for 200 epochs. We do not include the silhouette loss in the first two stages
because it has been observed [4, 2] that the silhouette loss can lead the network to unsatisfactory local
minima if applied too early. Our model is implemented with Pytorch, and we use the Adam optimizer
with a learning rate of 10~ in the first two stages and of 10~° in the third stage. The whole training
process takes around 30 hours on a RTX2080Ti GPU.

4.1 Datasets and evaluation metrics.

We train our model on the StanfordExtra dataset [2], and test on the StanfordExtra, the Animal Pose
[6] and the benchmark animal dataset of joint annotations (BADJA) [4] datasets.

StanfordExtra dataset. The StanfordExtra dataset is a newly introduced large-scale dog dataset
with 2D keypoint and silhouette annotations. The images are taken from an existing dataset for
fine-grained image categorization [ 4], which consists of 20,580 images of dogs taken in the wild
and covers 120 dog breeds. Images with too few keypoints within the field-of-view are removed.
Each dog-breed is divided into training and testing split with a ratio of 4 : 1.

Animal Pose and BADJA datasets. The Animal Pose dataset is recently introduced for 2D animal
pose estimation, and the BADJA dataset is derived from the existing DAVIS video segmentation
dataset. We use these two datasets to test the generalization capacity of our network.

Evaluation metrics. Following previous works [33, 2], we use two evaluation metrics: 1) Percent-
age of Correct Keypoints (PCK), and 2) intersection-over-union (IOU). PCK computes the percentage
of joints that are within a normalized distance to the ground truth locations, and we use it to evaluate
the quality of the estimated pose. We normalize the joint distance based on the square root of 2D
silhouette area and use a threshold of 0.15, which we denote as PCK@0.15. Following [2], we also
evaluate PCK@0.15 on different body parts, including legs, tail, ears and face. The IOU measures the
overlap between the rendered silhouettes and the ground truth annotations, and we use it to evaluate
the quality of the estimated 3D shapes.

4.2 Results on the StanfordExtra dataset

We show the results of our approach and compare with existing works in Table 1. We take the results
of the existing works from [2]. 3D-M [35] is an optimization-based approach that fits the SMAL
model to the 2D keypoints and silhouette by minimizing an energy term. The optimization is run for
each image, which means 2D keypoints and silhouettes are needed during test. We list the results
of 3D-M when ground truth (GT) or predicted (Pred) keypoints and silhouette are used. CGAS [4]
first predicts 2D keypoints from silhouette with their proposed genetic algorithm, denoted as CGAS,



Table 2: IOU and PCK@0.15 scores for the Animal Pose dataset. (Best results in bold)

Method Keypoints  Silhouette =~ IOU PCK@0.15
Avg Legs Tail Ears Face
3D-M [35] Pred Pred 649 592 557 569 613  86.7
WLDO [2] - - 675 676 604 627 86.0 86.7
Ours-coarse - - 67.5 620 57.1 45.1 758 789
Ours - - 75,7 678 622 451 86.6 878

and then run an optimization step to match the 2D evidences. Both WLDO [2] and our approach are
regression-based, hence do not need 2D keypoints or silhouette during test. We show PCK@0.15 and
IOU for both coarse (ours-coarse) and refined (ours) estimations. As shown in Table 1, our approach
outperforms the optimization-based approaches [35, 4] in terms of both IOU and average PCK@0.15
even when ground truth 2D annotations are used. We also outperform the regression-based approach
[2] for all metrics, with a relative improvement of 10.0% for IOU and 5.8% for average PCK@0.15.
The fact that the refined estimation has higher scores than the coarse estimation demonstrates the
effectiveness of our coarse-to-fine strategy. This is also evident from the qualitative results in Row
1-3 of Figure 4, where both keypoint locations (e.g. keypoints on the right rear legs in the first row
and on the face in the second row) and silhouettes are improved (more yellow pixels and less red or
green pixels) after the refinement step.

4.3 Results on the Animal Pose and BADJA datasets

To test the generalization capacity, we directly apply our model trained on StanfordExtra to the
Animal Pose and BADJA datasets. The results for the Animal Pose dataset are shown in Table 2 .
We take the performance of 3D-M and WLDO from [2]. Note that the results of 3D-M is obtained
by using the predicted keypoints and silhouettes for fair comparison. We can see that our approach
outperforms the state-of-the-art approach [2] for all metrics, especially for the IOU score. This
demonstrates the importance of the refinement step in improving the coarse estimations since the
architecture of our coarse estimation stage is similar to WLDO except that we do not apply the EM
updates. We show the qualitative results on this dataset in Row 4-6 of Figure 4.

We also evaluate on the BADJA dataset and  Taple 3: IOU and PCK@0.15 for the BADJA dataset.
compare with the state-of-the-art WLDO in Method 10U PCK@0.15

Table 3. The results of WLDO are obtained Avg Legs Tail Ears Face

by running the publicly available checkpoint. WLDO 2] 650 48.6 404 782 552 765

Note that there is large domain gap between  ,s_coarse 59.6 42.5 337 57.5 63.4 79.2
the BADJA and the StanfordExtra datasets in Ours 72.0 541 47.6 76.1 662 744

terms of animal pose and camera viewpoint.
Most images in the BADJA dataset are taken
from a video where a dog is running, and sometimes the viewpoint is from the back. For the
StanfordExtra dataset, most images are taken from a front view and the dogs are in a standing,
siting or prone pose. We show some examples of the BADJA dataset in Row 7-9 of Figure 4 for
illustration. We can see from Table 3 that our approach still obtains reasonable scores given the
domain gap between these two datasets, improving over WLDO by 10.8% for IOU and 11.3% for
average PCK@0.15. We also notice that the performance gap between the coarse and fine estimations
is larger than that of the other two datasets. This may be attributed to the domain shift of the input
image, which causes the coarse estimation to be inaccurate. Nonetheless, this inaccuracy can be
reduced after refinement since the refinement step does not directly rely on the input image. We can
observe from the qualitative results (Row 7-8) that keypoints on the legs aligned much better after
refinement. This also demonstrates the advantage of our coarse-to-fine approach in the presence of
domain gap. We show failure cases in the last two rows of Figure 4, where the camera is looking at
the back of the animal or there is severe occlusion.

4.4 Ablation study

Table 4 shows the results of the ablation studies on the StandfordExtra dataset. We remove one
component from our full pipeline (Full) at each time to evaluate the corresponding contribution.
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Figure 4: Qualitative results on the StanfordExtra, Animal Pose and BADJA datasets. The first

column is the input images, the second to fourth columns and fifth to seventh columns are the coarse
and refined estimations, respectively. The last column is the 3D mesh in another view.

We first evaluate our coarse-to-fine strategy by
removing the MRGCN (-MR), which corre-
sponds to the results of ‘Ours-coarse’ in the
previous tables. We then test the contribution of
the local features by removing it from the input
of the MRGCN (-LF). This gives similar results
with the coarse estimation, which means that the
global feature alone is not able to improve the
initial estimations. Our MRGCN is designed as

Table 4: Ablation study for each component.
Method IOU PCK@0.15

Avg Legs Tail Ears Face
Full 81.6 834 81.9 637 844 944
-MR 725 77.0 759 553 76.1 89.8
-LF 733 769 76.1 57.0 75.1 89.1
-ED 794 80.2 79.2 593 799 O91.5
-TL 81.1 825 81.0 652 829 928




an encoder-decoder structure. We verify this design by replacing the structure with a traditional
GCN (-ED), where the mesh vertices are processed in the same resolution across all layers. We also
evaluate the contribution of the Tversky loss by replacing it with commonly used L; loss (-TL). We
can see that the performance drops when each part is removed from the full pipeline. This verifies the
contribution of each component.

5 Conclusion

We introduce a coarse-to-fine approach for 3D animal pose and shape estimation. Our two-stage
approach is a combination of SMAL-based and vertex-based representations that benefits from
both parametric and non-parametric representations. We design the mesh refinement GCN as an
encoder-decoder structure, where the input feature of each node consists of both image-level and
vertex-level features. This combination of global and local features helps to capture overall structure
and detailed shape information. Our approach outperforms both optimization-based and regression-
based approaches on the StanfordExtra dataset. Results on the Animal Pose and BADJA datasets
verify the generalization capacity of our approach to unseen datasets.

Limitations and potential negative societal impacts

There still exist challenging cases not handled by our work, such as scenarios where the camera looks
at the back of the animal or with severe occlusions. A naive adoption of our approach to monitor
animal health may result in potential negative consequences, i.e. the inaccurate shape reconstruction
of the animals in this scenario can provide misleading information for the farmer or animal breeder.
Nonetheless, the problem can be mitigated by collecting animal images with more variations of
camera views and animal poses or by synthesizing novel images with existing datasets [ 8]. Moreover,
an alternative solution for the occlusion problem is to model the ambiguity by predicting multiple
hypotheses [3] or by predicting a probability distribution over the SMAL parameters [27].
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