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ABSTRACT

A key appeal of the recently proposed Neural Ordinary Differential Equation
(ODE) framework is that it seems to provide a continuous-time extension of
discrete residual neural networks. As we show herein, though, trained Neural ODE
models actually depend on the specific numerical method used during training. If
the trained model is supposed to be a flow generated from an ODE, it should be
possible to choose another numerical solver with equal or smaller numerical error
without loss of performance. We observe that if training relies on a solver with
overly coarse discretization, then testing with another solver of equal or smaller
numerical error results in a sharp drop in accuracy. In such cases, the combination
of vector field and numerical method cannot be interpreted as a flow generated
from an ODE, which arguably poses a fatal breakdown of the Neural ODE concept.
We observe, however, that there exists a critical step size beyond which the training
yields a valid ODE vector field. We propose a method that monitors the behavior of
the ODE solver during training to adapt its step size, aiming to ensure a valid ODE
without unnecessarily increasing computational cost. We verify this adaptation
algorithm on a common bench mark dataset as well as a synthetic dataset.

1 INTRODUCTION

The choice of neural network architecture is an important consideration in the deep learning
community. Among a plethora of options, Residual Neural Networks (ResNets) (He et al., 2016)
have emerged as an important subclass of models, as they mitigate the gradient issues (Balduzzi et al.,
2017) arising with training deep neural networks by adding skip connections between the successive
layers. Besides the architectural advancements inspired from the original scheme (Zagoruyko &
Komodakis, 2016; Xie et al., 2017), recently Neural Ordinary Differential Equation (Neural ODE)
models (Chen et al., 2018; E, 2017; Lu et al., 2018; Haber & Ruthotto, 2017) have been proposed as
an analog of continuous-depth ResNets. While Neural ODEs do not necessarily improve upon the
sheer predictive performance of ResNets, they offer the vast knowledge of ODE theory to be applied
to deep learning research. For instance, the authors in Yan et al. (2020) discovered that for specific
perturbations, Neural ODEs are more robust than convolutional neural networks. Moreover, inspired
by the theoretical properties of the solution curves, they propose a regularizer which improved the
robustness of Neural ODE models even further. However, if Neural ODEs are chosen for their
theoretical advantages, it is essential that the effective model—the combination of ODE problem and
its solution via a particular numerical method—is a close approximation of the true analytical, but
practically inaccessible ODE solution.

Code: https://github.com/boschresearch/numerics_independent_neural_odes
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In this work, we study the empirical risk minimization (ERM) problem

LD =
1

|D|
∑

(x,y)∈D

l(f(x;w), y) (1)

where D = {(xn, yn) | xn ∈ RDx , yn ∈ RDy , n = 1, . . . , N} is a set of training data, l :
RDy × RDy → R is a (non-negative) loss function and f is a Neural ODE model with weights w,
i.e.,

f = fd ◦ ϕfvT ◦ fu (2)
where fx, x ∈ {d, v, u} are neural networks and u and d denote the upstream and downstream layers
respectively. ϕ is defined to be the (analytical) flow of the dynamical system

dz

dt
= fv(z;wv), z(t) = ϕfvt (z(0)). (3)

As the vector field fv of the dynamical system is itself defined by a neural network, evaluating ϕfvT
is intractable and we have to resort to a numerical scheme Ψt to compute ϕt. Ψ belongs either to a
class of fixed step methods or is an adaptive step size solver as proposed in Chen et al. (2018). For
fixed step solvers with step size h one can directly compute the number of steps taken by the solver
#steps = Th−1. We set the final time T = 1 for all our experiments. The global numerical error
etrain of the model is the difference between the true, (unknown), analytical solution of the model
and the numerical solution etrain = ||ϕT (z(0))−ΨT (z(0))|| at time T . The global numerical error
for a given problem can be controlled by adjusting either the step size or the local error tolerance.

Figure 1: The Neural ODE was trained on a clas-
sification task with a small (a) and large (b) step
size. (a) and (b) show the trajectories for the two
different solvers. The colors of the trajectories in-
dicate the label for each IVP. Panels (c) and (d)
show the test accuracy of the Neural ODE solver
using different step sizes for testing. ( ) indicates
the number of steps used for testing are the same
as the number of steps used for training. ( ) - the
number of steps used for testing are different from
the number of steps used for training.

Since the numerical solvers play an essential
role in the approximation of the solutions of an
ODE, it is intuitive to ask: how does the choice
of the numerical method affect the training of a
Neural ODE model? Specifically, does the dis-
cretization of the numerical solver impact the re-
sulting flow of the ODE? To test the effect of the
numerical solver on a Neural ODE model, we
first train a Neural ODE on a synthetic classifica-
tion task consisting of three concentric spheres,
where the outer and inner sphere correspond to
the same class (for more information see Section
2.4). For this problem there are no true underly-
ing dynamics and therefore, the model only has
to find some dynamics which solve the problem.
We train the Neural ODE model using a fixed
step solver with a small step size and a solver
with a large step size (see Figure 1 (a) and (b)
respectively). If the model is trained with a large
step size, then the numerically computed trajec-
tories for the individual Initial Value Problems
(IVPs) cross in phase space (see Figure 1 (b)).
Specifically, we observe that trajectories of IVPs
belonging to different classes cross. This cross-
ing behavior contradicts the expected behavior
of autonomous ODE solutions, as according to
the Picard-Lindelöf theorem we expect unique
solutions to the IVPs. We observe crossing tra-
jectories because the discretization error of the
solver is so large that the resulting numerical solutions no longer maintain the properties of ODE
solutions.

We observe that both, the model trained with the small step size and the model trained with the large
step size, achieve very high accuracy. This leads us to the conclusion that the step size parameter
is not like any other hyperparameter, as its chosen value often does not affect the performance of
the model. Instead, the step size affects whether the trained model has a valid ODE interpretation.
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Crossing trajectories are not bad per se if the performance is all we are interested. If, however, we
are interested in applying algorithms whose success is motivated from ODE theory to, for example,
increase model robustness (Yan et al., 2020), then the trajectories must not cross.

We argue that if any discretization with similar or lesser discretization error yields the same prediction,
the trained model corresponds to an ODE that is qualitatively well approximated by the applied
discretization. Therefore, in our experiments we evaluate each Neural ODE model with smaller and
larger step sizes than the training step size. We notice that the model trained with the small step
size achieves the same level of performance when using a solver with smaller discretization error
for testing (Figure 1 (c)). For the model trained with the large step size, we observe a significant
drop in performance if the model is evaluated using a solver with a smaller discretization error (see
Figure 1 (d)). The reason for the drop in model performance is that the decision boundary of the
classifier has adapted to the global numerical error etrain in the computed solution. For this specific
example, correct classification relies on crossing trajectories as a feature. Therefore, the solutions of
solvers with a smaller discretization error are no longer assigned the right class by the classifier and
the Neural ODE model is a ResNet model without ODE interpretation.

If we are interested in extending ODE theory to Neural ODE models, we have to ensure that the
trained Neural ODE model indeed maintains the properties of ODE solutions. In this work we show
that the training process of a Neural ODE yields a discrete ResNet without valid ODE interpretation
if the discretization is chosen too coarse. With our rigorous Neural ODE experiments on a synthetic
dataset as well as CIFAR10 using both fixed step and adaptive step size methods, we show that if the
precision of the solver used for training is high enough, the model does not depend on the solver used
for testing as long as the test solver has a small enough discretization error. Therefore, such a model
allows for a valid ODE interpretation. Based on this observation we propose an algorithm to find the
coarsest discretization for which the model is independent of the solver.

2 INTERACTION OF NEURAL ODE AND ODE SOLVER CAN LEAD TO
DISCRETE DYNAMICS

We want to study how the Neural ODE is affected by the specific solver configuration used for
training. To this end, in our experiments we first train each model with a specific step size htrain (or a
specific tolerance toltrain in the case of adaptive step size methods). For the remainder of this section
we will only consider fixed step solvers, but all points made equally hold for adaptive step methods,
as shown by our experiments. Post-training, we evaluate the trained models using different step
sizes htest and note how using smaller steps sizes htest < htrain affects the model performance. We
expect that if the model yields good performance in the limiting behavior using smaller and smaller
step sizes htest → 0 for testing, then model should correspond to a valid ODE. For a model trained
with a small step size, we find that the numerical solutions do not change drastically if the testing
step size htest is decreased (see Figure 1 (c)). But if the step size htrain is beyond a critical value, the
model accumulates a large global numerical error etrain. The decision layer may use these drastically
altered solutions as a signal/feature in the downstream computations. In this case, the model is tied
to a specific, discrete flow and the model remains no longer valid in the limit of using smaller and
smaller step sizes htest → 0.

2.1 THE TRAJECTORY CROSSING PROBLEM

In this sub-section, we examine the trajectory crossing effect which causes the ODE interpretation
to break down. First, we look at the numerically computed trajectories in phase space of a Neural
ODE model trained with a very large step size of htrain = 1/2 (see Figure 1 (b)). A key observation is
that the trajectories cross in phase space. This crossing happens because the step size htrain is much
bigger than the length scale at which the vector field changes, thus missing “the curvature” of the true
solution. Specifically, we observe that the model exploits this trajectory crossing behavior as a feature
to separate observations from different classes. This is a clear indication that these trajectories do
not approximate the true analytical solution of an ODE, as according to the Picard-Lindelöf theorem
(Hairer et al., 1993, § 1.8), solutions of first order autonomous ODEs do not cross in phase space.
Since the numerical solutions using smaller step sizes htest < htrain no longer maintain the crossing
trajectory feature, the classifier cannot separate the data with the learned vector field (see Figure 2).
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(a) (b)

Figure 2: Output of the Neural ODE block for different step sizes The mode is the same as in Figure
1, trained with a step size of 1/2. The points indicate the output of the Neural ODE block, the color
of the points shows their true label, and the light color in the background indicates the label assigned
by the classifier to this region. The model was tested with a step size of 1/2 in (a) and 1/4 in (b).
Axis were scaled such that the final locations of all test data points after passing through the ODE
block are shown.

2.2 LADY WINDERMERE’S FAN

In cases where trajectory crossings do not occur, other, more subtle effects can also lead to a drop in
performance in the limit of using smaller and smaller test step sizes htest → 0. The compound effect
of local numerical error leads to a biased global error which is sometimes exploited as a feature in
downstream blocks. This effect how the local error gets accumulated into global error was coined as
Lady Windermere’s Fan in Hairer et al. (1993, § 1.7).

To understand these effects we introduce an example based on the XOR problem D = {((0, 0) 7→
0), ((1, 1) 7→ 0), ((0, 1) 7→ 1), ((1, 0) 7→ 1)}. This dataset cannot be classified correctly in 2D with
a linear decision boundary (Goodfellow et al., 2016, § 1.2). Therefore, we consider the ODE

z′(t) =

(
α 1

−γ||z||δ β

)
z. (4)

The qualitative behavior of the analytical flow are increasing ellipsoids with ever increasing rotational
speed. We chose this problem as an example based on the knowledge that the precision of a solver
influences how the rotational speed of the ellipsoids is resolved. Therefore, this problem is useful in
illustrating how the numerical accuracy of the solver can affect the final solution.

Fig. 3 depicts the numerical solution of this flow with one set of fixed parameters and different step
sizes h = 10−2.5, 10−3.5. For both step sizes we do not observe crossing trajectories, but the final
solutions differ greatly. For h = 10−2.5 the numerical flow produces a transformation in which the
data points can be separated linearly. But for the smaller step size of h = 10−3.5, the numerical
solution is no longer linearly separable. The problem here is that the numerical solution using the
larger step size is not accurate enough to resolve the rotational velocity. For each step the local error
gets accumulated into the global error. In Figure 3 (a), the accumulation of error in the numerical
solution results in a valid feature for a linear decision (classification) layer. The reason for this is that
the global numerical errors etrain are biased. We define as the fingerprint of the method the structure
in the global numerical error. The decision layer then adapts to this method specific fingerprint. How
this fingerprint affects the performance of the model when using smaller step size htest is dependent
on two aspects. First, does the data remain separable when using smaller step sizes htest < htrain? If
not, we will observe a significant drop in performance. Second, how sensitive is the decision layer to
changes in the solutions and how much do the numerical solutions change when decreasing the test
step size htest → 0? Essentially, the input sensitivity of the downstream layer should be less than the
output sensitivity of htest < htrain. For the decision layer, there should exist a sensitivity threshold d
such that fd(z(T ) + δ) = fd(z(T )) ∀||δ|| < d. Thus, if two solvers compute the same solution up to
δ, the classifier identifies these solutions as the same class and the result of the model is not affected
by the interchanging these solvers.
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Figure 3: Solutions to Eq. 4 using Euler’s method with step size h = 10−2.5 (a) and h = 10−3.5

(b). The points indicate where each IVP ends up in phase space and the color indicates the class the
solution belongs to. The trajectories taken by the numerical solver are shown in the color indicating
the respective class. In (a) the black dotted line indicates one possibility how to separate the data
linearly. (c) shows for which step sizes the solution is linearly separable (1) or not (0).

2.3 DISCUSSION

We have just described two effects, trajectory crossing and Lady Windermere’s fan, which can
lead to a drop in performance when the model is tested with a different solver. The trajectory
crossing effect is a clear indication that the model violates ODE-semantics and it is not valid to
apply ODE-theory to this model. But even if we do not observe trajectory crossing for some step
size h̃ we are not guaranteed to not observe trajectory crossings for all h < h̃ (see Supplementary
Material Section A for an example). On the other other hand, note that the occurrence of Lady
Windermere’s fan as a downstream feature does not violate an ODE interpretation of the numerical
flow. However, we argue that a pronounced Lady Windermere’s fan should still be avoided as a
downstream feature because the feature vanishes in the continuous-depth limit leading the Neural
ODE model ad absurdum. Additionally, distinguishing Lady Windermere’s fan from the trajectory
crossing problem is hard without visualization as both effects lead to a drop in performance if a solver
with higher numerical accuracy is used for testing. However, there exists a critical step size/tolerance
θcrit where convergence is close to floating point accuracy and both effects vanish in the limit. As
a first step we propose to check how robust the model is with respect to the step size/tolerance to
ensure that the resulting model is in a regime where ODE-ness is guaranteed and therefore one can
apply reasoning from ODE theory to the model.

The current implementation of Neural ODEs does not ensure that the model is driven towards
continuous semantics as there are no checks in the gradient update ensuring that the model remains
a valid ODE nor are there penalties in the loss function if the Neural ODE model becomes tied to
a specific numerical configuration. An interesting direction would also be to regularize the Neural
ODE block towards continuous semantics. One idea is to restrict the Lipschitz constant to below 1,
as proposed by Behrmann et al. (2018) for ResNets which avoids crossing trajectories.

2.4 EXPERIMENTS

For our experiments, we introduce a classification task based on the concentric sphere dataset
proposed by Dupont et al. (2019) (see Supplementary Material Figure 8). Whether this dataset can
be fully described by an autonomous ODE, is dependent on the degrees of freedom introduced by
combining the Neural ODE with additional downstream (and upstream) layers.

In this subsection, we present results from the experiments performed on Sphere2 and CIFAR10
datasets using fixed step and adaptive step solvers. For additional results on MNIST we refer to
the Supplementary Material Section B. The aim of these experiments is to analyze the dynamics of
Neural ODEs and show its dependence on the specific solver used during training by testing the model
with a different solver configuration. In the main experiments presented in the paper, we choose to
back-propagate through the numerical solver. The results pertaining to the adjoint method (Chen
et al., 2018) are provided in the Supplementary Material Section B. For all our experiments, we do not
use an upstream block fu similar to the architectures proposed in Dupont et al. (2019). Additionally,
we decided to only use a single ODE block and a simple architecture for the classifier. We chose such
an architectural scheme to maximize the modeling contributions of the ODE block. We do not expect
to achieve state-of-the-art results with this simple architecture but we expect our results to remain
valid for more complicated architectures.
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For training the Neural ODE with fixed step solvers, Euler’s method and a 4th order Runge–Kutta
(rk4) method were used (descriptions of these methods can be found in Hairer et al. (1993)). The
trained Neural ODE was then tested with different step sizes and solvers. For a Neural ODE trained
with Euler’s method, the model was tested with Euler’s method, the midpoint method and the rk4
method. The testing step size was chosen as a factor of 0.5, 0.75, 1, 1.5, and 2 of the original
step size used for training. For rk4, we only tested using the rk4 method with different step sizes.
Likewise, the adaptive step solver experiments were performed using Fehlberg21 and Dopri54. The
models were trained and tested using different tolerances and solvers. The models trained using
Fehlberg21 were tested using Fehlberg21 and Dopri54, whereas the models trained using Dopri54
were only tested using Dopri54. The testing tolerance was chosen as a factor of 0.1, 1, and 10 of the
original tolerance used for training. Here we do not show the results for all training step sizes and
tolerances, but reduced the data to maintain readability of the plots (for plots showing all the data
see the Supplementary Material Section B). We report an average over five runs, where we used an
aggregation of seeds for which the Neural ODE model trained successfully (the results for all seeds
are disclosed in the Supplementary Material). We did not tune all hyper-parameters to reach best
performance for each solver configuration. Rather, we focused on hyper-parameters that worked well
across the entire range of step sizes and tolerances used for training (see Supplementary Material for
the choice of hyper parameters and the architecture of the Neural ODE).

As shown in Figure 4, when training and testing the model with the same step size (a), (b) or the same
tolerance (c), (d), the test accuracy does not show any clear dependence on the step size or tolerance
respectively. Since we did not tune the learning rate for each step size/tolerance, any visible trends
could be due to this choice. Indeed, many different solver configurations work well in practice, but
only for small enough step sizes/tolerances the model represents a valid ODE. On both datasets, we
observe similar behavior for dependence of the test accuracy on the test solver: when using large
step sizes/tolerances for training, the Neural ODE shows dependence on the solver used for testing.
But there exists some critical step size/tolerance below which the model shows no clear dependence
on the test solver as long as this test solver has equal or smaller numerical error than the solver
used for training (as seen in Figure 4). For additional experimental results we refer the reader to the
Supplementary Material Section B.1.
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Figure 4: A Neural ODE was trained with different step sizes on Sphere2 (a), (b) and different
tolerances on CIFAR10 (c), (d). The model was tested with different solvers and different step
sizes/tolerances. In (a) the model was trained using Euler’s method. Dark circles indicate that the
same solver is used for training and testing. Light data indicates different step sizes used for testing.
Circles correspond to Euler’s method, cross to the midpoint method and triangles to rk4. In (b) a 4th
order Runge Kutta methods was used for training and testing. In (c) the model was trained using the
Fehlberg21 method. Circles correspond to Fehlberg21 method, cross to the Dopri54 method. In (d)
Dopri54 was used for training (dark circles) and testing (light circles).
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The aforementioned dynamics of Neural ODE were also verifiable in the adaptive step solver
experiments (see Figure 4, (c) and (d)). In this case, the trained model’s test accuracy was dependent
on the configuration of the test solver below a critical tolerance value. For additional results on the
Sphere2 dataset we refer the reader to the Supplementary Material Section B.2.

3 ALGORITHM FOR STEP SIZE ADAPTATION

Algorithm 1: Step and tolerance adaptation algorithm
Inputs ε, train solver, test solver, model;
while Training do

batch = draw batch(data);
logits = model.forward pass(batch, train solver(ε));
loss = model.calculate loss(logits);
train solver acc = model.calculate acc(logits);
if Iteration % 50 == 0 then

logits = model.do forward pass(batch,
test solver(ε));

test solver acc = model.calculate acc(logits);
if |train solver acc-test solver acc| > 0.1 then

ε = 0.5 ε;
else

ε = 1.1 ε;
end

end
model.update(loss);

end

Although Neural ODEs achieve good
accuracy for a large variety of solver
configurations, if theoretic results of
ODEs are to be applicable to Neural
ODEs, it is paramount to find a solu-
tion corresponding to an ODE flow.
To ensure this, we propose an algo-
rithm that checks whether the Neu-
ral ODE remains independent of the
specific train solver configuration and
adapts the step size for fixed step
solver and the tolerance for adaptive
solvers if necessary. The proposed
algorithm tries to find solver settings
throughout training which keep the
number of function evaluations small,
while maintaining continuous seman-
tics.

It is important to note that adaptive
step size methods with one fixed toler-
ance parameter do not solve this issue,
as embedded methods can severely un-

derestimate the local numerical error if the vector field is not sufficiently smooth (Hairer et al., 1993).
In contrast to the common application of such methods, in the case of Neural ODEs we cannot choose
the appropriate solver and tolerance for a given problem as the vector field of the Neural ODE block
is changing throughout training. While there always exists a low enough tolerance such that the
adaptation issue does not occur, this low enough tolerance may be prohibitively small in practice and
is certainly leaving runtime efficiency on the table.

So far, there does not exist any other algorithm that we are aware of which solves the issue. The aim
of the proposed algorithms is not to achieve state of the art results, but rather be a first step towards
ensuring that trained Neural ODE models can be viewed independently of the solver configuration
used for training. Here we will describe the algorithm for the fixed step solvers, which shows
promising results for an equivalend algorithm fo datptive methods see in the Supplementary Material
Section C). Pseudo-code for both settings is presented in Alg. 1.

First the algorithm has to initialize the accuracy parameter ε, which corresponds to the step size h
for fixed step solvers and the tolerance for adaptive step size solvers. The initial step size is chosen
according to an algorithm described by Hairer et al. (1993)[p. 169] which ensures that the Neural
ODE chooses an appropriate step size for all neural networks and initializations. In our experiments
we found that the initial step size suggested by the algorithm is not too small, which makes the
algorithm useful in practice. The Neural ODE starts training with the proposed accuracy parameter ε.
After a predefined number of iterations (we chose k = 50), the algorithm checks whether the model
can still be interpreted as a valid ODE: the accuracy is calculated over one batch with the train solver
and with a test solver, where the test solver has a smaller discretization error than the train solver.
To ensure that the test solver has a smaller discretization error than the train solver, the accuracy
parameter ε is adjusted for testing if necessary (see Supplementary Material Section C for details). If
test and train solver show a significant difference in performance, we decrease the accuracy parameter
and let the model train with this accuracy parameter to regain valid ODE dynamics. If performance
of test solver and train solver agree up to a threshold, we cautiously increase the accuracy parameter.
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Figure 5: Using the step adaptation algorithm for training on CIFAR10 (a), (b). (a) shows the test
accuracy over the course of training for five different seeds. (b) shows the number of steps chosen by
the algorithm over the course of training. (c) shows the test accuracy. At certain points in time (also
marked in (d)), the model is evaluated with solvers of smaller discretization error (orange green and
red data points). Triangles correspond to a 4th order Runge Kutta method, crosses to the midpoint
method. (d) shows the number of steps chosen by the algorithm.

Unlike in ODE solvers, the difference between train and test accuracy does not tell by how much the
step size needs to be adapted, so we choose some constant multiplicative factor that works well in
practice (see Algorithm 1 for a simplified version and the Supplementary Material for details). The
algorithm was robust against small changes to the constants in the algorithm.

3.1 EXPERIMENTS

We test the step adaptation algorithm on two different datasets: the synthetic dataset and on CIFAR10
(see Supplementary Material for addational results). We use Euler’s method as the train solver and the
midpoint method as the test solver (addtional configurations are found in the Supplementary material).
On all datasets, we observe that the number of steps taken by the solver fluctuate over the course
of training (see Figure 5). The reason for such a behavior is that the algorithm increases the step
size until the step size is too large and training with this step size leads to an adaptation of the vector
field to this particular step size. Upon continuing training with a smaller step size, this behavior is
corrected (see Figure 5 (c) and (d)) and the algorithm starts increasing the step size again. To compare
the results of the step adaptation algorithm to the results of the grid search, we detail accuracy as well
as number of average function evaluations (NFE) per iteration. For the grid search, we determine the
critical number of steps using the same method as in the step adaptation algorithm. We report the
two step sizes above and below the critical step size which were part of the grid search. For the step
adaptation algorithm we calculate the NFE per iteration by including all function evaluations over
course of training (see Table 1). The achieved accuracy and step size found by our algorithm is on par
with the smallest step size above the critical threshold thereby eliminating the need for a grid search.

4 RELATED WORK

The connections between ResNets and ODEs have been discussed in E (2017); Lu et al. (2018); Haber
& Ruthotto (2017); Sonoda & Murata (2019). The authors in Behrmann et al. (2018) use similar
ideas to build an invertible ResNet. Likewise, additional knowledge about the ODE solvers can be
exploited to create more stable and robust architectures with a ResNet backend (Haber & Ruthotto,
2017; Haber et al., 2019; Chang et al., 2018; Ruthotto & Haber, 2019; Ciccone et al., 2018; Cranmer
et al., 2020; Benning et al., 2019).
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Grid search Step adaptation algorithm
Data set NFE Accuracy NFE Accuracy

Concentric spheres 2d 65-129 98.7± 1.0% 100.5 98.9± 0.6%
Cifar10 17-33 54.7± 0.3% 21.9 55.0± 0.8%

Table 1: Results for the accuracy and the number of function evaluations to achieve time continuous
dynamics using a grid search and the proposed step adaptation algorithm. For the grid search, we
report the accuracy of the run with the smallest step size above the critical threshold.

Continuous-depth deep learning was first proposed in Chen et al. (2018); E (2017). Although
ResNets are universal function approximators (Lin & Jegelka, 2018), Neural ODEs require specific
architectural choices to be as expressive as their discrete counterparts (Dupont et al., 2019; Zhang et al.,
2019a; Li et al., 2019). In this direction, one common approach is to introduce a time-dependence for
the weights of the neural network (Zhang et al., 2019c; Avelin & Nyström, 2020; Choromanski et al.,
2020; Queiruga et al., 2020). Other solutions include, novel Neural ODE models (Lu et al., 2020;
Massaroli et al., 2020) with improved training behavior, and variants based on kernels (Owhadi &
Yoo, 2019) and Gaussian processes (Hegde et al., 2019). Adaptive ResNet architectures have been
proposed in Veit & Belongie (2018); Chang et al. (2017). The dynamical systems view of ResNets has
lead to the development of methods using time step control as a part of the ResNet architecture (Yang
et al., 2020; Zhang et al., 2019b). Thorpe & van Gennip (2018) show that in the deep limit the Neural
ODE block and its weights converge. This supports our argument for the existence of a critical step
size. Weinan et al. (2019) and Bo et al. (2019) show the theoretical implications and advantages a
continuous formulation ResNet models has.

Gusak et al. (2020) and Zhuang et al. (2020) observe a drop in performance when changing to
numerically more precise solvers. In a similar vein as our work, Queiruga et al. (2020) study how
the solver influences the Neural ODE model, showing that a model trained with Euler’s method can
have significantly lower performance when tested with a higher order solver. To avoid this issue, they
propose to use higher order solvers for training Neural ODEs.

5 CONCLUSION

We have shown that the step size of fixed step solvers and the tolerance for adaptive methods used for
training Neural ODEs impacts whether the resulting model maintains properties of ODE solutions.
As a simple test that works well in practice, we conclude that the model only corresponds to a
continuous ODE flow, if the performance does not depend on the exact solver configuration. We
illustrated that the reasons for the model to become dependent on a specific train solver configuration
are the use of the bias in the numerical global errors as a feature by the classifier, and the sensitivity
of the classifier to changes in the numerical solution. We have verified this behavior on CIFAR10
as well as a synthetic dataset using fixed step and adaptive methods. Based on these observations,
we developed step size and tolerance adaptation algorithms, which maintain a continuous ODE
interpretation throughout training. For minimal loss in accuracy and computational efficiency, our
step adaptation algorithm eliminates a massive grid search. In future work, we plan to eliminate the
oscillatory behavior of the adaptation algorithm and improve the tolerance adaptation algorithm to
guarantee robust training on many datasets.
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A CROSSING TRAJECTORIES

In the main text we describe how trajectory crossings are an indication that the vector field has
adapted to a specific solver and such a vector field then has no meaningful interpretation in the
continuous setting. In this section we want to answer whether the following statement is true: If for a
step size h̃ we do not observe crossing trajectories then for all h < h̃ we will not observe crossing
trajectories. To study this problem in more detail we introduce a vector field f : [0.0,∞)×[0.1,∞)→
[0,∞)× [0,∞)

d
dt

[x y] = f(x, y), (5)

f(x, y) =



[
1− 2(x− 1) 2(x−1)

y

]
, if x ∈ (1, 1.25][

0.5 0.5
y

]
, if x ∈ (1.25, 1.75][

0.5 + 2(x− 1.75) 0.5−2(x−1.75)
y

]
, if x ∈ (1.75, 2][

1 0
]
, else.

(6)

We chose this vector field because only for the region x ∈ (1, 2] the curvature of the vector field
changes (see Figure 6 for a visualization of the vector field). The described vector field is Lipschitz
continuous on [0.0,∞)× [0.1,∞) and autonomous, therefore the Picard-Lindelöf theorem applies
and the true solutions to the ODE do not cross in phase space.

0 1 2 3

x

0

1

2

3

y

Figure 6: Visualization
of the vector field defined
in Eq. (6)

We use Euler’s method with different step sizes to solve the ODE. First
we only look at the IVPs where x(t = 0) = 0 (shown in blue in Figure
7). Each IVP can be thought of as a data point in a dataset. For the large
step size h = 1 we do not observe crossing trajectories (see Figure 7
(a)). The numerical solver fails to resolve the change in curvature in the
vector field. If we decrease the step size to h = 1/2 we observe crossing
trajectories (see Figure 7 (b)). This clearly shows that not observing
crossing trajectories for some h̃ does not give us any information about
what will happen for h < h̃. But since we know that the numerical solvers
converge to the true solution, we can make the following statement: For
a given set of IVPs there exists a step size h∗ such that for all h < h∗ we
do not observe crossing trajectories. And indeed if we choose an even
smaller step size we no longer observe crossing trajectories (see Figure
7 (c)).

We also want to emphasize that observed behavior for the different step
sizes is dependent on the set of IVPs. To illustrate this point we add additional IVPs to our original
dataset, where for the new IVP x(t = 0) = 1.4 (the additional IVPs are shown in orange in Figure 7).
Now we also observe crossing trajectories for the large step size h = 1. This shows that whether we
observe crossing trajectories or not is not only dependent on the step size but also on the set of IVPs
we choose.
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Step size: 2−0.0 (b)
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Step size: 2−1.0 (c)
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Figure 7: Numerical solutions to Eq.6 using Euler’s method. In blue is the set of IVPs for which
x(0) = 0 and in orange is an additional set of IVPs for which x(t = 0) = 1.5. The ODE is solved
using different step size, h = 1 in (a), h = 2−1 in (b), and h = 2−5 in (c).
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B EXPERIMENTAL RESULTS

Figure 8: The concentric sphere dataset (Sphere2).

In the main text we do not plot the results for all the training step sizes/ tolerances but only for every
second training step size/tolerance to improve the clarity of the plots. Here we now include the plots
showing all training runs and we include additional results for all datasets.

B.1 RESULTS FOR FIXED STEP SOLVERS

In addition to the concentric sphere dataset in 2 dimensions (see Figure 8), we introduce higher
dimensional versions of the concentric sphere dataset, namely 3, 10, and 900 dimensional versions.

In this section we present the results for fixed step solvers. The model is trained with Euler’s method
or a 4th order Runge Kutta method (rk4) with different step sizes. If Euler’s method is used for
training then the model is tested with Euler’s method, the Midpoint method and rk4. If rk4 is used for
training then the model is only tested with rk4.

We train Neural ODE models on CIFAR10 (see Figure 9), on MNIST (see Figure 10), on the 2
dimensional concentric sphere dataset (see Figure 11), on the 3 dimensional concentric sphere dataset
(see Figure 12), on the 10 dimensional concentric sphere dataset (see Figure 13), and on the 900
dimensional concentric sphere dataset (see Figure 14).

For all datasets we observe that if the model is trained with a large step size then there is a drop in
performance if a solver with smaller numerical error is used for testing. But there exists a training
step size above which using a solver with a higher numerical accuracy does not lead to a drop in
performance. The observations support our claims made in the main text.
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Figure 9: A Neural ODE was trained with different step sizes (plotted in different colors) on CIFAR10
(a), (b) . The model was tested with different solvers and different step sizes. In (a) the model was
trained using Euler’s method. Results obtained by using the same solver for training and testing are
marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond
to Euler’s method, cross to the midpoint method and triangles to a 4th order Rung Kutta method. In
(b) a 4th order Runge Kutta methods was used for training (dark circles) and testing (light circles).
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Figure 10: A Neural ODE was trained with different step sizes (plotted in different colors) on MNIST
(a), (b) . The model was tested with different solvers and different step sizes. In (a) the model was
trained using Euler’s method. Results obtained by using the same solver for training and testing are
marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond
to Euler’s method, cross to the midpoint method and triangles to a 4th order Rung Kutta method. In
(b) a 4th order Runge Kutta methods was used for training (dark circles) and testing (light circles).
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Figure 11: A Neural ODE was trained with different step sizes (plotted in different colors) on the
3 dimensional concentric sphere dataset (a), (b). The model was tested with different solvers and
different step sizes. In (a) the model was trained using Euler’s method. Results obtained by using
the same solver for training and testing are marked by dark circles. Light data indicated different
step sizes used for testing. Circles correspond to Euler’s method, cross to the midpoint method and
triangles to a 4th order Rung Kutta method. In (b) a 4th order Runge Kutta methods was used for
training (dark circles) and testing (light circles).
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Figure 12: A Neural ODE was trained with different step sizes (plotted in different colors) on the
3 dimensional concentric sphere dataset (a), (b). The model was tested with different solvers and
different step sizes. In (a) the model was trained using Euler’s method. Results obtained by using
the same solver for training and testing are marked by dark circles. Light data indicated different
step sizes used for testing. Circles correspond to Euler’s method, cross to the midpoint method and
triangles to a 4th order Rung Kutta method. In (b) a 4th order Runge Kutta methods was used for
training (dark circles) and testing (light circles).
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Figure 13: A Neural ODE was trained with different step sizes (plotted in different colors) on the
10 dimensional concentric sphere dataset (a), (b). The model was tested with different solvers and
different step sizes. In (a) the model was trained using Euler’s method. Results obtained by using
the same solver for training and testing are marked by dark circles. Light data indicated different
step sizes used for testing. Circles correspond to Euler’s method, cross to the midpoint method and
triangles to a 4th order Rung Kutta method. In (b) a 4th order Runge Kutta methods was used for
training (dark circles) and testing (light circles).
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Figure 14: A Neural ODE was trained with different step sizes (plotted in different colors) on the
900 dimensional concentric sphere dataset (a), (b). The model was tested with different solvers and
different step sizes. In (a) the model was trained using Euler’s method. Results obtained by using
the same solver for training and testing are marked by dark circles. Light data indicated different
step sizes used for testing. Circles correspond to Euler’s method, cross to the midpoint method and
triangles to a 4th order Rung Kutta method. In (b) a 4th order Runge Kutta methods was used for
training (dark circles) and testing (light circles).
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B.2 RESULTS FOR ADAPTIVE SOLVERS

In this section we present the results for adaptive step size solvers. The model is trained with
Fehlberg21 or Dopri54 with different tolerances. If Fehlberg21 is used for training then the model is
tested with Fehlberg21 and Dopri54. If Dopri54 is used for training then the model is only tested
with Dopri54.

We train the Neural ODE models on CIFAR10 (see Figure 15) on MNIST (see Figure 16) and on the
Sphere2 dataset (see Figure 17). For CIFAR10 we use backpropagation through the numerical solver
to calculate the gradients. For Sphere2 we use backpropagation through the numerical solver as well
as the adjoint method described in Chen et al. (2018) to calculate the gradients.

We observe that the models trained with a relatively large tolerance show a drop in performance if
the models are tested with a solver with lower numerical error. We oberserve this behavior for all
data sets and also for the adjoint method (see Figure 17 (c) and (d)), the only exception is MNIST
trained with Dopri54 which we attribute to the high order of the solver and the low critical step size
on MNIST. If the model is trained with a small tolerance then there is no drop in performance if the
model is tested with a solver with lower numerical error. We note that the Sphere2 dataset trained
with Dopri54 (Figure 17 (b)) shows decreasing performance for smaller tolerances. This might be due
to the model taking a lot of steps and therefore, the gradient provided by backpropagation might not
be accurate enough. Additionally, tuning the hyperparameters for specific tolerances might improve
the performance. For the model trained on Sphere2 using the adjoint method we observe that for
large tolerances the model achieves relatively low test accuracy. At large tolerances the model takes
relatively large and inaccurate steps. Therefore, the backward solutions of the ODE differs from the
forward solve and no valid gradient information is provided to the optimizer. Overall the performance
on MNIST is lower than with fixed step solvers, even though we specifically tuned the learning rate
and optimizer.
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Figure 15: A Neural ODE was trained with different tolerances (plotted in different colors)on
CIFAR10 (a), (b). The model was tested with different solvers and different tolerances. In (a) the
model was trained using the Fehlberg21 method. Results obtained by using the same solver for
training and testing are marked by dark circles. Light data indicated different step sizes used for
testing. Circles correspond to Fehlberg21 method, cross to the Dopri54 method. In (b) Dopri54 was
used for training (dark circles) and testing (light circles).
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Figure 16: A Neural ODE was trained with different tolerances (plotted in different colors)on MNIST
(a), (b). The model was tested with different solvers and different tolerances. In (a) the model was
trained using the Fehlberg21 method. Results obtained by using the same solver for training and
testing are marked by dark circles. Light data indicated different step sizes used for testing. Circles
correspond to Fehlberg21 method, cross to the Dopri54 method. In (b) Dopri54 was used for training
(dark circles) and testing (light circles).
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Figure 17: A Neural ODE was trained with different tolerances (plotted in different colors)on Sphere2
(a), (b) and on Sphere2 using the adjoint method (c), (d). The model was tested with different solvers
and different tolerances. In (a), (c) the model was trained using the Fehlberg21 method. Results
obtained by using the same solver for training and testing are marked by dark circles. Light data
indicated different step sizes used for testing. Circles correspond to Fehlberg21 method, cross to the
Dopri54 method. In (b), (d) Dopri54 was used for training (dark circles) and testing (light circles).
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C STEP SIZE AND TOLERANCE ADAPTATION ALGORITHM

C.1 STEP ADAPTATION ALGORITHM

Here we describe the full step adaptation algorithm with additional details omitted in the main text
for clarity. The algorithm queries whether the suggested step size has surpassed the length of the time
interval over which the ODE is integrated. If this is the case, the step size is reduced to the size of the
time interval. This check is necessary to avoid infinitely increasing the step size. The algorithm does
not increase the step size if accuracy of the model tested with the train solver and the proposed step
size is past the threshold. We do not want the model to continue training with a too large step size
leading to discrete dynamics.

Additionally, it is important to ensure that the test solver is more accurate than the train solver. For
our experiments we use as a combination of train and test solver the following pairs (Euler, Midpoint),
(Euler, rk4), (Midpoint, rk4). To ensure that the test solver achieves a smaller numerical error, the
test solver reduces the step size for testing if the training step size is too large. In our algorithm we
require that the order of the global numerical error of the test solver is a factor 50 smaller than the
order of the numerical error of the train solver.

We also tested the proposed step adaptation algorithm on the Sphere2 dataset (see Figure 20), on
MNIST (see Figure 19) and on CIFAR10 (see Figure 18). The behavior of the algorithm on different
datasets as well as with different combinations of train and test solver supports the claims in the main
text. It is interesting to note that if Midpoint is used as a train solver, the algorithm fluctuates around
a much lower step size than if Euler is used as a train solver. A possible explanation for this behavior
is that Midpoint is a second order Runge Kutta method which has therefore a lower numerical error
than Euler which is a first order Runge Kutta method.

Algorithm 2: Step adaptation algorithm
initialize starting step size h according to (Hairer et al., 1993, p. 169);
while Training do

batch = draw batch(data);
logits = model.do forward pass(batch, train solver(h));
loss = model.calculate loss(logits);
train solver acc = model.calculate acc(logits);
if Iteration % 50 == 0 then

logits = model.do forward pass(batch, test solver(h));
test solver acc = model.calculate acc(logits);
if |train solver acc-test solver acc| > 0.1 then

h new = 0.5 h;
else

h new = 1.1 h;
if h new > T then

// Avoid increasing the step size indefinitely
h new = T;

end
logits = model.do forward pass(batch, train solver(h new));
h new acc = model.calculate acc(logits);
if |test solver acc-h new acc| > 0.1 then

h new = h;
end
h = h new

end
end

end
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(a) (b)

(c) (d)

Figure 18: Using the step adaptation algorithm for training on CIFAR10. (a), (b) using Euler as train
solver and rk4 as the test solver and (c), (d) using Midpoint as train solver and rk4 as the test solver.
(a), (c) show the test accuracy over the course of training for five different seeds. (b), (d) show the
number of steps chosen by the algorithm over the course of training.
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Figure 19: Using the step adaptation algorithm for training on MNIST. (a), (b) using Euler as the
train solver and Midpoints as the test solver. (a) show the test accuracy over the course of training for
five different seeds. (b) show the number of steps chosen by the algorithm over the course of training.
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Figure 20: Using the step adaptation algorithm for training on Sphere2. (a), (b) using Euler as the
train solver and Midpoints as the test solver (c), (d) using Euler as train solver and rk4 as the test
solver and (e), (f) using Midpoint as train solver and rk4 as the test solver. (a), (c), (e) show the test
accuracy over the course of training for five different seeds. (b), (d), (f) show the number of steps
chosen by the algorithm over the course of training.
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C.2 TOLERANCE ADAPTATION ALGORITHM

The tolerance adaptation algorithm is similar to the step adaptation algorithm. In order to avoid
infinitely increasing the tolerance, the algorithm checks whether the solver uses at least minsteps
which we set to 2 for our experiments. As for the fixed step solvers, the algorithm checks whether to
accept the tolerance if the tolerance was increased.

For our experiments we used Fehlberg21 and Dopri54 as train solver and Dopri54 as test solver. To
ensure that the test solver has a smaller numerical error than the train solver the test solver uses a
smaller tolerance than the train solver. If Fehlberg21 is used as a train solver, than the tolerance for
the test solver Dopri54 is set to 1/5 of the train solver tolerance. If Dopri54 is used as a train solver,
than the tolerance for the test solver Dopri54 is set to 1/10 of the train solver tolerance.

The results for the tolerance adaptation algorithm are shown in Figure 21. After an initial adjustment
phase, the number of function evaluations (nfe) and the tolerance fluctuate for the rest of training
similar to the number of steps for the step adaptation algorithm. For different seeds, the tolerance
fluctuates around different final values.

Algorithm 3: Tolerance adaptation algorithm
Inputs train solver, test solver, model;
initialize tolerance tol= 10−6;
while Training do

batch = draw batch(data);
logits = model.do forward pass(batch, train solver(tol));
loss = model.calculate loss(logits);
train solver acc = model.calculate acc(logits);
if Iteration % 50 == 0 then

logits = model.do forward pass(batch, test solver(tol));
test solver acc = model.calculate acc(logits);
if |train solver acc-test solver acc| > 0.1 then

tol new= 0.5 tol;
else

tol new = 1.1 tol;
if steps <= min steps then

// Avoid increasing the tolerance indefinitely
tol new = tol;

else
logits = model.do forward pass(batch, train solver(tol new));
tol new acc = model.calculate acc(logits);
if |test solver acc-tol new acc| > 0.1 then

tol new = tol;
end

end
end
tol = tol new

end
model.update(loss);

end
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Figure 21: Using the tolerance adaptation algorithm for training on Sphere2 for Fehlberg21 as train
solver, and Dopri54 as test solver (a), (b), (c). (d), (e), (f) Dopri54 was used as train and test solver
where the test solver uses a reduced tolerance. (a), (d) shows the test accuracy over the course of
training for five different seeds. (b), (e) shows the number of function evaluations the course of
training. (c), (f) show the tolerance chosen by the algorithm over the course of training
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D ARCHITECTURE AND HYPER-PARAMETERS

We chose the architecture for our network similar to the architecture proposed by Dupont et al. (2019).
We tried to find hyperparameters which worked well for all step sizes. The same hyper-parameters
were used for the grid search and for training with the step adaptation algorithm:

D.1 ARCHITECTURE AND HYPER-PARAMETERS USED FOR MNIST

Neural ODE Block

• Conv2D(1, 96, Kernel 1x1, padding 0) + ReLu
• Conv2D(96, 96, Kernel 3x3, padding 1) + ReLu
• Conv2D(96, 1, Kernel 1x1, padding 0)

Classifier

• Flatten + LinearLayer(784,10) + SoftMax

Hyper-parameters

• Batch size: 256
• Optimizer: SGD (fixed step solvers), Adam (adaptive step size solvers)
• Learning rate: 1e-2 (fixed step solvers), 1e-4 (adaptive step size solvers)
• Iterations used for training: 7020

D.2 ARCHITECTURE AND HYPER-PARAMETERS USED FOR CIFAR10

Neural ODE Block

• Conv2D(3, 128, Kernel 1x1, padding 0) + ReLu
• Conv2D(128, 128, Kernel 3x3, padding 1) + ReLu
• Conv2D(128, 3, Kernel 1x1, padding 0)

Classifier

• Flatten + LinearLayer(3072,10) + SoftMax

Hyper-parameters

• Batch size: 256
• Optimizer: Adam
• Learning rate: 1e-3
• Iterations used for training: 7800

D.3 ARCHITECTURE USED FOR CONCENTRIC SPHERE 2D DATASET

Neural ODE Block

• Conv1D(1, 32, Kernel 1x1, padding 0) + ReLu
• Conv1D(32, 32, Kernel 3x3, padding 1) + ReLu
• Conv1D(32, 1, Kernel 1x1, padding 0)

Classifier

• Flatten + LinearLayer(2,2) + SoftMax
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Hyper-parameters

• Batch size: 128
• Optimizer: Adam
• Learning rate: 1e-4
• Iterations used for training: 10000

D.4 PYTHON PACKAGES

In our code we make use of the following packages: Matplotlib (Hunter, 2007), Numpy (Harris et al.,
2020), Pytorch (Paszke et al., 2019) and Torchdiffeq (Chen et al., 2018).
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E EXTENDED RESULTS

E.1 CONCENTRIC SPHERE 2D

(a) (b)

(c) (d)

(e) (f)

Figure 22: A Neural ODE was trained with different step sizes ((a), (b) 1 step, (c),(d) 2 steps, (e),
(f) 4 steps) on the two dimensional concentric sphere dataset. The model was tested with different
solvers and different step sizes. In (a), (c), (e) the model was trained using Euler’s method. Results
obtained by using the same solver for training and testing are marked by dark circles. Light data
indicated different step sizes used for testing. Circles correspond to Euler’s method, cross to the
midpoint method and triangles to a 4th order Rung Kutta method. In (b), (d), (f) a 4th order Runge
Kutta methods was used for training (dark circles) and testing (light circles). Excluded seeds are
shown as grey circles.
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(a) (b)

(c) (d)

(e) (f)

Figure 23: A Neural ODE was trained with different step sizes ((a), (b) 8 steps, (c),(d) 16 steps, (e),
(f) 32 steps) on the two dimensional concentric sphere dataset. The model was tested with different
solvers and different step sizes. In (a), (c), (e) the model was trained using Euler’s method. Results
obtained by using the same solver for training and testing are marked by dark circles. Light data
indicated different step sizes used for testing. Circles correspond to Euler’s method, cross to the
midpoint method and triangles to a 4th order Rung Kutta method. In (b), (d), (f) a 4th order Runge
Kutta methods was used for training (dark circles) and testing (light circles). Excluded seeds are
shown as grey circles.
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(a) (b)

(c) (d)

(e)

Figure 24: A Neural ODE was trained with different step sizes ((a), (b) 64 steps, (c),(d) 128 steps, (e)
256 steps) on the two dimensional concentric sphere dataset. The model was tested with different
solvers and different step sizes. In (a), (c), (e) the model was trained using Euler’s method. Results
obtained by using the same solver for training and testing are marked by dark circles. Light data
indicated different step sizes used for testing. Circles correspond to Euler’s method, cross to the
midpoint method and triangles to a 4th order Rung Kutta method. In (b), (d) a 4th order Runge Kutta
methods was used for training (dark circles) and testing (light circles). Excluded seeds are shown as
grey circles.
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E.2 CIFAR10

(a) (b)

(c) (d)

(e) (f)

Figure 25: A Neural ODE was trained with different step sizes ((a), (b) 1 step, (c),(d) 2 steps, (e), (f)
4 steps) on the cifar10 dataset. The model was tested with different solvers and different step sizes.
In (a), (c), (e) the model was trained using Euler’s method. Results obtained by using the same solver
for training and testing are marked by dark circles. Light data indicated different step sizes used for
testing. Circles correspond to Euler’s method, cross to the midpoint method and triangles to a 4th
order Rung Kutta method. In (b), (d), (f) a 4th order Runge Kutta methods was used for training
(dark circles) and testing (light circles). Excluded seeds are shown as grey circles.
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Figure 26: A Neural ODE was trained with different step sizes ((a), (b) 8 step, (c),(d) 16 steps, (e) 32
steps, (f) 64 steps) on the cifar10 dataset. The model was tested with different solvers and different
step sizes. In (a), (c), (e), (f) the model was trained using Euler’s method. Results obtained by using
the same solver for training and testing are marked by dark circles. Light data indicated different
step sizes used for testing. Circles correspond to Euler’s method, cross to the midpoint method and
triangles to a 4th order Rung Kutta method. In (b), (d) a 4th order Runge Kutta methods was used for
training (dark circles) and testing (light circles). Excluded seeds are shown as grey circles.
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