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Figure 1: Gallery of UniLat3D. Our method generates high quality 3D assets in seconds.

ABSTRACT

High-fidelity 3D asset generation is crucial for various industries. While recent
3D pretrained models show strong capability in producing realistic content, most
are built upon diffusion models and follow a two-stage pipeline that first generates
geometry and then synthesizes appearance. Such a decoupled design tends to pro-
duce geometry–texture misalignment and non-negligible cost. In this paper, we
propose UniLat3D, a unified framework that encodes geometry and appearance
in a single latent space, enabling direct single-stage generation. Our key contri-
bution is a geometry–appearance Unified VAE, which compresses high-resolution
sparse features into a compact latent representation – UniLat. UniLat integrates
structural and visual information into a dense low-resolution latent, which can
be efficiently decoded into diverse 3D formats, e.g., 3D Gaussians and meshes.
Based on this unified representation, we train a single flow-matching model to
map Gaussian noise directly into UniLat, eliminating redundant stages. Trained
solely on public datasets, UniLat3D produces high-quality 3D assets in seconds
from a single image, achieving superior appearance fidelity and geometric quality.

1 INTRODUCTION

3D content generation has witnessed rapid growth in recent years, becoming an increasingly es-
sential capability across various applications, including game/film production, virtual/augmented
reality, industrial design, and embodied AI. Recent advances in 3D generative frameworks (Zhang
et al., 2024c; Hunyuan3D et al., 2025; Lai et al., 2025; Yang et al., 2024c; Zhao et al., 2025; Xiang
et al., 2024; Li et al., 2025a; Hong et al., 2023; Zhang et al., 2024b; Ma et al., 2025; Ren et al.,
2024a; Zou et al., 2024) have demonstrated impressive progress in synthesizing vivid and realistic
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3D assets, while some approaches (Li et al., 2024; Wu et al., 2024b; 2025b; Chen et al., 2025d; Li
et al., 2025c; Ye et al., 2025) dive into accurate geometry and fine-grained shape generation.

Despite this rapid progress, the majority of recent high-quality 3D generation frameworks are
diffusion-based, and typically adopt a multi-stage design: geometry is generated first, followed by
texture or appearance synthesis. This paradigm, rooted in the conventional separation of geometry
and appearance, has been adopted by both latent-based pipelines (Xiang et al., 2024) and mesh-based
frameworks (Li et al., 2025a; Hunyuan3D et al., 2025), remaining the prevailing design but entailing
inherent drawbacks. First, the separate generation introduces an inevitable gap between geometry
and appearance, potentially leading to misalignment with the target 3D asset. Second, the two-stage
process introduces additional computation budget, e.g., current mesh-based methods (Hunyuan3D
et al., 2025) first generate the geometry, and then synthesize the corresponding texture based on both
the condition image and geometry generated in the first stage. Notably, the research trajectory in
both vision and graphics (Mildenhall et al., 2020; Kerbl et al., 2023) has long favored unification
over separation – just as object detection evolved from multi-stage Faster R-CNN (Girshick, 2015)
to single-stage YOLO (Redmon et al., 2016). We aim to create a similar unification of geometry and
appearance generation, which is expected to offer more convenience and possibilities for exploring
3D generation under a more extensible and unified framework.
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Figure 2: Evaluation on Toys4K (Stojanov et al., 2021).
Colors stand for model sizes. Lower generation time and
smaller FDDINOv2 indicate better performance, i.e. the left
bottom corner.

To this end, we introduce a unified
3D representation that inherently en-
codes geometry and appearance in a
single latent space, enabling direct
single-stage generation. Our key in-
sight is that such a representation is
naturally aligned—free from geome-
try–texture mismatches—and highly
efficient, as it avoids redundant in-
termediate steps. Inspired by TREL-
LIS (Xiang et al., 2024), we first
transform the 3D asset into sparse
structured features. A unified vari-
ational autoencoder, UniVAE, is de-
signed to compress high-resolution
sparse features into a compact latent
space, termed UniLat. The UniLat
can then be efficiently upsampled and
sparsified back onto high-resolution
latents that serve as a universal basis
for decoding into various renderable
3D representations, such as 3D Gaus-
sians (Kerbl et al., 2023) and meshes.
Thanks to the simplicity and expres-
sive design of UniLat, we are able to, for the first time, achieve single-stage 3D generation through
one flow-matching model that maps cubic Gaussian noise directly into the geometry-appearance uni-
fied latents. Beyond efficiency, UniLat also offers strong extensibility, which can serve as a versatile
3D prior that can be seamlessly integrated into large multimodal models, facilitating cross-modal
understanding and generation. Our method, UniLat3D, trained only on publicly available datasets,
achieves superior appearance fidelity while maintaining strong geometric accuracy, demonstrating
the effectiveness of unifying geometry and appearance within a single-stage paradigm.

Our contributions are summarized as follows.

• We propose a novel framework, UniLat3D, which bridges the gap between geometry and
appearance by a single diffusion model in high-quality 3D generation.

• A novel UniLat representation is introduced by encoding geometry and appearance into a
unified latent space, ensuring high-efficiency feature fusion.

• As in Fig. 2, extensive experiments demonstrate UniLat3D’s state-of-the-art performance.
We expect our framework to pave a novel way for exploring 3D generation in a more unified
and scalable paradigm.
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2 RELATED WORKS

2.1 3D GENERATION BY LIFTING 2D DIFFUSION MODELS

Lifting 2D diffusion models to 3D has been an effective but challenging approach. DreamFu-
sion (Poole et al., 2022) proposes Score Distillation Sampling (SDS) to distill knowledge from
the 2D diffusion model into a radiance field. Tang et al. (2023); Yi et al. (2023; 2024); Yin et al.
(2023); Ren et al. (2023); Liu et al. (2024); Wang et al. (2023) follow this methodology to generate
high-quality 3D Gaussians (Kerbl et al., 2023) in minutes. Meanwhile, Jain et al. (2022); Liu et al.
(2023b); Shi et al. (2023); Huang et al. (2024); Long et al. (2023); Liu et al. (2023a); Yang et al.
(2024a) fine-tune the image diffusion model to generate multi-view consistent images for synthesiz-
ing 3D assets. Video diffusion models (Yang et al., 2024d; Yu et al., 2024; Xing et al., 2024; Ren
et al., 2025; Zhao et al., 2024; Gao et al., 2024; Wu et al., 2025a; Liang et al., 2024) are also explored
to synthesize high-quality 3D/4D representations (Wu et al., 2024a; Yang et al., 2023; Zhang et al.,
2024d; 2025b). However, most of these methods need iterative optimization from different views
in each generation process, which takes a non-negligible cost, while hallucination may appear, e.g.,
Janus phenomenon, due to the lack of 3D priors.

2.2 3D GENERATION BY PRETRAINING 3D FOUNDATION MODELS

With the emergence of large-scale 3D datasets, e.g., Objaverse (Deitke et al., 2023), 3D foundation
models have been constructed and pretrained to have strong reconstruction and generation abilities.

3D Foundation Reconstruction Models. Some feed-forward 3D reconstruction methods (Wang
et al., 2024; 2025a; Zhang et al., 2024a; Smart et al., 2024; Li et al., 2025b; Wang et al., 2025b; Yang
et al., 2025a), using vision Transformer (Dosovitskiy et al., 2020) (VIT) to encode and match input
images’ features and recover their relative 3D poses, depths, semantics (Sun et al., 2025; Xu et al.,
2025), and other 3D information (Jiang et al., 2025; Smart et al., 2024). Those methods achieve
nearly real-time reconstruction given an image sequence, while maintaining accurate pose/depth
estimation, and high-quality novel view synthesis.

3D Foundation Generation Models. A series of 3D foundation models aims to generate high-
quality 3D representations with few or a single image(s) as input in seconds. In the early stage, 3D
Generation mainly focuses on structure&shape generation (Ren et al., 2024b; Vahdat et al., 2022) or
other latent representation (Yang et al., 2024b). Point-E (Nichol et al., 2022) trains a 3D diffusion
model, which is used for generating point clouds from text/image prompts. VecSet (Zhang et al.,
2023) proposes to encode 3D assets into vector representations, which are further applied in the
geometry diffusion models (Chen et al., 2025d; Hunyuan3D et al., 2025; Lai et al., 2025; Zhang
et al., 2024c; Li et al., 2024; Xiong et al., 2025). Then, texture diffusion models (Hunyuan3D et al.,
2025; Li et al., 2025a) are followed to color the high-quality mesh. TRELLIS (Xiang et al., 2024)
and some recent works (Ye et al., 2025; Wu et al., 2025b; Li et al., 2025c; Chen et al., 2025d) encode
multiview images into sparse 3D voxel representations and then decode them into high-quality 3D
assets. Several methods are proposed to generate dynamic objects (Chen et al., 2025a; Zhang et al.,
2025a; Wu et al., 2025c) or extend 3D generation to the part level (Chen et al., 2025b; Dong et al.,
2025; Chen et al., 2025c; Yang et al., 2025b).

We observe that most 3D diffusion models split the generation process into two phases – geometry
and appearance. Our research aims to bridge the gap between geometry and appearance in 3D
generation by introducing a unified latent space while maintaining the strong performance of 3D
diffusion models.

3 PRELIMINARY

Recently, TRELLIS (Xiang et al., 2024), a powerful 3D generation framework, has enabled gen-
erating high-quality 3D assets in seconds. This is achieved by proposing sparse structured latents
(SLATs) zslat to represent the 3D asset, which can be decoded into different 3D representations.

Sparse Structured Latent Representation. SLAT is defined as a series of latents located at acti-
vated surface voxels of the 3D asset, which can be formulated as zslat = {zi, pi}Li=1, where zi ∈ Rc

is a c-dimensional latent at the voxel position pi ∈ R3, i = {1, 2, ...L}, N denotes the grid resolution
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and L << N3. The coordinates {pi}, representing coarse geometry, are computed by voxelizing
the 3D asset. The latents {zi}, representing appearance and detailed geometry1, are obtained by ag-
gregating and encoding visual features f = {fi, pi}Li=1, extracted by a vision encoder (Oquab et al.,
2023) from multiple views of the asset. To learn geometry and appearance respectively, TREL-
LIS constructs two separate VAE models, i.e., geometry VAE {Egeo,Dgeo} and appearance VAE
{Eapp,Dapp}.
Specifically, the encoder of the geometry VAE transforms activated voxels p = {pi} to geometry
latents zgeo ∈ R

N
s ×N

s ×N
s ×c with a downsampling factor s:

zgeo = Egeo(p); p = Dgeo(zgeo). (1)

The sparse appearance VAEs encodes the sparse 3D features f into SLATs zslat, and decodes SLATs
into 3D representations O as:

zslat = Eapp(f); O = Dapp(zslat). (2)

Note that Eapp only converts f in the feature dimension. The coordinate information is modeled by
Egeo individually.

Sparse Structured Latent Generation. To generate SLAT zslat, TRELLIS proposes a two-stage
generation pipeline. Given the condition image I, TRELLIS builds a geometry generation flow
Transformer Fgeo to synthesize geometry latents zgeo from the noise ϵ. Then, the activated voxels p
can be decoded by Dgeo:

Fgeo : (ϵ, t, I)→ zgeo; p = Dgeo(zgeo), (3)

where t is the denoising timestep. After that, the appearance noise can be added to the activated
voxels p to get the structured noise ϵapp = {ϵi, pi}. The sparse appearance flow Transformer is
optimized to predict zslat, and the final 3D representation O can be computed by the appearance
decoder Dapp:

Fapp : (ϵapp, t, I)→ zslat; O = Dapp(zslat). (4)

4 METHOD

4.1 OVERALL FRAMEWORK

Geometry-Appearance Unified Latent Representation. Different from TRELLIS (Xiang et al.,
2024), which obtains sparse structured latents zslat = {zi, pi}Li=1 in two separate stages, we propose
a dense compressed Latent representation with geometry and appearance Unified (UniLat) zuni ∈
RM×M×M×d which can be obtained in one single stage, where d is the number of unified latent’s
channels, M = N

V , and V denotes the compression ratio. In the reconstruction stage, we construct a
UniLat variational autoencoder (Uni-VAE) {Euni,Duni,{gs,mesh}} to encode the 3D assets efficiently.
The rich geometry and appearance of an assets O can be encoded into the UniLat zuni, which can
be further decoded into 3D representations via decoder Duni as:

zuni ← Euni(O); O = Duni(zuni). (5)

The unified decoder Duni is composed of a upsampling block Dup and 3D representation decoders
Dgs,mesh. For more details, please refer to Sec. 4.2.2.

Geometry–Appearance Unified Latent Generation. With geometry and appearance already fused
in our UniLat representation zuni, the generation process becomes naturally streamlined. A unified
generative model Funi is employed to directly denoise compact noises ϵ into UniLat zuni, which can
then be decoded by Duni into the desired 3D representation:

Funi : (ϵ, t, I)→ zuni; O = Duni(zuni). (6)

1Some detailed geometry properties will be decoded from latents {zi}, e.g. 3D Gaussian positions and mesh
vertices. This will be denoted as ‘appearance’ for short in the following content.

4
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Figure 3: Illustration of the UniLat3D framework. In the reconstruction stage, the encoder of Uni-
VAE Euni converts the 3D assetO to the unified latent – UniLat zuni, which can be directly denoised
from noise ϵ by a single flow model Funi in the generation stage. The obtained UniLat can be
transformed into target 3D representations by the decoder Duni.

4.2 UNILAT VARIATIONAL AUTOENCODER

4.2.1 ENCODER

The encoder of Uni-VAE Euni includes two main stages: Sparse Feature Densification and Den-
sified Feature Compression, and two modules named sparse appearance feature moduleMsparse,
dense feature compression moduleMdense. The key point is the computational budget. We want
to get the UniLat zuni and begin with the high dimensional voxelized 3D features f = {fi, pi}.
Firstly, we follow TRELLIS (Xiang et al., 2024) to convert 3D object O to sparse visual fea-
tures f = {fi, pi} and employ sparse appearance feature module Msparse to get zsparse by
zsparse = Msparse(f). Then, we introduce the Sparse Feature Densification process to fill the
empty space in the sparse latents and get zdense. As computation on zdense is expensive, we perform
Densified Feature Compression phase encodes the processed features into lower-resolution com-
pact latents, i.e. UniLat zuni. Finally, the UniLat decoder Duni upsamples the compressed unified
latents zuni back onto high-resolution 3D representations, supporting both 3D Gaussian and mesh
outputs.

Sparse Feature Densification. Yet we have only obtained the sparse feature zsparse with appear-
ance encoded, where the geometry is given by indicating which location is empty. To merge both
geometry and appearance information into unified latents zuni, the structured appearance latents
zsparse = {(zsparse,i, pi)}Li=1 would be converted to dense features zdense. All the empty space is
assigned with zero features {0, pj}N

3−L
j ̸=i . Then, the sparse structured uni-latents could be trans-

formed to dense uni-latents:

zdense : {zdense[pi] = zsparse,i; zdense[pj ] = 0} (7)

Here, zdense is a compact dense latent that includes the whole space information.

Densified Feature Compression. Then we useMdense to encode both the geometry and appearance
features. Similar to 2D/2.5D diffusion models, Mdense downsample the zdense ∈ N3 to UniLats
zuni ∈M3 with downsampling factor s:

zuni =Mdense(zdense). (8)

The geometry and appearance features are further fused by the downsampling encoding process,
ensuring rich information in the UniLat zuni at the low resolution.

5
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4.2.2 DECODER

Uni-Decoder Duni includes two modules: upsampling block Dup and 3D representation decoders
Dgs,mesh. The high-resolution dense coordinate and features z′dense ∈ RN3×(C+1) are computed by
Dup, then the pruning process is performed on the dense features z′dense to obtain sparse features
z′sparse. Finally, representation decoders Ogs,mesh output the final 3D representations.

Latent Upsampling and Sparsification. Given a compact but low-resolution UniLat zuni, the
core challenge is to reconstruct high-quality 3D assets in a detailed manner. To address this,
we introduce an upsampling block that lifts zuni to higher-resolution latents. Leveraging our ge-
ometry–appearance unified representation, we can simultaneously predict voxel occupancy, which
guides a pruning step to remove redundant regions among the upsampled latents. This yields a
sparse set of high-resolution latents that retain both efficiency and fidelity.

Given UniLat zuni ∈ RM3×d, our proposed upsampling blocks Dup compute the appearance and
geometry features at resolution N as :

z′dense = Dup(zuni). (9)

Note that both z′dense = {P ∈ RN3×1, z′ ∈ N3 × c} are high-resolution dense features. Note that
directly performing computation on zdense is expensive, so we propose to prune the low-importance
area to enhance efficiency. The sparse features zsparse are filtered with a signed function:

z′sparse : {z′i, pi | P[pi] > 0}, (10)

3D Representation Decoders. Two 3D representation decoders are designed to transform the
pruned latents into renderable 3D outputs, i.e., 3D Gaussians and meshes. Both decoders share a
backbone of sparse Transformer blocks, similar to TRELLIS, but differ in their task-specific output
heads. For 3D Gaussians, the decoder Dgs maps the latent zuni to attributes of 3D Gaussian primi-
tivesOgs using sparse Transformer blocks and 3D linear projection layers. An additional occupancy
head is employed to predicts voxel occupancy, enabling direct supervision of the reconstructed ge-
ometry.

For meshes, the decoder Dmesh progressively upsamples latent features through sparse Transformer
and 3D CNN upsampling blocks, followed by a 3D linear output layer that predicts SDF values,
voxel-corner deformations, and interpolation weights. The final mesh is extracted with the efficient
SparseFlex (He et al., 2025) based on these predicted parameters. To enable multi-scale geome-
try supervision, occupancy heads are attached at each upsampled resolution. To scale Dmesh to
higher resolutions, we adopt a pruning strategy that removes voxels entirely outside or inside object
boundaries, thereby reducing computational overhead. We further introduce a detail augmentation
strategy, where depth and normal maps are rendered from zoomed-in camera views with a differ-
entiable rasterizer, enabling the decoder to learn fine-grained surface details from localized partial
observations. With these techniques, UniLat3D produces meshes at a resolution of 5123, doubling
the resolution achieved by TRELLIS (2563).

4.3 UNILAT GENERATION MODEL

With the UniLat VAE model, we construct a generation modelFuni based on rectified flow matching
to denoise compact noise ϵ into condition-followed UniLats zuni. A single flow Transformer model
Funi with full attention layers is built to predict the velocity at timestamp t under the noise level
as v = Funi(xuni, t, I) and xuni denotes the denoised noise ϵ and timestamp t. The whole flow
Transformer optimization process follows the diffusion guidance given condition I with its condition
encoder. The latent features with both geometry and appearance information are denoised. The
obtained UniLat zuni can be directly fed into the representation decoder Duni to predict the final 3D
representation O.

4.4 OPTIMIZATION

Uni-VAE. We use both geometry and appearance supervision to train the Duni. Following TREL-
LIS (Xiang et al., 2024), we joint optimize Euni and Dgs with the following loss:

L = λl1Ll1 + λlpipsLlpips + λssimLssim + λklLkl + λdiceLdice + λregLreg. (11)
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Ll1 denotes the L1 color loss, andLlpips andLssim stand for inception-based losses. Lkl is employed
for optimizing Euni. Ldice and Lreg are used to supervise geometry and decoded representations.

Rectified Flow Models. After trained Uni-VAE, all the UniLat zuni are predicted by Uni-Encoder
Euni. For optimizing the rectified flow Transformer, we mainly follow the CFM Loss. Given encoded
latents xuni and noise ϵ, we minimize the objective function LCFM (Lipman et al., 2022) as:

LCFM(θ) = Et,x0,ϵ∥v(xuni, t)− (ϵ− zuni)∥22. (12)

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Our framework is implemented in PyTorch (Paszke et al., 2019) and built upon the open-source
project TRELLIS (Xiang et al., 2024). FlashAttention-3(Shah et al., 2024) is employed to accelerate
Transformer training, yielding a 1.5× speedup. Both VAE and flow models are trained on 64 GPUs
within two weeks. More implementation details are provided in the appendix.

5.2 EXPERIMENTAL SETUP

Training Datasets. UniLat3D is trained exclusively on publicly available datasets. Following the
data preparation pipeline of TRELLIS (Xiang et al., 2024), we curate and process approximately
450k high-quality 3D assets from Objaverse (XL) (Deitke et al., 2023), ABO (Collins et al., 2022),
3D-FUTURE (Fu et al., 2021), and HSSD (Khanna* et al., 2023). To enable occupancy supervision
at multiple scales, we perform voxelization at each resolution. Additional details on data prepro-
cessing can be found in (Xiang et al., 2024).

Evaluation Datasets. The evaluation is performed on two datasets. One is the whole Toys4K (Sto-
janov et al., 2021) dataset, including 3218 high-quality 3D assets, which is also used in the previous
method (Xiang et al., 2024). However, we observe that many samples of Toys4K tend to have
simple geometry or appearance details. We construct a more complex dataset for comprehensive
evaluation, including 500 high-quality assets collected from the Sketchfab platform and 500 assets
sampled from Toys4K. Condition images for qualitative comparisons and user studies are collected
from (Chen et al., 2025d; Wu et al., 2025b) or generated via VLMs.

Evaluation Setups. For VAE reconstruction evaluation, we use the PSNR, SSIM, and LPIPS met-
rics. For appearance generation quality, we compute the CLIP (Radford et al., 2021) score – sim-
ilarity between rendered images and condition images, and FD (Fréchet distance) (Heusel et al.,
2017) measured by DINOv2 (Oquab et al., 2023) on 4 views of each generated asset and ground
truth images. We evaluate and compare our method with recent SOTA 3D generation models, i.e.
Hunyuan3D-2.1 (Hunyuan3D et al., 2025), TRELLIS (Xiang et al., 2024), Step1X-3D (Li et al.,
2025a), TripoSR (Tochilkin et al., 2024) for image-conditioned generation, and Stable3DGen (Ye
et al., 2025) and Direct3D-S2 (Wu et al., 2025b) for geometry generation quality comparison. We
report Uni3D (Zhou et al., 2023) and ULIP (Xue et al., 2023) metrics for mesh geometry quality.
The Blender rendering pipeline is adopted for all generated mesh assets.

5.3 RESULTS

We provide qualitative comparisons in Fig. 4, where our method achieves competitive generation
quality and demonstrates stronger alignment with the conditional image, benefiting from the unified
representation. Note that Hunyuan3D-2.1 (Hunyuan3D et al., 2025), Step1X-3D (Li et al., 2025a),
and TripoSR (Tochilkin et al., 2024) only provide mesh-based results. Importantly, Ours, TripoSR,
TRELLIS, and Direct3D-S2 are trained exclusively on publicly available datasets, while other meth-
ods leverage additional private data.

Quantitative evaluations on Toys4k (Stojanov et al., 2021) are reported in Table 1. Additional results
on our self-collected complex set are provided in the appendix. Compared with other two-stage
methods, UniLat3D achieves leading appearance performance, reaching 47.68 in FDDINOv2. The
CLIP score of 90.87 further demonstrates the effectiveness of UniLat3D in aligning images and
3D assets. In terms of geometry synthesis, our mesh version also achieves competitive results in
ULIP (Xue et al., 2023), with a score of 42.69.
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Condition TRELLIS (GS) Step1X-3DHunyuan3D-2.1 Ours (GS)TripoSR

Figure 4: Qualitative comparisons with other methods. Thanks to our unified representation, Uni-
Lat3D achieves superior performance and better correspondence with input images.

Figure 5: 3D mesh assets generated by our UniLat3D.

Step1X-3D

9.5%

O
ur

s 35.8%

TRELLIS
20.2%

Hunyuan3D-2.1

34.6%

Figure 6: User study on
different models.

Beyond accuracy, UniLat3D also demonstrates notable efficiency: 3D
Gaussian generation is completed within 8 seconds on a single A100
GPU and can be further reduced to 3 seconds with FlashAttention-
3 (Shah et al., 2024). Mesh generation requires 36 seconds, primarily due
to the higher resolution with more vertices and longer post-processing
compared to TRELLIS, but remains competitive considering the im-
proved output quality.

Besides, we conducted a user study with 22 participants over 3D assets
generated from 23 image prompts. Four models with both geometry and
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Table 1: Comparisons on the Toys4K dataset. “Rep.” denotes the output representation type.
Model Rep. #Param. Time CLIP↑ FDDINOv2↓ ULIP↑ Uni3D↑
TripoSR Mesh 0.4B 13s 88.76 279.06 35.30 30.98
TRELLIS Mesh 1.31B 21s 87.81 79.52 42.51 37.67
TRELLIS 3DGS 1.31B 5s 90.70 52.54 – –
Stable3DGen†⋆ Mesh 2.63B 4s – – 40.33 35.98
Step1X-3D† Mesh 4.8B 152s 85.85 146.08 41.37 36.51
Direct3D-S2⋆ Mesh 2.1B 185s – – 41.51 36.64
Hunyuan3D-2.1† Mesh 5.3B 90s 88.44 74.16 42.67 37.74
Ours Mesh 1.58B 36s 87.93 71.81 42.69 37.62
Ours 3DGS 1.55B 8s 90.87 47.68 – –

† Using proprietary or non-public training data.
⋆ Only generating geometry without appearance.

appearance generation are involved. For each prompt, participants judged generated assets by both
image alignment and object quality, and chose the overall best case. As shown in Fig. 6, UniLat3D
received over 35% of the votes, outperforming Huanyuan3D-2.1 and other models.

5.4 ABLATION STUDY

Table 2: VAE reconstruction results with latents
of different resolutions.
Model Res. PSNR↑ SSIM↑ LPIPS↓

TRELLIS (Mesh) 643 31.91 97.44 0.0328
Ours (Mesh) 163 32.35 98.03 0.0305

TRELLIS (GS) 643 34.74 98.52 0.0146
Ours (GS) 83 33.51 98.13 0.0200
Ours (GS) 163 34.80 98.49 0.0158
Ours (GS) 323 34.92 98.53 0.0145

Resolution of Latents. We explore the latent
space of reconstruction quality in Uni-VAE. We
train Uni-VAE at different latent resolutions, in-
cluding 83, 163, and 323. As shown in Ta-
ble 2, higher UniLat resolutions lead to bet-
ter reconstruction results. Note that our Uni-
VAE achieves similar or even better reconstruc-
tion performance than TRELLIS with smaller
resolutions. In our experiments, when training
the flow Transformer at a higher resolution of
32, the computational cost increases evidently.
We would explore more efficient approaches on
flow Transformers for higher resolutions in fu-
ture works, e.g., block-wise computation and
lightweight attention.

Another ablation study about the condition visual encoder is included in the appendix.

6 DISCUSSION & CONCLUSION

We propose a novel 3D generation framework – UniLat3D to achieve high-quality 3D asset gen-
eration in seconds with a single-stage flow model. Apart from that the proposed method unifies
geometry and appearance in a single, concise framework, it achieves quite competitive performance
compared with popular two-stage methods. We expect our exploration to provide a more convenient
and extensible choice to the 3D generation field, e.g., further unifying object and scene generation
with the compact unified representation, extending UniLat to 4D representations, and integrating
UniLat into large multimodal models etc.

However, the UniLat3D model implemented in this paper is still a preliminary exploration. The
training data we used just follows TRELLIS, totally from public datasets. Injecting more high-
quality data for training will undoubtedly improve the performance and may further scale up the
model. Exploring more efficient designs on the flow model would adapt to higher resolutions of
latents, leading to more detailed generation results.
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SUBMISSION STATEMENT

ETHICS STATEMENT

Our UniLat3D only adopts publicly available datasets for training. The generative 3D method may
raise potential ethical concerns. Users may use images to create harmful or misleading 3D assets.
We encourage the responsible use of our models within legal and ethical boundaries.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we introduce implementation details in Sec. A.2 and Sec. A.4.
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A APPENDIX

A.1 USE OF LLMS

In this paper, no LLM models are directly used in the writing of the main text.

A.2 MORE IMPLEMENTATION DETAILS

Uni-VAE. To accelerate and stabilize Uni-VAE training, we initialize Esparse and Dsparse with
the pretrained weights from TRELLIS. During the first 240k iterations, only Edense and Dup are
optimized, after which the entire Uni-VAE is trained end-to-end for an additional 90k iterations
following TRELLIS. For the mesh decoder, we freeze Duni and train our high-resolution mesh
decoder from scratch. Unless otherwise specified, Adam (Kingma & Ba, 2014) is used with a
learning rate of 1× 10−4.

Mesh Decoder. We decode the unified latent zuni into high-resolution meshes using a high-
resolution decoderDuni,mesh. The decoder first upsamples zuni and performs sparsification to obtain
zsparse (as detailed in Sec. 4.2.2), which is then processed by a stack of sparse Transformer blocks.
Two 3D convolutional upsampling layers with skip connections to their corresponding pruning mod-
ules further refine zsparse to a spatial resolution of 2563.

To enable multi-scale geometry supervision and reduce computation, we attach an occupancy head
at each upsampled scale s ∈ {128, 256} and supervise it with voxel-level occupancy targets. The
occupancy loss is

Locc =
∑

s∈{128,256}

L(s)
dice.

The overall training objective for the mesh branch is

Lmesh = Lgeo + Lcolor + Lreg + Locc, (13)

where Lgeo, Lcolor, and Lreg follow TRELLIS (Xiang et al., 2024).

Given the computational cost at high resolutions, we adopt a two-stage schedule. Stage-1 trains
Duni,mesh up to 2563 with the multi-scale occupancy supervision in Eq. equation 13. Stage-2 adds
an independent 256→ 512 upsampling convolutional block with its own pruning head; the newly
added block is optimized while keeping the Stage-1 pathway frozen, using a similar objective as
Eq. equation 13.

After training, Duni,mesh directly predicts the SparseFlex (He et al., 2025) parameters from zuni,
from which we extract mesh vertices and faces efficiently. Following TRELLIS and prior 3D gener-
ation works, we apply lightweight post-processing to remove invisible and degenerate faces and to
fill small holes.

UniLat Flow Transformer. For training the rectified flow models, we adopt DINOv3 (Siméoni
et al., 2025) as the image encoder and apply classifier-free guidance (Ho & Salimans, 2022) with a
drop rate of 0.1. The model is first trained for 500k iterations with a batch size of 256 and a learning
rate of 1 × 10−4, and then fine-tuned for 160k iterations with a batch size of 1024 and a learning
rate of 1× 10−5.

A.3 EVALUATION DETAILS

Blender Rendering Setups. For mesh rendering, we mainly use Blender (Blender Foundation,
2025) as a mesh renderer to render high-quality images. We set FOV=40, render resolution=512,
and set normalization to each loaded object.

More Results We provide evaluation metrics on our self-collected complex test dataset in Tab 3.
More comparisons with open-sourced models are shown in Fig. 7. Besides, we provide qualitative
comparisons with some commercial models in Fig. 8. Our model still shows notable competitive-
ness.
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Table 3: Comparisons on the self-collected complex test dataset. “Rep.” denotes the output repre-
sentation type, and “#Params” denotes the number of model parameters.

Model Rep. #Param. Time CLIP↑ FDDINOv2↓ ULIP↑ Uni3D↑
TripoSR Mesh 0.4B 13s 88.00 369.86 33.61 30.44
TRELLIS Mesh 1.31B 21s 86.40 164.57 41.52 37.30
TRELLIS 3DGS 1.31B 5s 89.67 108.27 - -
Stable3DGen†⋆ Mesh 2.63B 4s - - 39.79 35.93
Step1X-3D† Mesh 4.8B 152s 84.74 210.49 40.53 36.46
Direct3D-S2⋆ Mesh 2.1B 185s - - 40.77 36.47
Hunyuan3D-2.1† Mesh 5.3B 90s 87.41 150.39 41.70 37.48
Ours Mesh 1.58B 36s 86.44 149.62 41.71 37.24
Ours 3DGS 1.55B 8s 89.83 97.22 - -

† Using proprietary or non-public training data.
⋆ Only generating geometry without appearance.

Condition TRELLIS (GS) Step1X-3DHunyuan3D-2.1 Ours (GS)TripoSR

Figure 7: Qualitative comparisons with SOTA open-source models.

A.4 MODEL ARCHITECTURE

In this section, we mainly provide the model architecture about our Uni-VAE {Euni,Duni} and
UniLat generation model F .

A.4.1 UNI-VAE

For the sparse encoder Msparse, we mainly follow TRELLIS’s configurations to build a sparse
Transformer. For the dense encoderMdense, a set of conv3D layers is used as the main architecture.
The settings of Esparse, Dup are shown in Table 4 and details of Euni are provided in Table 5.

A.4.2 UNILAT FLOW TRANSFORMER

Structure details about our UniLat flow Transformer Funi are provided in the Table 6. The main
architecture of Funi is similar to TRELLIS’s sparse structure flow Transformer. The input noise ϵ
would be flattened to 1D tensors. Positional encoding is applied to a flattened tensor, and it would
be fed to Transformer blocks with self&cross-attention layer and modulated by condition signal &
timestamps. Finally, the flattened tensor would be unpatchified to 3D results, the shape is the same
as ϵ.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Model details of Uni-VAE modules Mdense,Dup. “Channels” denotes model channels
after each up/downsampled convolution layer.

Model ResBlocks Channels
Esparse 4 [32, 128, 512]
Dup 4 [512, 128, 32]

Table 5: Model details of Uni-VAE modulesMsparse,Dgs,mesh.
Model Latent Res. Model Channels Latent. Channels Blocks Attn. Heads Window Size
Msparse, Dsparse 64 768 8 12 12 8

Table 6: Model details of UniLat3D flow Transformer.
Model Params Latent Res. Latent Channels Model Channels Cond. Channels Blocks Attn. Heads
Funi 1.30B 16 32 1280 1280 36 32

Table 7: Ablation study on the visual encoder for condition images.
Model Cond. Encoder CLIP↑ FDdinov2↓
Ours DINOV2 90.83 52.58
Ours DINOV3 90.60 49.90

A.5 MORE ABLATION STUDIES

Visual Encoder of Condition Images Recently, DINOv3 (Siméoni et al., 2025) emerges as a
strong visual encoder model that could extract high-quality details from the image. We compare
the performance between DINOv2 and DINOv3 for encoding condition images. Flow models with
different visual encoders are trained for 500 iterations and tested on Toys4K. In our experiments,
the flow Transformer with the DINOv3 encoder shows better quality on complex object generation,
which leads to a better FDdinov2 result as shown in Table 7.
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Figure 8: Qualitative comparisons with commercial models. Our UniLat3D shows competitive
performance even with only publicly available training data.
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