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ABSTRACT

This paper presents a novel model for multimodal learning based on gated neu-
ral networks. The Gated Multimodal Unit (GMU) model is intended to be used
as an internal unit in a neural network architecture whose purpose is to find an
intermediate representation based on a combination of data from different modal-
ities. The GMU learns to decide how modalities influence the activation of the
unit using multiplicative gates. It was evaluated on a multilabel scenario for genre
classification of movies using the plot and the poster. The GMU improved the
macro f-score performance of single-modality approaches and outperformed other
fusion strategies, including mixture of experts models. Along with this work, the
MM-IMDb dataset is released which, to the best of our knowledge, is the largest
publicly available multimodal dataset for genre prediction on movies.

1 INTRODUCTION

Representation learning methods have received a lot of attention by researchers and practitioners
because of its successful application to complex problems in areas such as computer vision, speech
recognition and text processing (LeCun et al., 2015). Most of these efforts have concentrated on
data involving one type of information (images, text, speech, etc.), despite data being naturally
multimodal. Multimodality refers to the fact that the same real-world concept can be described by
different views or data types. Collaborative encyclopedias (such as Wikipedia) describe a famous
person through a mixture of text, images and, in some cases, audio. Users from social networks
comment events like concerts or sport games with small phrases and multimedia attachments (im-
ages/videos/audios). Medical records are represented by a collection of images, sound, text and sig-
nals, among others. The increasing availability of multimodal databases from different sources has
motivated the development of automatic analysis techniques to exploit the potential of these data
as a source of knowledge in the form of patterns and structures that reveal complex relationships
(Bhatt & Kankanhalli, 2011; Atrey et al., 2010). In recent years, multimodal tasks have acquired
attention by the representation learning community. Strategies for visual question answering (Antol
et al., 2015), or image captioning (Vinyals et al., 2015; Xu et al., 2015; Johnson et al., 2015) have
developed interesting ways of combining different representation learning architectures.

Most of these models are focused on mapping from one modality to another or solving an auxiliary
task to create a common representation with the information of all modalities. In this work, we de-
sign a novel module that combines multiple sources of information, which is optimized with respect
to the end goal objective function. Our proposed module is based on the idea of gates for selecting
which parts of the input are more likely to contribute for correctly generating the desired output. We
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Figure 1: Predictions of genre labels depending on the input modality. Red and blue labels indicate
false positives and true positives respectively.

use multiplicative gates that assign importance to various features simultaneously, creating a rich
multimodal representation that does not require manual tuning, but instead it learns directly from
the training data. Our gated model can be reused in different network architectures for solving dif-
ferent tasks, and can be optimized end-to-end with other modules in the architecture using standard
gradient-based optimization algorithms.

As an application use case, we explore the task of identifying a movie genre based on its plot and its
poster. Genre classification has several application areas like document categorization (Kanaris &
Stamatatos, 2009), recommendation systems (Makita & Lenskiy, 2016a), and information retrieval
systems, among others. Figure 1 depicts the challenging task of assigning genres to a particular
movie based solely on the usage of one modality. Such predictions were done with MaxoutMLP w2v
and VGG transfer approaches (See Section 3), both of them are models based on representation
learning. It can be seen that even a human might be confused if both modalities are not available.
The main hypothesis of this work is that a model using gating units, in contrast to a hand-coded
multimodal fusion architecture, will be able to learn an input-dependent gate-activation pattern that
determines how each modality contribute to the output of hidden units.

The rest of the paper is organized as follows: Section 2 presents a literature review and some con-
siderations of the previous work. Section 3 describes the methods used as baseline as well as our
representation-leaning-based model proposed. Section 4 presents the experimental evaluation setup
along with the details of the MM-IMDb dataset. Section 5 shows and discusses the results for movie
genre classification. Finally, Section 6 draws the conclusions and future work.

2 RELATED WORK

2.1 MULTIMODAL FUSION

Different reviews (Atrey et al., 2010; Bhatt & Kankanhalli, 2011; Li Deng, 2014; Deng, 2014) have
summarized strategies that addressed multimodal analysis. Most of the collected works claimed the
superiority of multimodal over unimodal approaches for automatic analysis tasks. A conventional
multimodal analysis system receives as input two or more modalities that describe a particular con-
cept. The most common multimodal sources are video, audio, images and text. In recent years
there has been a consensus with respect to the use of representation learning models to characterize
the information of this kind of sources (LeCun et al., 2015). However, the way that such extracted
features are combined is still in exploration.

Multimodal combination seeks to generate a single representation that makes easier automatic anal-
ysis tasks when building classifiers or other predictors. A simple approach is to concatenate features
to get a final representation (Kiela & Bottou, 2014; Pei et al., 2013; Suk & Shen, 2013). Although it
is a straightforward strategy, it ignores inherent correlations between different modalities.

More complex fusion strategies include Restricted Boltzmann Machines (RBMs) and autoencoders.
Ngiam et al. (2011) concatenated higher level representations and train two RBMs to reconstruct the
original audio and video representations respectively. Additionally, they trained a model to recon-
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struct both modalities given only one of them as input. In an interesting result, Ngiam et al. (2011)
were able to mimic a perceptual phenomenon that demonstrates an interaction between hearing and
vision in speech perception known as McGurk effect. A similar approach was proposed by Srivas-
tava & Salakhutdinov (2012). They modified feature learning and reconstruction phases with Deep
Boltzmann Machines. Authors claimed that such strategy is able to exploit large amounts of unla-
beled data by improving the performance in retrieval and annotation tasks. Other similar strategies
propose to fusion modalities using neural network architectures (Andrew et al., 2013; Feng et al.,
2013; Kang et al., 2012; Kiros et al., 2014a; Lu et al., 2014; Mao et al., 2014; Tu et al., 2014; Wu
et al., 2013) with two input layers separately and including a final supervised layer such as softmax
regression classifier.

An alternative approach involves an objective or loss function suited for the target task (Akata et al.,
2014; Frome et al., 2013; Kiros et al., 2014b; Mao et al., 2014; Socher et al., 2013; 2014; Zheng
et al., 2014). These strategies usually assume that there exists a common latent space where modal-
ities can express the same semantic concept through a set of transformations of the raw data. The
semantic embedding representations are such that two concepts are similar if and only if their se-
mantic embeddings are close (Norouzi et al., 2014). In (Socher et al., 2013) a multimodal strategy
to perform zero-shot classification was proposed. They trained a word-based neural network model
(Huang et al., 2012) to represent textual information, whilst use unsupervised feature learning mod-
els proposed in (Coates & Ng, 2011) to get image representation. The fusion was done by learning
an image linear mapping to project images into the semantic word space learned in the neural net-
work model. Additionally a Bayesian framework was included to decide whether an image is of a
seen or unseen class. Frome et al. (2013) learn the image representation using a CNN trained with
the Imagenet dataset and a word-based neural language model (Mikolov et al., 2013b) to represent
the textual modality. To perform the fusion they re-train CNN using text representation as targets.
This work outperforms scalability with respect to (Socher et al., 2013) from 2 to 20,000 unknown
classes in the zero-shot learning task. A modified strategy of Frome et al. (2013) was presented by
Norouzi et al. (2014). Instead of re-train the CNN network, they built a convex combination with
probabilities estimated by the classifier and semantic embedding vector of the unseen label. This
simple strategy outperforms state-of-the-art results. Because the cost function involves both multi-
modal combination and supervision, these family of models are tied to the task of interest. Thus, if
the domain or task conditions changes, adaptations are required.

The proposed model is closely related to the mixture of experts (MoE) approach (Jacobs et al., 1991).
However, the common usage of MoE is focused on performing decision fusion, i.e. combining
predictors to address a supervised learning problem (Yuksel et al., 2012). Our model is devised as
a new component in the representation learning scheme, making it independent from the final task
(e.g. classification, regression, unsupervised learning, etc) provided that the defined cost function
be differentiable.

2.2 MOVIE GENRE CLASSIFICATION

With respect to movie genre classification, several strategies also have been proposed. These strate-
gies have used different modalities to characterize each movie, such as textual features, image fea-
tures and multimedia features (audio and/or video). Huang et al. (2007) were one of the first teams
exploring this task. They classified movie previews into 3 genres by extracting handcrafted features
from the video and training a decision tree classifier. They evaluated the model using 44 films. Us-
ing only textual modality, Shah et al. (2013) performed single-label genre classification of movie
scripts using clustering algorithms with 260 movies. Later, combining two modalities, Pais et al.
(2012) classified movies between drama and non-drama using visual and textual features with 107
samples. Hong & Hwang (2015) explored different PLSA models to combine 3 modalities: audio,
image and text to predict genre of movie previews. It was single label classification with 4 genres
for 140 movies taken from IMDb.

Recently, Fu et al. (2015) used a set of handcrafted visual features for poster characterization and
bag-of-words for synopsis. Then, they trained one SVM per each modality to combine their predic-
tions. The dataset contained 2, 400 movies with one genre (out of 4) each.

The previous mentioned works present this problem in a single label setup. However, a more real-
istic scenario would be multilabel, since most of the movies belong to more than one genre, (e.g.
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Matrix(2000) is a Sci-fi/Action movie). In this setup, Anand (2014) explores the efficiency of using
keywords and users’ tags to perform multilabeling using the movies from MovieLens 1M dataset
which contains 1, 700 movies. Also Ivasic-Kos et al. (2014; 2015) performed multilabel classifica-
tion using handcrafted features from posters, with 1, 500 samples for 6 genres. Makita & Lenskiy
(2016a;b) use movie ratings matrix and genre correlation matrix to predict the genre. It used a
smaller version of the Movielens dataset with 18 movie genres.

Most of the above works have used the publicly available MovieLens datasets. However, there is
not a single experimental setup defined so that all methods can be systematically compared. Also, to
the best of our knowledge, none of the previous works contain more than 10, 000 samples. With this
work we will release a dataset created with the movies of the MovieLens 20M dataset. We include
not only genre, poster and plot information used in this work, but also the poster of the movie as
well as more than 50 characteristics taken from the IMDb website. We will also release the source
code to automatically add more movies and genres.

3 METHODS

This paper presents a neural-network-based strategy for multilabel classification of multimodal data.
The key component of the strategy is a novel type of hidden unit, the Gated Multimodal Unit (GMU),
which learns to decide how modalities influence the activation of the unit using gates. The details of
the GMU are presented in Subsection 3.1.

Statistical properties usually are not shared across modalities (Srivastava & Salakhutdinov, 2012).
And thus, they require different representation strategies according to the nature of data. This work
explored several strategies to address text and visual representation. For text information we evalu-
ated word2vec models, n-grams models and RNN models. The details are discussed in Subsection
3.2. On the other hand, two different convolutional neural networks were evaluated for processing
visual data and are presented in Subsection 3.3.

3.1 GATED MULTIMODAL UNIT FOR MULTIMODAL FUSION

Multimodal learning is closely related to data fusion. Data fusion looks for optimal ways of combin-
ing different information sources into an integrated representation that provides more information
than the individual sources (Bhatt & Kankanhalli, 2011). This fusion can be performed at different
levels, that can be categorized into two broad categories: feature fusion and decision fusion. Feature
fusion, also called early fusion, looks for a subset of features from different modalities, or combi-
nations of them, that better represent the information needed to solve a particular problem. On the
other hand, decision fusion, or late fusion, combines decisions from different systems, e.g. classi-
fiers, to produce consensus. This consensus may be reached by a simple average, a voting system or
a more complex Bayesian framework.

In this work we present a model, based on gated neural networks, for data fusion that combines
ideas from both feature and decision fusion. The model, called Gated Multimodal Unit (GMU), is
inspired by the flow control in recurrent architectures like GRU or LSTM. A GMU is intended to
be used as an internal unit in a neural network architecture whose purpose is to find an intermediate
representation based on a combination of data from different modalities. Figure 2.a depicts the
structure of a GMU. Each xi corresponds to a feature vector associated with modality i. Each
feature vector feeds a neuron with a tanh activation function, which is intended to encode an internal
representation feature based on the particular modality. For each input modality, xi, there is a
gate neuron (represented by σ nodes in the diagram), which controls the contribution of the feature
calculated from xi to the overall output of the unit. When a new sample is fed to the network, a
gate neuron associated to modality i receives as input the feature vectors from all the modalities and
uses them to decide whether the modality i may contribute, or not, to the internal encoding of the
particular input sample.

Figure 2.b shows a simplified version of the GMU for two input modalities, xv (visual modality)
and xt (textual modality), that will be used in the remaining of the paper. It should be noted that
both models are not completely equivalent, since in the bimodal case the gates are tied. Such weight
tying constraints the model, so that the units trade off between both modalities while they use less
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Figure 2: Illustration of gated units. a) The proposed model to use with more than two modalities.
b) A simplification for the bimodal approach.

parameters than the multimodal case. The equations governing this GMU are as follows:

hv = tanh (Wv · xv)

ht = tanh (Wt · xt)
z = σ (Wz · [xv, xt])
h = z ∗ hv + (1− z) ∗ ht
Θ = {Wv,Wt,Wz}

with Θ the parameters to be learned and [·, ·] the concatenation operator. Since all are differentiable
operations, this model can be easily coupled with other neural network architectures and trained
with stochastic gradient descent.

3.2 TEXT REPRESENTATION

Text representation is a critical step when classification tasks are addressed using machine learning
methods. Traditional approaches are based on counting frequencies of n-gram occurrences such
as words or sequences of characters (e.g. bag-of-words models). The main drawback of such ap-
proaches is the difficulty to model relationships between words and their context. An alternative
approach was initially proposed by Bengio et al. (2003), by building a language model based on
a neural network architecture (NNLM). The NNLM was able to learn distributed representations
of words that capture contextual information. Later, this model was simplified to deal with large
corpora by removing hidden layers in the neural network architecture (word2vec) (Mikolov et al.,
2013a). This is a fully unsupervised model that takes advantage of large sets of unlabeled docu-
ments. Herein, three text representations were evaluated:

n-gram Following the strategy proposed by Kanaris & Stamatatos (2009), we used the n-gram
strategy for representing text. Despite their simplicity, n-gram models have shown to be a
competitive baseline.

Word2Vec Word2vec is an unsupervised learning algorithm that finds a vector representation for
each word based on its context (Mikolov et al., 2013a). It has been shown that this model
is able to find semantic and syntactic relationships using arithmetic operations between the
vectors. Based on this property, we represent a movie as the average of the vectors of words
in the plot outline. The main motivation to aggregate word2vec vectors is the property of
additive compositionality that this representation has exposed over different set of tasks
such as word analogies. The usual way to aggregate is to sum vectors. We instead take the
average to avoid large input values to the neural network.
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Figure 3: Co-ocurrence matrix of genre tags

Recurrent neural network Here we take the plot outline as a sequence of words and train a super-
vised recurrent neural network. We evaluated two variants. The first one (RNN w2v) is a
transfer learning model that takes as input the word vectors of word2vec as representations.
The second one learns the word vectors from scratch (RNN end2end).

3.3 VISUAL REPRESENTATION

In computer vision tasks, Convolutional neural networks have become the de facto standard. It
has been shown that CNN models trained with a huge amount of data are able to learn common
features shared across different domains. This characteristic is usually exploited by transfer learning
approaches. For visual representation we explored 2 strategies: transfer learning and end-to-end
training.

VGG Transfer In this approach, the VGG Network (Simonyan & Zisserman, 2014) trained with
the ImageNet dataset is used as feature extractor by taking the last hidden activations as the
visual representation.

End2End CNN Here, a CNN with 5 convolutional layers and an MLP (see Section 3.4) on top was
trained from scratch.

3.4 CLASSIFICATION MODEL

Based on the defined representation, we explored two methods to map from feature vectors to genre
classification. In particular we explored a simple Logistic regression and a neural network architec-
ture. This is a multilayer perceptron (MLP) with two fully connected layers and maxout activation
function. In particular, the maxout activation function hi : Rn → R is a defined as:

hi (s) = max
j∈[1,k]

zi,j (1)

where s ∈ Rn is the input vector, zi,j = sTW···ij+bij is the output of the j-th linear transformation
of the i-th hidden unit, and W ∈ Rd×m×k and b ∈ Rm×k are learned parameters. It has been shown
that maxout models with just 2 hidden units behave as universal approximators, while are less prone
to saturate units (Goodfellow et al., 2013).
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Figure 5: Length distribution of movie plots.

4 EXPERIMENTAL EVALUATION

4.1 MULTIMODAL IMDB DATASET

With this work we will make publicly available the Multimodal IMDb (MM-IMDb)1 dataset. MM-
IMDb dataset is built with the IMDb id’s provided by the Movielens 20M dataset 2 that contains
ratings of 27, 000 movies. Using the IMDbPY 3 library, movies which do not contain their poster
image were filtered out. As the final result, the MM-IMDb dataset comprises 25, 959 movies along
with their plot, poster, genres and other 50 additional metadata fields such as year, language, writer,
director, aspect ratio, etc.

Notice that one movie may belong to more than one genre. Figure 3 shows the co-occurrence matrix,
where the color bar indicates the representative co-occurrence per row, while Figure 4 and Figure
5 depict the distribution of the movie poster sizes and length of movie plots respectively. Each
plot contains on average 92.5 words, while the longest one contains 1, 431 words and the average
of genres per movie is 2.48. In this work, we defined the task of movie genre prediction based
on its plot and image poster. Nevertheless, the additional metadata information encourages other
interesting tasks such as rating prediction and content-based retrieval, among others.

4.2 EXPERIMENTAL SETUP

The MM-IMDb dataset has been split in three subsets. Train, development and test subsets contain
15552, 2608 and 7799 respectively. The distribution of samples is listed in Table 1. The sample
was stratified so that training, dev and test sets comprises 60%, 10%, 30% samples of each genre
respectively.

In the multilabel classification the performance evaluation can be more complex than traditional
multi-class classification and the differences can be significant among several measures (Madjarov
et al., 2012). Herein, four averages of the f-score (f1) are reported: samples computes the f-score per
sample and then averages the results, micro computes the f-score using all predictions at once, macro
computes the f-score per genre and then averages the results. weighted is the same as macro with a
weighted average based on the number of positive samples per genre. Concretely, we calculate them
as follows (Madjarov et al., 2012):

fsample
1 =

1

N

N∑
i=1

2× |ŷi ∩ yi|
|ŷi|+ |yi|

fmacro
1 = 1

Q

∑Q
j=1

2×pj×rj
pj+rj

fweighted
1 =

1

Q2

Q∑
j=1

Qj

2× pj × rj
pj + rj

1http://lisi1.unal.edu.co/mmimdb/
2http://grouplens.org/datasets/movielens/
3http://imdbpy.sourceforge.net/
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Table 1: Genre distribution per subset

Genre Train Dev Test Genre Train Dev Test

Drama 8424 1401 4142 Family 978 172 518
Comedy 5108 873 2611 Biography 788 144 411
Romance 3226 548 1590 War 806 128 401
Thriller 3113 512 1567 History 680 118 345
Crime 2293 382 1163 Music 634 100 311
Action 2155 351 1044 Animation 586 105 306
Adventure 1611 278 821 Musical 503 85 253
Horror 1603 275 825 Western 423 72 210
Documentary 1234 219 629 Sport 379 64 191
Mystery 1231 209 617 Short 281 48 142
Sci-Fi 1212 193 586 Film-Noir 202 34 102
Fantasy 1162 186 585

pmicro =

∑Q
j=1 tpj∑Q

j=1 tpj +
∑Q

j=1 fpj
rmicro =

∑Q
j=1 tpj∑Q

j=1 tpj+
∑Q

j=1 fnj
fmicro
1 =

2× pmicro × rmicro

pmicro + rmicro

With N the number of examples; Q the number of labels; Qj the number of true instances for the
j-th label; p the precision, r the recall; ŷi, yi ∈ (0, 1)

Q the prediction and ground truth binary tuples
respectively; tpj , fpjandfnj the number of true positives, false positives and false negatives for the
j-th label respectively.

TEXTUAL REPRESENTATION

The pretrained Google Word2vec4 embedding space was used. After intersecting the Google
word2vec available words with the MM-IMDb plots, the final vocabulary contains 41,612 words.
Other than lowercase, no text preprocessing was applied. Since it is our intention to measure how
the network’s depth affects the performance of the model, we also evaluate the architecture with a
single fully connected layer. In order to compare the performance of this textual representation, we
evaluate it using two publicly available datasets: 7genre dataset that comprises 1,400 web pages with
7 disjoint genres and ki-04 dataset that comprises 1,239 samples classified under 8 genres. We com-
pare the model with the state of the art results (Kanaris & Stamatatos, 2009) which used character
n-grams with structured information from the HTML tags to predict the genre of web pages.

VISUAL REPRESENTATION

Since the first approach was to use VGG as a feature extractor. This model is referred as
VGG Transfer. The second approach takes as input the raw images to a CNN. Since all the im-
ages do not have the same size, all images were scaled, and cropped when required, to 160 × 256
pixels keeping the aspect ratio. This CNN comprises 5 CNN layers of 5, 3, 3, 3, 3 squared filters
and 2 × 2 pool sizes. Each convolutional layer has 16 hidden units. The convolutional layers are
connected with the MaxoutMLP on top.

MULTIMODAL REPRESENTATION

We evaluate 4 different ways to combine both modalities as baselines.

Average probability This can be seen as a late-fusion strategy. The probabilities obtained by the
best model of each modality are averaged and thresholded.

concatenation Different works have found that a simple concatenation of representations of dif-
ferent modalities are good for combining the information (Suk & Shen, 2013; Pei et al.,
2013; Kiela & Bottou, 2014). Herein, we concatenated both representations to train the
MaxoutMLP architecture.

4https://code.google.com/archive/p/word2vec/
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other nodes represent hidden variables.

linear sum Following the way Vinyals et al. (2015) combine text and images representation into a
single space, this model adds a linear transformation for each modality so that both outputs
have the same size to be summed up and then followed by the MaxoutMLP architecture.

MoE The mixture of experts (MoE) (Jacobs et al., 1991) model was adapted for multilabel classi-
fication. two gating strategies were explored: tied, where a single gate multiplies all the
logistics outputs, and untied where every logistic output has its own gate. Logistic regres-
sion and MaxoutMLP were evaluated as experts.

NEURAL NETWORK TRAINING

Neural network models were trained using using Batch Normalization scheme (Ioffe & Szegedy,
2015). This strategy applies a normalization step across samples that belong to the same batch,
so that each hidden unit in the network receive a zero-mean and unit variance. Stochastic gra-
dient descent with ADAM optimization (Kingma & Ba, 2014) was used to learn the weights of
the neural network. Dropout and max-norm regularization were used to control overfitting. Hidden
size ({64, 128, 256, 512}), learning rate (

[
10−3, 10−1

]
), dropout ([0.3, 0.7]), max-norm ([5, 20]) and

initialization ranges (
[
10−3, 10−1

]
) parameters were explored by training 25 models with random

(uniform) hyperparameter initializations and the best was chosen according to validation perfor-
mance. It has been reported that this strategy is preferable over grid search when training deep
models (Bergstra & Bengio, 2012). All the implementation was carried on with the Blocks frame-
work (Van Merriënboer et al., 2015)5.

During the training process, we noticed that batch normalization considerably helped in terms of
training time and convergence, resulting in less sensitivity to hyperparameters such as initialization
ranges or learning rate. Also, dropout and max-norm regularization strategies helped to increase the
performance at test time.

5 RESULTS

5.1 EVALUATION OVER SYNTHETIC DATA

In order to evaluate if the model is able to identify which modality is contributing more information
to classify a particular sample, we created a synthetic task based on a generative model, which
is depicted in Figure 6. In this model we define the random binary variable C as the target and
xv, xt ∈ R2 as the input features. M is a random binary variable that decides which modality will
contain the relevant information that determines the class. The input features of each modality can

5https://github.com/johnarevalo/gmu-mmimdb
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Figure 7: Activations of z (left) and prediction (right) for a synthetic experiment with xv, xt ∈ R1.

be generated by a random source, ŷv and ŷt, or by an informed source, yv and yt. The generative
model is specified as follows:

C ∼ Bernoulli(pC)

M ∼ Bernoulli(pM )

yv ∼ N (γCv )

ŷv ∼ N (γ̂v)

xv = Myv + (1−M)ŷv

yt ∼ N (γCt )

ŷt ∼ N (γ̂t)

xt = Mŷt + (1−M)yt

We trained a model with a single GMU and applied a sigmoid function over h, then the binary cross
entropy was used as loss function. Using the generative model, 200 samples per class were generated
for each experiment. 1000 synthetic experiments with different random seeds were run and the
GMU outperformed a logistic regression classifier in 370 of them, while obtaining equal results in
the remainder ones. Our goal in these simulations was to show that the model was able to learn a
latent variable that determines which modality carries the useful information for the classification.
An interesting result is that between M and the activations of the gate z there is a correlation of 1.
This means the model was capable of learning such latent variable by only observing the xv and xt
input features.

We also wanted to project back the z activations to the feature space in order to visualize regions
depending on the modality. Figure 7 shows the activations in a synthetic experiment generated by
the setup of Figure 6 for xv, xt ∈ R1. Each axis represents a modality, red and blue dots are the
samples generated for the two classes and black Gaussian curves represent the γ̂v and γ̂t noises. The
contour of the left figure (gray) represents the activation of z. Notice that in white regions (z = 1),
the model gives more importance to the xv modality while in gray regions (z = 0) the xt modality
is more relevant; i.e. the z gate is isolating the noise. The contour of the right figure (blue-red)
represents the model prediction. It is noteworthy that the boundary defined by the gates still holds
when the model solves the task. This also encourages the inclusion of non-linearities to the z gate
so that it is able to discriminate more complex interactions between modalities.

5.2 GENRE CLASSIFICATION RESULTS

Before using our text representation in the multimodal task, we wanted to be sure such representation
was good enough to address the genre classification task. Thus, we evaluated it on 2 public datasets.
We found MaxoutMLP w2v achieves the state of the art results on the ki-04 dataset and increases
the performance in the 7Genre dataset from 0.841 to 0.854 (Kanaris & Stamatatos, 2009). Notice
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that the baseline uses additional information from the HTML structure from the web page, while
this representation uses only the text data.

Table 2: Summary of classification task on the MM-IMDb dataset

Modality Representation F-Score
weighted samples micro macro

Multimodal GMU 0.617 0.630 0.630 0.541
Linear sum 0.600 0.607 0.607 0.530
Concatenate 0.597 0.605 0.606 0.521
AVG probs 0.604 0.616 0.615 0.491
MoE MaxoutMLP 0.592 0.593 0.601 0.516
MoE MaxoutMLP (tied) 0.579 0.579 0.587 0.489
MoE Logistic 0.541 0.557 0.565 0.456
MoE Logistic (tied) 0.483 0.507 0.518 0.358

Text

MaxoutMLP w2v 0.588 0.592 0.595 0.488
RNN transfer 0.570 0.580 0.580 0.480
MaxoutMLP w2v 1 hidden 0.540 0.540 0.550 0.440
Logistic w2v 0.530 0.540 0.550 0.420
MaxoutMLP 3grams 0.510 0.510 0.520 0.420
Logistic 3grams 0.510 0.520 0.530 0.400
RNN end2end 0.490 0.490 0.490 0.370

Visual VGG Transfer 0.410 0.429 0.437 0.284
CNN end2end 0.370 0.350 0.340 0.210

Table 2 shows the results in the proposed dataset. For the textual modality, the best performance is
obtained by the combination of word2vec representation with an MLP classifier. The behavior of
all representation methods are consistent across the performance measures. Learning from scratch
the RNN model performed the worst. We hypothesize this has to do with the lack of data to learn
meaningful relations among words. It has been shown that millions of words are required to train a
model such as word2vec that is able to exploit common regularities between word co-occurrences.

For the visual modality, the usage of pretrained models works better than training the model from
scratch. It seems it is still a small dataset to learn all the complexities of the posters. Now, comparing
the performance independently per genre, as in Table 3, it is interesting to notice that in Animation
the visual modality outperforms the textual one.

In the multimodal scenario, by adding the GMU as building block to learn the fusion we obtained
the best performance, improving independent modalities in the averaged measures and in 16 of out
23 genres and outperforming all other evaluated fusion strategies. The concatenation or the linear

Table 3: Macro F-Score reported per genre for single and multimodal approaches.

Genre Textual Visual GMU Genre Textual Visual GMU
Drama 0.74 0.67 0.77 Fantasy 0.42 0.25 0.46
Comedy 0.65 0.59 0.68 Family 0.5 0.46 0.58
Romance 0.53 0.33 0.51 Biography 0.4 0.02 0.25
Thriller 0.57 0.39 0.62 War 0.57 0.19 0.64
Crime 0.61 0.25 0.59 History 0.35 0.06 0.29
Action 0.58 0.37 0.6 Animation 0.43 0.61 0.68
Adventure 0.51 0.32 0.51 Musical 0.14 0.18 0.28
Horror 0.65 0.41 0.69 Western 0.52 0.37 0.65
Documentary 0.67 0.18 0.76 Sport 0.64 0.11 0.7
Mystery 0.38 0.11 0.39 Short 0.2 0.24 0.27
Sci-Fi 0.63 0.3 0.66 Film-Noir 0.02 0.11 0.37
Music 0.51 0.01 0.48
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Drama 88.7% 11.3%
Comedy 80.6% 19.4%

Romance 83.9% 16.1%
Thriller 88.2% 11.8%

Crime 90.3% 9.7%
Action 87.9% 12.1%

Adventure 70.3% 29.7%
Horror 87.8% 12.2%

Documentary 91.1% 8.9%
Mystery 89.7% 10.3%

Sci-Fi 84.6% 15.4%
Fantasy 67.8% 32.2%
Family 36.3% 63.7%

Biography 93.6% 6.4%
War 93.1% 6.9%

History 92.8% 7.2%
Music 94.6% 5.4%

Animation 23.0% 77.0%
Musical 55.5% 44.5%
Western 96.8% 3.2%

Sport 91.8% 8.2%
Short 53.7% 46.3%

Film-Noir 98.4% 1.6%
Textual Visual

Figure 8: Percentage of gates activations (z > 0.5: Visual; z <= 0.5: textual) for test samples to
which the model assigned them the label.

combination approaches were not enough to model the correlation between the modalities and MoE
models did not perform better than simpler approaches. This is an expected behavior for MoE in
a relatively small dataset because the data is fractionated over different experts, and thus it doesn’t
make an efficient use of the training samples.

In order to evaluate which modality influences more the model when assigning a particular label,
we averaged the activations of a subset of z gates of the test samples to which the model assigned
them such label. We counted the number of samples that pays more attention to the textual modality
(z <= 0.5) or to the visual modality (z > 0.5). The units were chosen taking into account the
mutual information between the predictions and the z activations. The result of this analysis is
depicted in Figure 8. As expected, the model is generally more influenced by the textual modality.
But, in particular cases such as Animation or Family genres, the visual modality affects more the
model. This is also consistent with results of Table 3 which reports better performances for visual
modality.

We wanted to qualitative explore test examples in which performance was improved by a relative
large margin. Table 4 illustrates cases where the model takes advantage of the most accurate modal-
ity, and in some cases removes false positives. It is noteworthy that some of these examples can be
confusing for a human if one modality is missing, or additional context information is not given.

6 CONCLUSIONS

This work presented a strategy to learn fusion transformations from multimodal sources. Similarly
to the way recurrent models control the information flow, the proposed model is based on multi-
plicative gates. The Gated Multimodal Unit (GMU) receives two or more input sources and learns
to determine how much each input modality affects the unit activation. In synthetic experiments the
GMU was able to learn hidden latent variables, and in a real scenario it outperformed the single-
modality approaches. An interesting property of GMU is that, being a differentiable operation, it
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Table 4: Examples of predictions in test set. Red and blue genres are false positives and true positives
respectively.

The World According to Sesame Street
a documentary which examines the creation and co - production of the
popular children ’ s television program in three developing countries:
bangladesh , kosovo and south africa .
Ground Truth Documentary
Textual Documentary, History
Visual Comedy, Adventure, Family, Animation
GMU Documentary

Babar: the movie
in his spectacular film debut , young babar , king of the elephants ,
must save his homeland from certain destruction by rataxes and his
band of invading rhinos .

Ground Truth Adventure, Fantasy, Family, Animation, Musical
Textual Adventure, Documentary, War, Music
Visual Comedy, Adventure, Family, Animation
GMU Adventure, Family, Animation

Letters from Iwo Jima
the island of iwo jima stands between the american military force and
the home islands of japan . (...) when the american invasion begins ,
both kuribayashi and saigo find strength , honor , courage , and horrors
beyond imagination .
Ground Truth Drama, War, History
Textual Drama, Action, War, History
Visual Thriller, Action, Adventure, Sci-Fi
GMU Drama, War, History

The Last Elvis
a tragic accident causes an elvis impersonator to reassess his priorities.

Ground Truth Drama
Textual Comedy, Documentary, Family, Biography, Music
Visual Drama, Romance
GMU Drama
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is easily coupled in any other neural network architecture and trained with standard gradient-based
optimization algorithms. With this work we will also release a new dataset that contains around
27, 000 movie plots, images and other metadata. To the best of our knowledge, this is the biggest
dataset used to perform movie genre classification based on multimodal information and the first
one to be publicly available. In our future work we expect to explore deep architectures of GMU
layers as well as integration with attention mechanism over the input modalities. Also, It will be
interesting to explore in more depth the interpretability of the learned features.
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