
Under review as a conference paper at ICLR 2017

TARTAN: ACCELERATING FULLY-CONNECTED AND
CONVOLUTIONAL LAYERS IN DEEP LEARNING NET-
WORKS BY EXPLOITING NUMERICAL PRECISION
VARIABILITY

Alberto Delmás Lascorz, Sayeh Sharify, Patrick Judd & Andreas Moshovos
Electrical and Computer Engineering
University of Toronto
Toronto, ON, M5S 3G4, Canada
{delmasl1,sayeh,judd,moshovos}@ece.utoronto.ca

ABSTRACT

Tartan TRT a hardware accelerator for inference with Deep Neural Networks
(DNNs) is presented and evaluated on Convolutional Neural Networks. TRT ex-
ploits the variable per layer precision requirements of DNNs to deliver execution
time that is proportional to the precision p in bits used per layer for convolutional
and fully-connected layers. Prior art has demonstrated an accelerator with the
same execution performance only for convolutional layersJudd et al. (2016a;c).
Experiments on image classification CNNs show that on average across all net-
works studied, TRT outperforms a state-of-the-art bit-parallel accelerator Chen
et al. (2014b) by 1.90× without any loss in accuracy while it is 1.17× more en-
ergy efficient. TRT requires no network retraining while it enables trading off
accuracy for additional improvements in execution performance and energy effi-
ciency. For example, if a 1% relative loss in accuracy is acceptable, TRT is on
average 2.04× faster and 1.25× more energy efficient than a conventional bit-
parallel accelerator. A Tartan configuration that processes 2-bits at time, requires
less area than the 1-bit configuration, improves efficiency to 1.24× over the bit-
parallel baseline while being 73% faster for convolutional layers and 60% faster
for fully-connected layers is also presented.

1 INTRODUCTION

It is only recently that commodity computing hardware in the form of graphics processors delivered
the performance necessary for practical, large scale Deep Neural Network applications Krizhevsky
et al. (2012). At the same time, the end of Dennard Scaling in semiconductor technology Es-
maeilzadeh et al. (2011) makes it difficult to deliver further advances in hardware performance
using existing general purpose designs. It seems that further advances in DNN sophistication would
have to rely mostly on algorithmic and in general innovations at the software level which can be
helped by innovations in hardware design. Accordingly, hardware DNN accelerators have emerged.
The DianNao accelerator family was the first to use a wide single-instruction single-data (SISD)
architecture to process up to 4K operations in parallel on a single chip Chen et al. (2014a;b) out-
performing graphics processors by two orders of magnitude. Development in hardware accelerators
has since proceeded in two directions: either toward more general purpose accelerators that can
support more machine learning algorithms while keeping performance mostly on par with DaDian-
Nao (DaDN) Chen et al. (2014b), or toward further specialization of specific layers or classes of
DNNs with the goal of outperforming DaDN in execution time and/or energy efficiency, e.g., Han
et al. (2016); Albericio et al. (2016a); Judd et al. (2016a); Chen, Yu-Hsin and Krishna, Tushar and
Emer, Joel and Sze, Vivienne (2016); Reagen et al. (2016). This work is along the second direction.
Section 5 reviews several other accelerator designs.

While DaDN’s functional units process 16-bit fixed-point values, DNNs exhibit varying precision
requirements across and within layers, e.g., Judd et al. (2015). Accordingly, it is possible to use

1

Under review as a conference paper at ICLR 2017

shorter, per layer representations for activations and/or weights. However, with existing bit-parallel
functional units doing so does not translate into a performance nor an energy advantage as the values
are expanded into the native hardware precision inside the unit.

This work presents Tartan (TRT), a massively parallel hardware accelerator whose execution time
for fully-connected and convolutional layers scales with the precision p used to represent the input
values. TRT uses hybrid bit-serial/bit-parallel functional units and exploits the abundant parallelism
of typical DNN layers with the goal of exceeding DaDN’s execution time performance and energy
efficiency. Ideally Tartan can improve execution time by 16

p where p is the precision used for the
activations in convolutional layers, and for the activations and weights in fully-connected layers.
Every bit of precision that can be eliminated ideally reduces execution time and increases energy
efficiency. TRT builds upon the Stripes (STR) accelerator Judd et al. (2016c;a) which improves
execution time and energy efficiency only for convolutional layers.

This work evaluates TRT on a set of convolutional neural networks (CNNs) for image classification.
On average TRT reduces inference time by 1.61×, 1.91× and 1.90× over DaDN for the fully-
connected, the convolutional, and all layers respectively. Energy efficiency compared to DaDN with
TRT is 0.92×, 1.18× and 1.17× respectively. TRT enables trading off accuracy for improving exe-
cution time and energy efficiency. For example, on average for the fully-connected layers, accepting
a 1% loss in accuracy improves performance to 1.73× and energy efficiency to 1.00× compared to
DaDN.

The rest of this document is organized as follows: Section 2 illustrates the key concepts behind
TRT via an example. Section 3 reviews the DaDN architecture and presents an equivalent Tartan
configuration. Section 4 presents the experimental results. Section 5 reviews related work and
discusses the limitations of this study and the potential challenges with TRT . Section 6 concludes.

2 Tartan: A SIMPLIFIED EXAMPLE

This section illustrates at a high-level the TRT design by showing how it would process two pur-
posely trivial cases: 1) a fully-connected layer (FCL) with a single input activation producing two
output activations, and 2) a convolutional layer (CVL) with two input activations and one single-
weight filter producing two output activations. The per layer calculations are:

Fully − Connected : Convolutional :

f1 = w1 × a c1 = w × a1

f2 = w2 × a c2 = w × a2

Where f1, f2, c1 and c2 are output activations, w1, w2, and w are weights, and a1, a2 and a are input
activations. For clarity all values are assumed to be represented in 2 bits of precision.

2.1 CONVENTIONAL BIT-PARALLEL PROCESSING

Figure 2.1a shows a bit-parallel processing engine representative of DaDN. Every cycle, the engine
can calculate the product of two 2-bit inputs, i (weight) and v (activation) and accumulate or store
it into the output register OR. Parts (b) and (c) of the figure show how this unit can calculate the
example CVL over two cycles. In part (b) and during cycle 0, the unit accepts along the v input bits
0 and 1 of a1 (noted as a1/0 and a1/1 respectively on the figure), and along i bits 0 and 1 of w
and produces both bits of output c1. Similarly, during cycle 1 (part (c)), the unit processes a2 and w
to produce c2. In total, over two cycles, the engine produced two 2b × 2b products. Processing the
example FCL also takes two cycles: In the first cycle w1 and a produce f1, and in the second cycle
w2 and a produce f2. This process is not shown in the interest of space.

2.2 Tartan’S APPROACH

Figure 2 shows how a TRT-like engine would process the example CVL. Figure 2a shows the en-
gine’s structure which comprises two subunits. The two subunits accept each one bit of an activation
per cycle through inputs v0 and v1 respectively and as before, there is a common 2-bit weight input
(i1, i0). In total, the number of input bits is 4, identical to the bit-parallel engine.

2

Under review as a conference paper at ICLR 2017

OR

+x

V1V0

i1

i0

w/1

w/0

OR

+x

a1/0 a1/1

w/1

w/0

OR

+x

a2/0 a2/1

(a) (b) (c)

Figure 1: Bit-Parallel Engine processing the convolutional layer over two cycles: a) Structure, b)
Cycle 0, and c) Cycle 1.

i1

i0

>>

+

AR ORBR

v0

>>

+

AR ORBR

v1

(a) Engine Structure

w/1

w/0

AR ORBR

--

>>

+

--

w/1

w/0

AR ORBR

>>

+

w/1

w/0

(b) Cycle 1: Parallel Load w on BRs

--

--

AR ORBR

a1/0

>>

+

a2/0

w/1

w/0

*

*

AR ORBR

>>

+

w/1

w/0

*

*

(c) Cycle 2: Multiply w with bits 0 of
the activations

--

--

AR ORBR

a1/1

>>

+

a2/1

w/1

w/0

c1/1

c1/0

AR ORBR

>>

+

w/1

w/0

c2/1

c2/0

(d) Cycle 3: Multiply w with bits 1 of
the activations

Figure 2: Processing the example Convolutional Layer Using TRT’s Approach.

w1/1

w2/1

0

w1/1

AR ORBR

--

>>

+

--

0

w2/1

AR ORBR

>>

+

(a) Cycle 1: Shift in bits 1 of
weights into the ARs

w1/0

w2/0

w1/1

w1/0

AR ORBR

--

>>

+

--

w2/1

w2/0

AR ORBR

>>

+

(b) Cycle 2: Shift in bits 0 of
weights into the ARs

--

--

w1/1

w1/0

AR ORBR

--

>>

+

--

w1/1

w1/0

w2/1

w2/0

AR ORBR

>>

+

w2/1

w2/0

(c) Cycle 3: Copy AR into BR

--

--

w1/1

w1/0

AR ORBR

a/0

>>

+

a/0

w1/1

w1/0

*

*

w2/1

w2/0

AR ORBR

>>

+

w2/1

w2/0

*

*

(d) Cycle 4: Multiply weights with
first bit of a

--

--

w1/1

w1/0

AR ORBR

a/1

>>

+

a/1

w1/1

w1/0

f1/1

f1/0

w2/1

w2/0

AR ORBR

>>

+

w2/1

w2/0

f2/1

f2/0

(e) Cycle 5: Multiply weights with
second bit of a

Figure 3: Processing the example Fully-Connected Layer using TRT’s Approach.

3

Under review as a conference paper at ICLR 2017

Each subunit contains three 2-bit registers: a shift-register AR, a parallel load register BR, and an
parallel load output register OR. Each cycle each subunit can calculate the product of its single bit
vi input with BR which it can write or accumulate into its OR. There is no bit-parallel multiplier
since the subunits process a single activation bit per cycle. Instead, two AND gates, a shift-and-add
functional unit, and OR form a shift-and-add multiplier/accumulator. Each AR can load a single bit
per cycle from one of the i wires, and BR can be parallel loaded from AR or from the i wires.

Convolutional Layer: Figure 2b through Figure 2d show how the CVL is processed. The figures
abstract away the unit details showing only the register contents. As Figure 2b shows, during cycle
1, the w synapse is loaded in parallel to the BRs of both subunits via the i1 and i0 inputs. During
cycle 2, bits 0 of a1 and of a2 are sent via the v0 and v1 inputs respectively to the first and second
subunit. The subunits calculate concurrently a1/0 × w and a2/0 × w and accumulate these results
into their ORs. Finally, in cycle 3, bit 1 of a1 and a2 appear respectively on v0 and v1. The subunits
calculate respectively a1/1 × w and a2/1 × w accumulating the final output activations c1 and c2
into their ORs.

In total it took 3 cycles to process the layer. However, at the end of the third cycle, another w
could have been loaded into the BRs (the i are idle) allowing a new set of outputs to commence
computation during cycle 4. That is loading a new weight can be hidden during the processing of
the current output activation for all but the first time. In the steady state, when the input activations
are represented in two bits, this engine will be producing two 2b × 2b terms every two cycles thus
matching the bandwidth of the bit-parallel engine.

If the activations a1 and a2 could be represented in just one bit, then this engine would be pro-
ducing two output activations per cycle, twice the bandwidth of the bit-parallel engine. The latter
is incapable of exploiting the reduced precision. In general, if the bit-parallel hardware was using
Pbase bits to represent the activations while only Pa bits were enough, TRT would outperform the
bit-parallel engine by Pbase

PTRT
.

Fully-Connected Layer: Figure 3 shows how a TRT-like unit would process the example FCL. As
Figure 3a shows, in cycle 1, bit 1 of w1 and of w2 appear respectively on lines i1 and i0. The left
subunit’s AR is connected to i1 while the right subunit’s AR is connected to i0. The ARs shift in
the corresponding bits into their least significant bit sign-extending to the vacant position (shown as
a 0 bit on the example). During cycle 2, as Figure 3b shows, bits 0 of w1 and of w2 appear on the
respective i lines and the respective ARs shift them in. At the end of the cycle, the left subunit’s AR
contains the full 2-bit w1 and the right subunit’s AR the full 2-bit w2. In cycle 3, Figure 3c shows that
the contents of AR are copied to BR in each subunit. From the next cycle, calculating the products
can now proceed similarly to what was done for the CVL. In this case, however, each BR contains
a different weight whereas in the CVL all BRs held the same w value. The shift capability of the
ARs coupled with the different i wire per subunit connection allowed us to load a different weight
bit-serially over two cycles. Figure 3d and Figure 3e show cycles 4 and 5 respectively. During cycle
4, bit 0 of a1 appears on both v inputs and is multiplied with the BR in each subunit. In cycle 5, bit
1 of a1 appears on both v inputs and the subunits complete the calculation of f1 and f2. It takes two
cycles to produce the two 2b× 2b products once the correct inputs appear into the BRs.

While in our example no additional inputs nor outputs are shown, it would have been possible to
overlap the loading of a new set of w inputs into the ARs while processing the current weights stored
into the BRs. That is the loading into ARs, copying into BRs, and the bit-serial multiplication of the
BRs with the activations is a 3-stage pipeline where each stage can take multiple cycles. In general,
assuming that both activations and weights are represented using 2 bits, this engine would match the
performance of the bit-parallel engine in the steady state. When both set of inputs i and v can be
represented with fewer bits, 1 in this case, the engine would produce two terms per cycle, twice the
bandwidth of the bit-parallel engine of the previous section.

Summary: In general, if Pbase the precision of the bit-parallel engine, and PL
a and PL

w the preci-
sions that can be used respectively for activations and weights for layer L, a TRT engine can ideally
outperform an equivalent bit parallel engine by Pbase

PL
a

for CVLs, and by Pbase

max(PL
a ,PL

w)
for FCLs. This

example used the simplest TRT engine configuration. Since typical layers exhibit massive paral-
lelism, TRT can be configured with many more subunits while exploiting weight reuse for CVLs
and activation reuse for FCLs. The next section describes the baseline state-of-the-art DNNs accel-
erator and presents an equivalent TRT configuration.

4

Under review as a conference paper at ICLR 2017

x

x

f+

IP0

x

x

f+

IP15

Activation
Lane 0

Activation
Lane 15

from central
eDRAM

NBin

to central
eDRAM

NBout

Weight
Lane 0

Weight
Lane 15

Weight
Lane 0

Weight
Lane 15

Filter
Lane 0

Filter
Lane 15

SB (eDRAM)

16

16

(a) DaDianNao

Weight
Lane 0

Weight
Lane 15

Weight
Lane 0

Weight
Lane 15

Filter
Lane 0

Filter
Lane 15

SB (eDRAM)

SIP(0,0) SIP(15,0)

SIP(0,15) SIP(15,15)

SSR

16

16

16

16

NBout

Activation
Bit Lane 255

Activation
Bit Lane 240

Activation
Bit Lane 15

Activation
Bit Lane 0

from central
eDRAM

Window
Lane 15

Window
Lane 0

1

1

1

1

NBin

SSR +

WR

16b0

16b0

16

16
SSR +

WR

16b0

16b0

16

16
to central
eDRAM

+

WR

16b0

16b0

16

16
SWR

SWRSWR

+

WR

16b0

16b0

16

16
SWR

(b) Tartan

Figure 4: Processing Titles.

Tile 0

NM
NM

Tile 0

Dispatcher

Reducer

(a) (b)

Tile 15
Tile 15

Reducer

256 bits 256 bits

Figure 5: Overview of the system components and their communication. a) DaDN. b) Tartan.

3 Tartan ARCHITECTURE

This work presents TRT as a modification of the state-of-the-art DaDianNao accelerator. Accord-
ingly, Section 3.1 reviews DaDN’s design and how it can process FCLs and CVLs. For clarity, in
what follows the term brick refers to a set of 16 elements of a 3D activation or weight array1 input
which are contiguous along the i dimension, e.g., a(x, y, i)...a(x, y, i+ 15). Bricks will be denoted
by their origin element with a B subscript, e.g., aB(x, y, i). The size of a brick is a design parameter.

3.1 BASELINE SYSTEM: DADIANNAO

TRT is demonstrated as a modification of the DaDianNao accelerator (DaDN) proposed by Chen
et al. (2014b). Figure 4a shows a DaDN tile which processes 16 filters concurrently calculating 16
activation and weight products per filter for a total of 256 products per cycle. Each cycle the tile
accepts 16 weights per filter for total of 256 synapses and 16 input activations. The tile multiplies
each weight with only one activation whereas each activation is multiplied with 16 weights, one per
filter. The tile reduces the 16 products into a single partial output activation per filter, for a total of
16 partial output activations for the tile. Each DaDN chip comprises 16 such tiles, each processing a
different set of 16 filters per cycle. Accordingly, each cycle, the whole chip processes 16 activations
and 256× 16 = 4K weights producing 16× 16 = 256 partial output activations, 16 per tile.

Internally, each tile has: 1) a synapse buffer (SB) that provides 256 weights per cycle one per weight
lane, 2) an input neuron buffer (NBin) which provides 16 activations per cycle through 16 neuron
lanes, and 3) a neuron output buffer (NBout) which accepts 16 partial output activations per cycle.
In the tile’s datapath each activation lane is paired with 16 weight lanes one from each filter. Each
synapse and neuron lane pair feeds a multiplier, and an adder tree per filter lane reduces the 16 per
filter products into a partial sum. In all, the filter lanes produce each a partial sum per cycle, for a

1An FCL can be thought of as a CVL where the input activation array has unit x and y dimensions, and there
are as many filters as output activations, and where the filter dimenions are identical to the input activation array.

5

Under review as a conference paper at ICLR 2017

total of 16 partial output activations per Once a full window is processed, the 16 resulting sums,
are fed through a non-linear activation function, f , to produce the 16 final output activations. The
multiplications and reductions needed per cycle are implemented via 256 multipliers one per weight
lane and sixteen 17-input (16 products plus the partial sum from NBout) adder trees one per filter
lane.

Figure 5a shows an overview of the DaDN chip. There are 16 processing tiles connected via an
interconnect to a shared central eDRAM Neuron Memory (NM). DaDN’s main goal was minimizing
off-chip bandwidth while maximizing on-chip compute utilization. To avoid fetching weights from
off-chip, DaDN uses a 2MB eDRAM Synapse Buffer (SB) for weights per tile for a total of 32MB
eDRAM. All inter-layer activation outputs except for the initial input and the final output are stored
in NM which is connected via a broadcast interconnect to the 16 Input Neuron Buffers (NBin)
buffers. All values are 16-bit fixed-point, hence a 256-bit wide interconnect can broadcast a full
activation brick in one step. Off-chip accesses are needed only for reading: 1) the input image,
2) the weight once per layer, and 3) for writing the final output.

Processing starts by reading from external memory the first layer’s filter weights, and the input
image. The weights are distributed over the SBs and the input is stored into NM. Each cycle an
input activation brick is broadcast to all units. Each units reads 16 weight bricks from its SB and
produces a partial output activation brick which it stores in its NBout. Once computed, the output
activations are stored through NBout to NM and then fed back through the NBins when processing
the next layer. Loading the next set of weights from external memory can be overlapped with the
processing of the current layer as necessary.

3.2 Tartan

As Section 2 explained, TRT processes activations bit-serially multiplying a single activation bit with
a full weight per cycle. Each DaDN tile multiplies 16 16-bit activations with 256 weights each cycle.
To match DaDN’s computation bandwidth, TRT needs to multiply 256 1-bit activations with 256
weights per cycle. Figure 4b shows the TRT tile. It comprises 256 Serial Inner-Product Units (SIPs)
organized in a 16×16 grid. Similar to DaDN each SIP multiplies 16 weights with 16 activations and
reduces these products into a partial output activation. Unlike DaDN, each SIP accepts 16 single-bit
activation inputs. Each SIP has two registers, each a vector of 16 16-bit subregisters: 1) the Serial
Weight Register (SWR), and 2) the Weight Register (WR). These correspond to AR and BR of the
example of Section 2. NBout remains as in DaDN, however, it is distributed along the SIPs as
shown.

Convolutional Layers: Processing starts by reading in parallel 256 weights from the SB as in
DaDN, and loading the 16 per SIP row weights in parallel to all SWRs in the row. Over the next
PL
a cycles, the weights are multiplied by the bits of an input activation brick per column. TRT

exploits weight reuse across 16 windows sending a different input activation brick to each column.
For example, for a CVL with a stride of 4 a TRT tile will processes 16 activation bricks aB(x, y, i),
aB(x+ 4, y, i) through aB(x+ 63, y, i) in parallel a bit per cycle. Assuming that the tile processes
filters fi though fi+15, after PL

a cycles it would produce the following partial output activations:
oB(x/4, y/4, fi), through oB(x/4 + 15, y/4, fi), that is 16 contiguous on the x dimension output
activation bricks. Whereas DaDN would process 16 activations bricks over 16 cycles, TRT processes
them concurrently but bit-serially over PL

a cycles. If PL
a is less than 16, TRT will outperform DaDN

by 16/PL
a , and when PL

a is 16, TRT will match DaDN’s performance.

Fully-Connected Layers: Processing starts by loading bit-serially and in parallel over PL
w cycles,

4K weights into the SWRs. Each SWR per row gets a different set of 16 weights as each subregister
is connected to one out of the 256 wires of the SB output bus for the SIP row. Once the weights
have been loaded, the SWRs are copied to the SWs and multiplication with the input activations
can then proceed bit-serially over PL

a cycles. Assuming that there are enough output activations so
that a different output activation can be assigned to each SIP, the same input activation brick can
be broadcast to all SIP columns. For example, for an FCL a TRT tile will process one activation
brick aB(i) bit-serially to produce 16 output activation bricks oB(i) through oB(i×16) one per SIP
column. Loading the next set of weights can be done in parallel with processing the current set, thus
execution time is constrained by PL

max = max(PL
a , PL

w). Thus, a TRT tile produces 256 partial

6

Under review as a conference paper at ICLR 2017

n
eg

n
eg

x16

1(a0)

1(a15)

16

16

1(a0) MSB

+
+

max

<<1

<<

o_nbout

i_nbout1(a15)

activation MSB

1 0 prec

16

16 16

16

weight 1

16 16

16

weight 1

0

1

0

1

CONV

i_nbout

ca
s.

SWR

WR

Figure 6: TRT’s SIP.

output activations every PL
max cycles, a speedup of 16/Pmax over DaDN since a DaDN tile always

needs 16 cycles to do the same.

For TRT to be fully utilized an FCL must have at least 4K output activations. Some of the networks
studied have a layer with as little as 2K output activations. To avoid underutilization, the SIPs along
each row are cascaded into a daisy-chain, where the output of one can feed into an input of the next
via a multiplexer. This way, the computation of an output activation can be sliced over the SIPs along
the same row. In this case, each SIP processes only a portion of the input activations resulting into
several partial output activations along the SIPs on the same row. Over the next np cycles, where
np the number of slices used, the np partial outputs can be reduced into the final output activation.
The user can chose any number of slices up to 16, so that TRT can be fully utilized even with fully-
connected layers of just 256 outputs. For example, in NeuralTalk Karpathy & Li (2014) the smallest
layers can have 600 outputs or fewer.

Other Layers: TRT like DaDN can process the additional layers needed by the studied networks.
For this purpose the tile includes additional hardware support for max pooling similar to DaDN.
An activation function unit is present at the output of NBout in order to apply nonlinear activations
before the output neurons are written back to NM.

3.3 SIP AND OTHER COMPONENTS

SIP: Bit-Serial Inner-Product Units: Figure 6 shows TRT’s Bit-Serial Inner-Product Unit (SIP).
Each SIP multiplies 16 activations by 16 weights to produce an output activation. Each SIP has
two registers, a Serial Weight Register (SWR) and a Weight Registers (WR), each containing 16
16-bit subregisters. Each SWR subregister is a shift register with a single bit connection to one of
the weight bus wires that is used to read weights bit-serially for FCLs. Each WR subregister can be
parallel loaded from either the weight bus or the corresponding SWR subregister, to process CVLs
or FCLs respectively. Each SIP includes 256 2-input AND gates that multiply the weights in the
WR with the incoming activation bits, and a 16 × 16b adder tree that sums the partial products. A
final adder plus a shifter accumulate the adder tree results into an output register. In each SIP, a
multiplexer at the first input of the adder tree implements the cascade mode supporting slicing the
output activation computation along the SIPs of a single row. To support signed 2’s complement
neurons, the SIP can subtract the weight corresponding to the most significant bit (MSB) from the
partial sum when the MSB is 1. This is done with negation blocks for each weight before the adder
tree. Each SIP also includes a comparator (max) to support max pooling layers.

Dispatcher and Reducers: Figure 5b shows an overview of the full TRT system. As in DaDN there
is a central NM and 16 tiles. A Dispatcher unit is tasked with reading input activations from NM
always performing eDRAM-friendly wide accesses. It transposes each activation and communicates
each a bit a time over the global interconnect. For CVLs the dispatcher has to maintain a pool of
multiple activation bricks, each from different window, which may require fetching multiple rows
from NM. However, since a new set of windows is only needed every PL

a cycles, the dispatcher can
keep up for the layers studied. For FCLs one activation brick is sufficient. A Reducer per title is
tasked with collecting the output activations and writing them to NM. Since output activations take
multiple cycles to produce, there is sufficient bandwidth to sustain all 16 tiles.

7

Under review as a conference paper at ICLR 2017

3.4 PROCESSING SEVERAL BITS AT ONCE

In order to improve TRT’s area and power efficiency, the number of bits processed at once can be
parameterized. In this case, the weights are multiplied with several activation bits at once, and the
multiplication results are partially shifted before they are inserted into their corresponding adder
tree.

In order to load the weights on time, the SWR subregister has to be modified so it can load sev-
eral bits in parallel, and shift that number of positions every cycle. The negation block (for 2’s
complement support) will operate only over the most significant product result.

The chief advantage of such a design is that less SIPs are needed in order to achieve the same
throughput – for example, processing 2 bits at once allows reducing the number of columns from 16
to 8. Although the total number of bus wires is similar, the distance they have to cover is significantly
reduced. Likewise, the total number of adders required stays similar, but they are clustered closer
together.

A drawback of this design is the limitation to precisions that are exact multiples of the number of
bits processed at once.

4 EVALUATION

This section evaluates TRT’s performance, energy and area and explores the trade-off between ac-
curacy and performance comparing to DaDN.

4.1 METHODOLOGY

Numerical Representation Requirements Analysis: The per layer precision profiles are found via
the methodology of Judd et al. Judd et al. (2015). Caffe Jia et al. (2014) was used to measure how
reducing the precision of each FCL affects the network’s overall top-1 prediction accuracy over 5000
images. The network definitions and pre-trained synaptic weights are taken from the Caffe Model
Zoo Jia (2015). Since TRT’s performance for FCLs is bound by the maximum of the weight and
activation precisions, our exploration was limited to the cases where both are the same. The search
procedure is a gradient descent where a given layer’s precision is iteratively decremented one bit at
a time, until the network’s accuracy drops. For weights, the fixed point numbers are set to represent
values between -1 and 1. For activations, the number of fractional bits is fixed to a previously-
determined value known not to hurt accuracy, as per Judd et al. (2015). While both activations and
weights use the same number of bits, their precisions and ranges differ.

Performance, Area and Energy: DaDN, STR and TRT were modeled using the same methodol-
ogy for consistency. A custom cycle-accurate simulator models execution time. Computation was
scheduled as described by Judd et al. (2016a) to maximize energy efficiency for DaDN. The logic
components of the both systems were synthesized with the Synopsys Design Compiler Synopsys
for a TSMC 65nm library to report power and area. The circuit is clocked at 980 MHz. The NBin
and NBout SRAM buffers were modelled using CACTI Muralimanohar & Balasubramonian. The
eDRAM area and energy were modelled with Destiny Poremba et al. (2015).

4.2 RESULTS

Fully-Connected Layer Precisions: Table 1 reports the per layer precisions for the CVLs and
FCLs of the networks studied along with the speedup over DaDN that would be ideally possible.
The discussion in this section focuses solely on FCLs. The precisions that can be used vary from
8 up to 10 bits vs. the 16 bits DaDN uses. The ideal speedup ranges from 63% to 66% with
no accuracy loss. Additional exploration of the precision space may yield even shorter precisions
without sacrificing accuracy. Modest additional improvements are possible with a loss of 1% in
accuracy.

Execution Time: Table 2 reports TRT’s performance and energy efficiency relative to DaDN for the
precision profiles in Table 1 separately for the fully-connected layers, for the convolutional layers,

8

Under review as a conference paper at ICLR 2017

Convolutional layers Fully connected layers
Per Layer Activation Ideal Per Layer Activation and Ideal

Network Precision in Bits Speedup Weight Precision in Bits Speedup
100% Accuracy

AlexNet 9-8-5-5-7 2.38 10-9-9 1.66
VGG S 7-8-9-7-9 2.04 10-9-9 1.64
VGG M 7-7-7-8-7 2.23 10-8-8 1.64
VGG 19 12-12-12-11-12-10-11-11-

13-12-13-13-13-13-13-13
1.35 10-9-9 1.63

99% Accuracy
AlexNet 9-7-4-5-7 2.58 9-8-8 1.85
VGG S 7-8-9-7-9 2.04 9-9-8 1.79
VGG M 6-8-7-7-7 2.34 9-8-8 1.80
VGG 19 9-9-9-8-12-10-10-12-13-

11-12-13-13-13-13-13
1.57 10-9-8 1.63

Table 1: Per layer synapse precision profiles needed to maintain the same accuracy as in the base-
line. Ideal: Potential speedup with TRT over a 16-bit bit-parallel baseline.

Fully Connected Layers Convolutional Layers
Accuracy 100% 99% 100% 99%

Perf Eff Perf Eff Perf Eff Perf Eff
AlexNet 1.61 0.92 1.80 1.04 2.32 1.43 2.52 1.55
VGG S 1.61 0.92 1.76 1.01 1.97 1.21 1.97 1.21
VGG M 1.61 0.93 1.77 1.02 2.18 1.34 2.29 1.40
VGG 19 1.60 0.92 1.61 0.93 1.35 0.83 1.56 0.96
geomean 1.61 0.92 1.73 1.00 1.91 1.18 2.05 1.26

Table 2: Execution time and energy efficiency improvement with TRT compared to DaDN.

and the whole network. For the 100% profile, where no accuracy is lost, TRT yields, on average, a
speedup of 1.61× over DaDN on FCLs. With the 99% profile, it improves to 1.73×.

There are two main reasons the ideal speedup can’t be reached in practice: dispatch overhead and
underutilization. Dispatch overhead occurs on the initial PL

w cycles of execution, where the serial
weight loading process prevents any useful products to be performed. In practice, this overhead
is less than 2% for any given network, although it can be as high as 6% for the smallest layers.
Underutilization can happen when the number of output neurons is not a power of two, or lower than
256. The last classifier layers of networks designed towards recognition of ImageNet (Russakovsky
et al. (2014)) categories all provide 1000 output neurons, which leads to 2.3% of the SIPs being idle.

We have also performed an evaluation of NeuralTalk LSTM Karpathy & Li (2014) which uses long
short-term memory to automatically generate image captions. Precision can be reduced down to 11
bits withouth affecting the accuracy of the predictions (measured as the BLEU score when compared
to the ground truth) resulting in a ideal performance improvement of 1.45× translating into a 1.38×
speedup with TRT .

Energy Efficiency: This section compares the energy efficiency or simply efficiency of TRT and
DaDN. Energy Efficiency is the inverse of the relative energy consumption of the two designs. The
average efficiency improvement with TRT across all networks and layers for the 100% profile is
1.17×. In the FCLs, TRT is not as efficient as DaDN, however, the energy efficiency for CVLs
more than compensates when whole networks are considered except for VGG 19. Regardless, per-
formance would not scale linearly if DaDN was to include more tiles in an attempt to match TRT’s
performance: under-utilization for most layers in these networks would severely reduce any perfor-
mance improvements delivered via additional tiles under DaDN. Overall, efficiency primarily comes
from the reduction in effective computation following the use of reduced precision arithmetic for the
inner product operations. Furthermore, the amount of data that has to be transmitted from the SB
and the traffic between the central eDRAM and the SIPs is decreased proportionally to the chosen

9

Under review as a conference paper at ICLR 2017

TRT area (mm2) TRT 2-bit area (mm2) DaDN area (mm2)

Inner-Product Units 57.27 (47.71%) 37.66 (37.50%) 17.85 (22.20%)
Synapse Buffer 48.11 (40.08%) 48.11 (47.90%) 48.11 (59.83%)

Input Neuron Buffer 3.66 (3.05%) 3.66 (3.64%) 3.66 (4.55%)
Output Neuron Buffer 3.66 (3.05%) 3.66 (3.64%) 3.66 (4.55%)

Neuron Memory 7.13 (5.94%) 7.13 (7.10%) 7.13 (8.87%)
Dispatcher 0.21 (0.17%) 0.21 (0.21%) -

Total 120.04 (100%) 100.43 (100%) 80.41 (100%)
Normalized Total 1.49× 1.25× 1.00×

Table 3: Area Breakdown for TRT and DaDN

Fully Connected Layers Convolutional Layers
vs. DaDN vs. 1b TRT vs. DaDN vs. 1b TRT

AlexNet +58% -2.06% +208% -11.71%
VGG S +59% -1.25% +76% -12.09%
VGG M +63% +1.12% +91% -13.78%
VGG 19 +59% -0.97% +29% -4.11%
geomean +60% -0.78% +73% -10.36%

Table 4: Relative performance of 2-bit TRT variation compared to DaDN and the 1-bit TRT

precision. When the per layer precisions are reduced adequately TRT becomes more efficient than
DaDN.

Area Overhead: Table 3 reports the area breakdown of TRT and DaDN. Over the full chip, TRT
needs 1.49× the area compared to DaDN while delivering on average a 1.90× improvement in
speed. Generally, performance would scale sublinearly with area for DaDN due to underutilization.
The 2-bit variant, which has a lower area overhead, is described in detail in the next section.

4.3 TWO-BIT AT ONCE PERFORMANCE EVALUATION

We evaluate the performance for a multi-bit design as described in section 3.4, where 2 bits are
processed every cycle in as half as many total SIPs. The precisions used are the same as indicated
in Table 1 for 100% accuracy, rounded up to the next multiple of two. The results are shown in
Table 4. The 2-bit TRT always improves performance compared to DaDN as the “vs. DaDN”
columns show. Compared to the 1-bit TRT performance is slightly lower however given that the
area of the 2-bit TRT is much lower, this can be a good trade-off. Overall, there are two forces
at work that shape performance relative to the 1-bit TRT . There is performance potential lost due
to rounding all precisions to an even number, and there is performance benefit by requiring less
parallelism. The time needed to serially load the first bundle of weights is also reduced. In VGG 19
the performance benefit due to the lower parallelism requirement outweights the performance loss
due to precision rounding. In all other cases, the reverse is true.

A hardware synthesis and layout of both DaDN and TRT’s 2-bit variant using TSMC 65nm typical
case libraries shows that the total area overhead can be as low as 24.9%, with an improved energy
efficiency in fully connected layers of 1.24× on average.

5 RELATED WORK AND LIMITATIONS OF THIS WORK

The recent success of Deep Learning has led to several proposals for hardware acceleration of DNNs.
This section reviews some of these recent efforts. However, specialized hardware designs for neural
networks is a field with a relatively long history. Relevant to TRT , bit-serial processing hardware for
neural networks has been proposed several decades ago, e.g., Svensson & Nordstrom (1990); Murray
et al. (1988). While the performance of these designs scales with precision it would be lower than
that of an equivalently configured bit-parallel engine. For example, Svensson & Nordstrom (1990)
uses an interesting bit-serial multiplier which requires O(4 × p) cycles, where p the precision in
bits. Furthermore, as semiconductor technology has progressed the number of resources that can be

10

Under review as a conference paper at ICLR 2017

put on chip and the trade offs (e.g., relative speed of memory vs. transistors vs. wires) are today
vastly different facilitating different designs. However, truly bit-serial processing such as that used
in the aforementioned proposals needs to be revisited with today’s technology constraints due to its
potentially high compute density (compute bandwidth delivered per area).

In general, hardware acceleration for DNNs has recently progressed in two directions: 1) consider-
ing more general purpose accelerators that can support additional machine learing algorithms, and
2) considering further improvements primarily for convolutional neural networks and the two most
dominant in terms of execution time layer types: convolutional and fully-connected. In the first
category there are accelerators such as Cambricon Liu et al. (2016) and Cambricon-X Zhang et al.
(2016). While targeting support for more machine learning algorithms is desirable, work on further
optimizing performance for specific algorithms such as TRT is valuable and needs to be pursued as
it will affect such general purpose accelerators.

TRT is closely related to Stripes Judd et al. (2016c;a) whose execution time scales with precision
but only for CVLs. STR does not improve performance for FCLs. TRT improves upon STR by
enabling: 1) performance improvements for FCLs, and 2) slicing the activation computation across
multiple SIPs thus preventing underutilization for layers with fewer than 4K outputs. Pragmatic uses
a similar in spirit organization to STR but its performance on CVLs depends only on the number of
activation bits that are 1 Albericio et al. (2016b). It should be possible to apply the TRT extensions
to Pragmatic, however, performance in FCLs will still be dictated by weight precision. The area and
energy overheads would need to be amortized by a commensurate performance improvement.

The Efficient Inference Engine (EIE) uses synapse pruning, weight compression, zero activation
elimination, and network retraining to drastically reduce the amount of computation and data com-
munication when processing fully-connected layers Han et al. (2016). An appropriately configured
EIE will outperform TRT for FCLs, provided that the network is pruned and retrained. However,
the two approaches attack a different component of FCL processing and there should be synergy be-
tween them. Specifically, EIE currently does not exploit the per layer precision variability of DNNs
and relies on retraining the network. It would be interesting to study how EIE would benefit from
a TRT-like compute engine where EIE’s data compression and pruning is used to create vectors of
weights and activations to be processed in parallel. EIE uses single-lane units whereas TRT uses a
coarser-grain lane arrangement and thus would be prone to more imbalance. A middle ground may
be able to offer some performance improvement while compensating for cross-lane imbalance.

Eyeriss uses a systolic array like organization and gates off computations for zero activations Chen,
Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne (2016) and targets primarily high-
energy efficiency. An actual prototype has been built and is in full operation. Cnvlutin is a SIMD
accelerator that skips on-the-fly ineffectual activations such as those that are zero or close to zero Al-
bericio et al. (2016a). Minerva is a DNN hardware generator which also takes advantage of zero
activations and that targets high-energy efficiency Reagen et al. (2016). Layer fusion can further
reduce off-chip communication and create additional parallelism Alwani et al. (2016). As multiple
layers are processed concurrently, a straightforward combination with TRT would use the maximum
of the precisions when layers are fused.

Google’s Tensor Processing Unit uses quantization to represent values using 8 bits Jouppi (2016) to
support TensorFlow Abadi et al. (2015). As Table 1 shows, some layers can use lower than 8 bits of
precision which suggests that even with quantization it may be possible to use fewer levels and to
potentially benefit from an engine such as TRT .

Limitations: As in DaDN this work assumed that each layer fits on-chip. However, as networks
evolve it is likely that they will increase in size thus requiring multiple TRT nodes as was suggested
in DaDN. However, some newer networks tend to use more but smaller layers. Regardless, it would
be desirable to reduce the area cost of TRT most of which is due to the eDRAM buffers. We have not
explored this possibility in this work. Proteus Judd et al. (2016b) is directly compatible with TRT
and can reduce memory footprint by about 60% for both convolutional and fully-connected layers.
Ideally, compression, quantization and pruning similar in spirit to EIE Han et al. (2016) would be
used to reduce computation, communication and footprint. General memory compresion Mittal &
Vetter (2016) techniques offer additional opportunities for reducing footprint and communication.

We evaluated TRT only on CNNs for image classification. Other network architectures are impor-
tant and the layer configurations and their relative importance varies. TRT enables performance

11

Under review as a conference paper at ICLR 2017

improvements for two of the most dominant layer types. We have also provided some preliminary
evidence that TRT works well for NeuralTalk LSTM Karpathy & Li (2014). Moreover, by enabling
output activation computation slicing it can accommodate relatively small layers as well.

Applying some of the concepts that underlie the TRT design to other more general purpose acceler-
ators such as Cambricon Liu et al. (2016) or graphics processors would certainly be more preferable
than a dedicated accelerator in most application scenarios. However, these techniques are best first
investigated into specific designs and then can be generalized appropriately.

We have evaluated TRT only for inference only. Using an engine whose performance scales with
precision would provide another degree of freedom for network training as well. However, TRT
needs to be modified accordingly to support all the operations necessary during training and the
training algorithms need to be modified to take advantage of precision adjustments.

This section commented only on related work on digital hardware accelerators for DNNs. Advances
at the algorithmic level would impact TRT as well or may even render it obsolete. For example, work
on using binary weights Courbariaux et al. (2015) would obviate the need for an accelerator whose
performance scales with weight precision. Investigating TRT’s interaction with other network types
and architectures and other machine learning algorithms is left for future work.

6 CONCLUSION

This work presented Tartan an accelerator for inference with Deep Learning Networks whose perfor-
mance scales inversely linearly with the number of bits used to represent values in fully-connected
and convolutional layers. TRT also enables on-the-fly accuracy vs. performance and energy ef-
ficiency trade offs and its benefits were demonstrated over a set of popular image classification
networks. The new key ideas in TRT are: 1) Supporting both the bit-parallel and the bit-serial
loading of weights into processing units to facilitate the processing of either convolutional or fully-
connected layers, and 2) cascading the adder trees of various subunits (SIPs) to enable slicing the
output computation thus reducing or eliminating cross-lane imbalance for relatively small layers.

TRT opens up a new direction for research in inference and training by enabling precision adjust-
ments to translate into performance and energy savings. These precisions adjustments can be done
statically prior to execution or dynamically during execution. While we demonstrated TRT for in-
ference only, we believe that TRT , especially if combined with Pragmatic, opens up a new direction
for research in training as well. For systems level research and development, TRT with its ability
to trade off accuracy for performance and energy efficiency enables a new degree of adaptivity for
operating systems and applications.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and An-
dreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network computing. In 2016
IEEE/ACM International Conference on Computer Architecture (ISCA), 2016a.

Jorge Albericio, Patrick Judd, Alberto Delmas Lascorz, Sayeh Sharify, and Andreas Moshovos.
Bit-pragmatic deep neural network computing. Arxiv, arXiv:1610.06920 [cs.LG], 2016b.

Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer cnn accelerators. In
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

12

http://tensorflow.org/

Under review as a conference paper at ICLR 2017

T Chen, Z Du, N Sun, J Wang, C Wu, Y Chen, and O Temam. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th international
conference on Architectural support for programming languages and operating systems, 2014a.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium on, pp. 609–
622, Dec 2014b. doi: 10.1109/MICRO.2014.58.

Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. In IEEE International
Solid-State Circuits Conference, ISSCC 2016, Digest of Technical Papers, pp. 262–263, 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems, pp. 3123–3131, 2015.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger.
Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pp. 365–376, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0472-6. doi: 10.1145/2000064.2000108.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: efficient inference engine on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June
18-22, 2016, pp. 243–254, 2016.

Yangqing Jia. Caffe model zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

Norman Jouppi. Google supercharges machine learning tasks with TPU cus-
tom chip. https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-custom-chip.
html, 2016. [Online; accessed 3-Nov-2016].

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, Raquel
Urtasun, and Andreas Moshovos. Reduced-Precision Strategies for Bounded Memory in Deep
Neural Nets, arXiv:1511.05236v4 [cs.LG] . arXiv.org, 2015.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, and Andreas Moshovos. Stripes:
Bit-serial Deep Neural Network Computing . In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-49, 2016a.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, Natalie Enright Jerger, and
Andreas Moshovos. Proteus: Exploiting numerical precision variability in deep neural networks.
In Proceedings of the 2016 International Conference on Supercomputing, ICS ’16, pp. 23:1–
23:12, New York, NY, USA, 2016b. ACM. ISBN 978-1-4503-4361-9. doi: 10.1145/2925426.
2926294. URL http://doi.acm.org/10.1145/2925426.2926294.

Patrick Judd, Jorge Albericio, and Andreas Moshovos. Stripes: Bit-serial Deep Neural Network
Computing . Computer Architecture Letters, 2016c.

Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating image descrip-
tions. CoRR, abs/1412.2306, 2014. URL http://arxiv.org/abs/1412.2306.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pp. 1106–1114, 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.

13

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
http://doi.acm.org/10.1145/2925426.2926294
http://arxiv.org/abs/1412.2306
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Under review as a conference paper at ICLR 2017

Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen.
Cambricon: An instruction set architecture for neural networks. In 2016 IEEE/ACM International
Conference on Computer Architecture (ISCA), 2016.

Sparsh Mittal and Jeffrey S. Vetter. A survey of architectural approaches for data compression in
cache and main memory systems. IEEE Trans. Parallel Distrib. Syst., 27(5):1524–1536, May
2016. ISSN 1045-9219. doi: 10.1109/TPDS.2015.2435788. URL http://dx.doi.org/
10.1109/TPDS.2015.2435788.

Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool to understand large caches.

Alan F Murray, Anthony VW Smith, and Zoe F Butler. Bit-serial neural networks. In Neural
Information Processing Systems, pp. 573–583, 1988.

M. Poremba, S. Mittal, Dong Li, J.S. Vetter, and Yuan Xie. Destiny: A tool for modeling emerging
3d nvm and edram caches. In Design, Automation Test in Europe Conference Exhibition (DATE),
2015, pp. 1543–1546, March 2015.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, David Brooks, undefined, undefined, undefined,
and undefined. Minerva: Enabling low-power, highly-accurate deep neural network accelerators.
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 00
(undefined):267–278, 2016. ISSN 1063-6897. doi: doi.ieeecomputersociety.org/10.1109/ISCA.
2016.32.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. arXiv:1409.0575 [cs], September 2014.
arXiv: 1409.0575.

Bertil Svensson and T Nordstrom. Execution of neural network algorithms on an array of bit-
serial processors. In Pattern Recognition, 1990. Proceedings., 10th International Conference on,
volume 2, pp. 501–505. IEEE, 1990.

Synopsys. Design Compiler. http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages.

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and
Yunji Chen. Cambricon-x: An accelerator for sparse neural networks. In Proceedings of the 49th
International Symposium on Microarchitecture, 2016.

14

http://dx.doi.org/10.1109/TPDS.2015.2435788
http://dx.doi.org/10.1109/TPDS.2015.2435788

	Introduction
	Tartan: A Simplified Example
	Conventional Bit-Parallel Processing
	Tartan's Approach

	Tartan Architecture
	Baseline System: DaDianNao
	Tartan
	SIP and Other Components
	Processing Several Bits at Once

	Evaluation
	Methodology
	Results
	Two-Bit at Once Performance Evaluation

	Related Work and Limitations of this Work
	Conclusion

