
Workshop track - ICLR 2018

INTRIGUING PROPERTIES OF RANDOMLY WEIGHTED
NETWORKS: GENERALIZING WHILE LEARNING NEXT
TO NOTHING

Amir Rosenfeld, John K. Tsotsos
Department of Electrical Engineering and Computer Science
York University, Toronto, ON, Canada
amir@eecs.yorku.ca,tsotsos@cse.yorku.ca

ABSTRACT

Training deep neural networks results in strong learned representations that show
good generalization capabilities. In most cases, training involves iterative modi-
fication of all weights inside the network via back-propagation. In this paper, we
propose to take an extreme approach and fix almost all weights of a deep convo-
lutional neural network in their randomly initialized values, allowing only a small
portion to be learned. As our experiments show, this often results in performance
which is on par with the performance of learning all weights. The implications
of this intriguing property or deep neural networks are discussed and we suggest
ways to harness it to create more robust representations.

1 INTRODUCTION

Deep neural networks create powerful representations by successively transforming their inputs via
multiple layers of computation. Much of their expressive power is attributed to their depth; theory
shows that the complexity of the computed function grows exponentially with the depth of the net
(Raghu et al. (2016)). This renders deep networks more expressive than their shallower counterparts
with the same number of parameters. Moreover, the data representation is more efficient from an
information-theoretic point of view (Shwartz-Ziv & Tishby (2017)). This has led to increasingly
deeper network designs, some over a thousand layers deep (He et al. (2016)).

Current optimization methods (e.g., SGD) update all weights of the network to minimize some
loss function. Could be it that not all weights need updating, or are equally useful? Modern day
architectures (Krizhevsky et al. (2012); Simonyan & Zisserman (2014); He et al. (2016); Zagoruyko
& Komodakis (2016)) contain millions to billions of parameters (Shazeer et al. (2017)) - often
exceeding the number of training samples (typically ranging from tens of thousands (Krizhevsky &
Hinton (2009)) to millions (Russakovsky et al. (2015)). This suggests that these networks could be
prone to over-fitting, or are otherwise highly-overparameterized and could be much more compact.
It also may explain why current methods in machine learning tend to be so data-hungry.

Instead of training all network weights, we suggest the almost extreme opposite: network weights
are initialized randomly and only a certain fraction are updated by the optimization process. While
this has a negative effect on network performance, the magnitude of this effect is surprisingly small
with respect to the number of parameters not learned.

This effect holds for a range of architectures, conditions, and datasets. To the best of our knowledge,
while others have analytically analyzed properties of randomly weighted networks, we are the first
to explore the effects of keeping most of the weights at their randomly initialized values in multiple
layers. We claim that successfully training mostly-random networks has several implications for the
current understanding of deep learning, specifically: (1) Popular network architectures are grossly
over-parameterized, and (2) Current attempts at interpreting emergent representations inside neural
networks may be less meaningful than thought.

1



Workshop track - ICLR 2018

2 RELATED WORK

Random Features: there is a long line of research revolving around the use of random features in
machine learning. Extreme Learning show the utility of keeping some layer of a neural net fixed -
but this is usually done only for one or two layers, and not within layers (Huang et al. (2015)). Rudi
& Rosasco (2017) has shown how picking random features has merits over matching kernels to the
data. have analytically shown useful properties of random nets with Gaussian weights Giryes et al.
(2015). Net Compression/Filter Pruning: many works attempt to compress the net after learning
(Li et al. (2016); Han et al. (2015)). Network Interpretability: recent works, such as that of Bau
et al. (2017) have attempted to show how emergent representations relate to “interpretable” concepts,
and some have tried to supervise the nets to become more interpretable (Dong et al. (2017)). As we
keep most features random, we argue that (nearly) similarly powerful features can emerge without
necessarily being interpretable.

3 METHOD & EXPERIMENTS

We begin with some definitions: let W be the set of all parameters of a network N . All of our
experiments can be framed as splittingW into two disjoint sets: W = wf ∪wl. In each experiment
we fix the weights of wf and allow wl to be updated by the optimizer. wf are either randomly
initialized or set to zero. Let F = {F1 . . . Fn} be the filters of the conv. layers of N (including
shortcut-layers for res-nets). wl defines a subset fi ⊆ Fi for each i ∈ {1 . . . n}. We test how well
the network converges to a solution for various configurations of wl.

EXPERIMENTS

We experiment with the CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton (2009)) and
several architectures: wide-residual networks, densely connected resnets, AlexNet, and VGG-19
(resp. Zagoruyko & Komodakis (2016); Huang et al. (2016); Krizhevsky et al. (2012); Simonyan
& Zisserman (2014)). For baselines, we modify a reference implementation 1. To evaluate many
different configurations, we run most of our experiments for 10 epochs, with the default hyper-
parameters. For a few experiments we perform a full run. We test the following configurations:

Fractional Layers: Setting the fraction pi = fi
Fi

of filters of all layers L of N , except the fully-
connected (classification) layer. We do this for the following fractions: .07, .08, .09, .1, .4, .7 (less
than 0.07 will mean no filters for networks where F0 = 16 e.g., in wide-resnets). Integer number
of filters: learning a fixed integer ki ∈ {1, 5, 10} of filters per layer. We show that learning a single
filter in each layer leads to non-trivial performance for some architectures. Single Layers: freezing
all weights except those of a single block of layers. This is only for the wide and dense resnets. The
blocks are selected as wl ∈ {conv1block1, block2, block3, fc}where conv1 is the first convolutional
layer, blocki is one of 3 blocks of a wide-resnet with 28 layers & widen factor of 4 or of a densenet
with a depth of 100 and a growth-rate of 12. Parameters of all BN layers are always learned.

Fig. 1 shows the top-1 accuracy after 10 training epochs. Shaded areas specify integer number of
filters. The best performer is densenets (orange). AlexNet (blue) failed to learn for non-trivial frac-
tions or for only a few filters per layer. Note the gap between the fixed weights and those zeroed-out
(faded). Zeroing out the weights effectively reduces the number of filters from the network. Using
70% of filters while zeroing the rest out achieves the same performance for densenets. Interestingly,
learning only a single filter per layer can result in a non-trivial accuracy. In fact, zeroing out all
non-learned weight, resulting in a net with a single-filter per layer, still is able to do much above
chance, around 45% on CIFAR-10 with resnets.

This is better seen in Fig 2 which plots the performance obtained vs. the total number of parameters
on a logarithmic scale. Even when zeroing out all non-learned parameters, wide-resnet obtains
decent performance with less that 100K parameters.

Finally, we learn only subsets of layers out of the layers specified and report the best performance
for each block in Table 1 (b). Notably, for cifar-100 it proved much better to learn an internal block’s
parameters than those of the fully-connected layer.

1https://github.com/bearpaw/pytorch-classification

2

https://github.com/bearpaw/pytorch-classification


Workshop track - ICLR 2018

0.07 0.08 0.09 0.1 0.4 0.7 1.0 5.0 10.0
Fraction Conv. Params

0

20

40

%
 A

cc
ur

ac
y

dataset = cifar100

0.07 0.08 0.09 0.1 0.4 0.7 1.0 5.0 10.0
Fraction Conv. Params

20

40

60

80

%
 A

cc
ur

ac
y

dataset = cifar10
arch

alexnet_partial_zero
alexnet_partial_fix
vgg19_bn_partial_zero
vgg19_bn_partial_fix
wrn_partial_zero
wrn_partial_fix
densenet_partial_zero
densenet_partial_fix

Figure 1: Training only a few parameters: deep networks can generalize surprisingly well when only
a small fraction of their parameters is learned. Unshaded area specifies fraction of filters learned for
at each conv. layer. Shaded area specifies an integer number of filters learned. Faded lines are for
performance where all weights are set to 0 except the learned fraction.

Method Fraction No. Learned Params ×106 Perf Perf†
wide-resnets 0.1 3.66 94.12 91.53
wide-resnets 0.4 14.6 95.75 95.49

densenets 0.1 0.09 88.73 82.11
densenets 0.4 0.3 93.33 92.46

(a)

Block Perf (C10/C100)

conv1 64.7/15.1
block1 73/22.9
block2 76.3/28
block3 76.3/32

fc 68/33

(b)

Table 1: (a) Performance vs fraction of parameters learned on CIFAR-10 (full training, 200/300
epochs). † means performance when wf (fixed parameters) are all set to zero. (b) learning only a
single block (only 10 epochs). A gray line signifies densenet got better performance for this block
on both datasets.

4 5 6 7
log num. active weights

20

40

60

80

%
 A

cc
ur

ac
y

cifar10

densenet_partial
wrn_partial
vgg19_bn_partial
alexnet_partial
vgg19_partial

4 5 6 7
log num. active weights

0

10

20

30

40

50

%
 A

cc
ur

ac
y

cifar100

densenet_partial
wrn_partial
vgg19_bn_partial
alexnet_partial
vgg19_partial

Figure 2: Performance vs. absolute number of
parameters (log scale). Much of the performance
can be preserved by learning a relatively smaller
no. of parameters, and even zeroing out the rest
(thatched circles). densenet (blue) is very efficient
in this sense.

Full Runs We also ran full training sessions
for wide-resnet and densenet (200,300 epochs
respectively) with a limited no. of parame-
ters on CIFAR-10. The results are summa-
rized in Table 1. Specifically, wide resnets,
when 60% of the filters are arbitrarily zeroed
out, achieve almost the baseline performance of
96.2%. Please refer to Table 1 (a).

4 DISCUSSION

We have demonstrated that learning only a
small subset of the parameters of the network
or a subset of the layers leads to an unexpect-
edly small decrease in performance (w.r.t full
learning) - even though the remaining parame-
ters are either fixed or zeroed out. This is con-
trary to common practice of training all network
weights. We hypothesize this shows how over-
parameterized current models are, even those
with a relatively small number of parameters,
such as densenets. Three simple applications of this phenomena are (1) cheap ensemble models, all
with the same “backbone” fixed network, (2) learning multiple representations with a small number
of parameters added to each new task and (3) transfer-learning by learning a middle layer vs the final
classification layer.

3



Workshop track - ICLR 2018

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network Dissection:
Quantifying Interpretability of Deep Visual Representations. arXiv preprint arXiv:1704.05796,
2017. 2

Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. Towards interpretable deep neural networks by
leveraging adversarial examples. arXiv preprint arXiv:1708.05493, 2017. 2

Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep Neural Networks with Random Gaus-
sian Weights: A Universal Classification Strategy? arXiv preprint arXiv:1504.08291, 2015. 2

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.
2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016. 1

Gao Huang, Guang-Bin Huang, Shiji Song, and Keyou You. Trends in extreme learning machines:
A review. Neural Networks, 61:32–48, 2015. 2

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993, 2016. 3

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.
1, 3

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012. 1, 3

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016. 2

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016. 1

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
In Advances in Neural Information Processing Systems, pp. 3218–3228, 2017. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015. 1

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017. 1

Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep Neural Networks via Infor-
mation. arXiv preprint arXiv:1703.00810, 2017. 1

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 3

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. CoRR, abs/1605.07146, 2016.
1, 3

4


