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ABSTRACT

Many kinds of variable-sized data we would like to model contain an internal
hierarchical structure in the form of a tree, including source code, formal logical
statements, and natural language sentences with parse trees. For such data it is
natural to consider a model with matching computational structure. In this work,
we introduce a variational autoencoder-based generative model for tree-structured
data. We evaluate our model on a synthetic dataset, and a dataset with applications
to automated theorem proving. By learning a latent representation over trees, our
model can achieve similar test log likelihood to a standard autoregressive decoder,
but with the number of sequentially dependent computations proportional to the
depth of the tree instead of the number of nodes in the tree.

1 INTRODUCTION

A significant amount of recent and ongoing work has explored the use of neural networks for
modeling and generating various kinds of data. Newer techniques like the variational autoen-
coder (Rezende et al., 2014; Kingma & Welling, 2013) and generative-adversarial networks (Good-
fellow et al., 2014) enable training of graphical models where the likelihood function is a com-
plicated neural network which normally makes it infeasible to specify and optimize the marginal
distribution analytically. Another family of techniques involves choosing an ordering of the dimen-
sions of the data (which is particularly natural for sequences such as sentences) and training a neural
network to estimate the distribution over the value of the next dimension given all the dimensions
we have observed so far.

These techniques have led to significant advances in modeling images, text, sounds, and other kinds
of complicated data. Language modeling with sequential neural models have halved perplexity
(roughly, the error at predicting each word) compared to n-gram methods (Jozefowicz et al., 2016).
Neural machine translation using sequence-to-sequence methods have closed half of the gap in qual-
ity between prior machine translation efforts and human translation (Wu et al., 2016). Generative
image models have similarly progressed such that they can generate samples largely indistinguish-
able from the original data, at least for relatively small and simple images (Gregor et al., 2015; 2016;
Kingma et al., 2016; Salimans et al., 2016; van den Oord et al., 2016), although the quality of the
model here is harder to measure in an automated way (Theis et al., 2015).

However, many kinds of data we might wish to model are naturally structured as a tree. Computer
program code follows a rigorous grammar, and the usual first step in processing it involves parsing
it into an abstract syntax tree, which simultaneously discards aspects of the code irrelevant to the
semantics such as whitespace and extraneous parentheses, and makes it more convenient to further
interpret, analyze, or manipulate. Statements made in formal logic similarly have a hierarchical
structure, which determines arguments to predicates and functions, the scoping of variables and
quantifiers, and the application of logical connectives. Natural language sentences also contain a
latent syntactic structure which is necessary for determining the meaning of the sentence, although
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most sentences admit many possible parses due to the multiple meanings of each word and ambigu-
ous groupings.

In this paper, we explore how we can adapt the variational autoencoder to modeling tree-structured
data. In general, it is possible to treat the tree as a sequence and then use a sequential model. How-
ever, a model which follows the structure of the tree may better capture long-range dependencies:
recurrent models sometimes have trouble learning to remember and use information from the distant
past when it is relevant to the current context, but these distant parts of the input may be close to
each other within the tree structure.

In our proposed approach, we decide the identity of each node in the tree by using a top-down
recursive neural network, causing the distributed representation which decides the identity of each
node in the tree to be computed as a function of the identity and relative location of its parent nodes.

By using the architecture of the variational autoencoder (Rezende et al., 2014; Kingma & Welling,
2013), our model can learn to capture various features of the trees within continuous latent variables,
which are added as further inputs into the top-down recursive neural network and conditions the
overall generation process. These latent variables allow us to generate different parts of the tree
in parallel; specifically, given a parent node n and its children c1 and c2, the generation of (the
distribution placed over different values of) c1 and its descendants is independent of the generation of
c2 and its descendants (and vice versa), once we condition upon the latent variables. By structuring
the model this way, while our model generates one dimension (the identity of each node within the
tree) of the data a time, it is not autoregressive as the probability distribution for one dimension is
not a function of the previously generated nodes.

We evaluate our model on a variety of datasets, some synthetic and some real. Our experimental
results show that it achieves comparable test set log likelihood to autoregressive sequential models
which do not use any latent variables, while offering the following properties:

• For balanced trees, generation requires O(log n) rather than O(n) timesteps required for a
sequential model because the children of each node can be generated in parallel.
• It is straightforward to resample a subtree while keeping the other parts of the tree intact.
• The generated trees are syntactically valid by construction.
• The model produces a latent representation for each tree, which may prove useful in other

applications.

2 BACKGROUND AND RELATED WORK

2.1 TREE-STRUCTURED MODELS

Recursive neural nets, which processes a tree in a bottom-up way, have been popular in natural lan-
guage processing for a variety of tasks, such as sentiment analysis (Socher et al., 2013), question
answering (Iyyer et al., 2014), and semantic relation extraction (Socher et al., 2012). Starting from
the leaves of the tree, the model computes a representation for each node by combining the represen-
tations of its child nodes. In the case of natural language processing, each tree typically represents
one sentence, with the leaf nodes corresponding to the words in the sentence and the structure of the
internal nodes determined by the constituency parse tree for the sentence.

If we restrict ourselves to binary trees (given that it is possible to binarize arbitrary trees in a lossless
way), the we compute the k-dimensional representation rn ∈ Rk for a node n by combining the
representations of nodes nleft and nright:

rn = f(Wrnleft + V rnright)

where W and V are square matrices (in Rd×d) and f is a nonlinear activation function, applied
elementwise. Leaf nodes are represented by embedding the content of the leaf node into a d-
dimensional vector, by specifying a lookup table from words to embedding vectors for instance.

Variations and extensions of this approach specify more complicated relationships between rn and
the childen’s representations rnleft and rnright , or allow internal nodes to have variable numbers of chil-
dren. For example, Tai et al. (2015) extend LSTMs to tree-structured models by dividing the vector
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representation of each node into a memory cell and a hidden state and updating them accordingly
with gating.

Neural network models which generate or explore a tree top-down have received less attention, but
have been applied to generation and parsing tasks. Zhang et al. (2015) generate natural language
sentences along with their dependency parses simultaneously. In their specification of a depen-
dency parse tree, each word is connected to one parent word and has a variable number of left and
right children (a depth-first in-order traversal on this tree recovers the original sentence). Their
model generates these trees by conditioning the probability of generating each word on its ancestor
words and the previously-generated sibling words using various LSTMs. Dyer et al. (2016) generate
sentences jointly with a corresponding constituency parse tree. They use a shift-reduce parser ar-
chitecture where shift is replaced with word-generation action, and so the sentence and the tree can
be generated by performing a sequence of actions corresponding to a depth-first pre-order traversal
of the tree. Each action in the sequence is predicted based upon the tree constructed so far, the
words (the tree’s terminal nodes) generated so far, and the previous actions performed. Dong &
Lapata (2016) generate tree-structured logical forms using LSTMs, where the LSTM state branches
along with the tree’s structure; they focus on generating these logical forms when conditioned upon
a natural-language description of it.

2.2 VARIATIONAL AUTOENCODERS

The variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014), or VAE for short, pro-
vides a way to train a generative model with a fixed prior p(z) and a neural network used to specify
pθ(x | z). Typically, the prior p(z) is taken to be a standard multivariate normal distribution (mean
at 0) with diagonal unit covariance. Naively, in order to optimize log p(x), we need to compute the
following integral:

log pθ(x) = log

∫
z

pθ(x | z)p(z)dz

which can be tractable when pθ(x | z) is simple but not when we want to use a neural network to
represent it. Inference of the posterior p(z | x) also becomes intractable.

Instead, we learn a second neural network qφ(z | x) to approximate the true posterior, and use the
following variational bound:

log p(x) ≥ −DKL(qφ(z | x) ‖ p(z)) + Eqφ(z|x)[log pθ(x | z)]

where DKL represents the Kullback-Leibler divergence between the two distributions. Given that
we represent qφ(z | x) with a neural network which outputs the mean and diagonal covariance
for a normal distribution, we can analytically compute the KL divergence term and then use the
reparameterization trick:

Eqφ(z|x)[log pθ(x | z)] = Ep(ε)[log pθ(x | z = µ+ σ · ε)]

where p(ε) is a standard multivariate normal distribution, and µ and σ are outputs of the neural
network implementing qφ(z | x).
These two techniques combined allow us to compute stochastic gradients (by sampling ε, treating
it as constant, and backpropagating through the model) and use standard neural network training
techniques (such as SGD, Adagrad, and Adam) to train the model.

Another interpretation of the variational autoencoder follows from a modification of the regular
autoencoder, where we would like to learn a mapping x → z from the data to a more compact
representation z, and an inverse mapping z → x. In the VAE, we replace the deterministic x → z
with a probabilistic q(z | x), and as a form of regularization, we ensure that this distribution is close
to a prior p(z).

3 TREE-STRUCTURED VARIATIONAL AUTOENCODER

In this section, we describe how we combine the variational autoencoder and recursive neural net-
works in order to build our model.
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Figure 1: An example tree for 1 + 2 − 3. The binary operators are represented with non-terminal
nodes, with two required children “left” and “right”. The numbers are terminal nodes.

3.1 TREES

We consider arbitrarily-branching typed trees where each node contains a type, and either child
nodes or a terminal value. Each type may be a terminal type or a non-terminal type; nodes of
terminal type contain a value, and nodes of non-terminal type have (zero or more) child nodes.

A non-terminal type T comes with a specification for how many children a node NT of type T
should have, and the types permissible for each child location. We distinguish three types of child
nodes:

• NT may have some number of singular child nodes. For the ith singular child, we
specify SINGULARCHILD(T, i) = {T1, · · · , Tn} as the set of types that child node can
have. If the singular child node is optional, we denote this by including φ in this set.
SINGULARCHILDCOUNT(T ) gives the number of singular child nodes in T .

• NT may have an arbitrary number of repeated child nodes. Each repeated child node must
have type belonging within REPEATEDCHILDREN(T ) = {T1, · · · }. If this set is empty, no
repeated child nodes are allowed. These children may be of different types.

For each terminal type, we have a list of values that a node of this type can have. We also have a list
of types that the root node can have.

The above specification serves as an extension of context-free grammars, which are commonly used
to specify formal languages. The main difference is in optional and repeated children, which makes
it easier to specify an equivalent grammar with fewer non-terminal types.

As an example, consider the for loop in the C programming language. A node representing this
contains three singular children: an initializer expression, the condition expression (evaluated to
check whether the loop should continue running), and the iteration statement, which runs at the end
of each loop iteration. It also has repeated children, one child per statement in the loop body.

3.2 BUILDING A TREE

Now that we have specified the kinds of trees we consider, let us look at how we might build one.
First, we describe the basic building block that we use to create one node, then we will look at how
to compose these together to build an entire tree.

Assume that we know the node that we are about to construct should have type T , and that we have
a hidden state h ∈ Rk which contains further information about the node.

• If T is a terminal type, we use WHICHTERMINALVALUET (h), producing a probability
distribution over the set of possible values, and sample from this distribution to choose the
value.

• If T is a non-terminal type, we use the following procedure GENERATENODE(T,h):

1. Compute m = SINGULARCHILDCOUNT(T ) + 1{REPEATEDCHILDREN(T ) 6= ∅}.
In other words, count the number of singular children, and add 1 if the type allows
repeated children.
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2. Compute g1, · · · ,gm = SPLITT (h). The function SPLITT (h) : Rk → Rk×· · ·×Rk
maps the k-dimensional vector h into n separate k-dimensional vectors g1 to gm.

3. For each singular child i:
(a) Sample Ti ∼ WHICHCHILDTYPET,i(gi) from a distribution over the types in

REQUIREDCHILD(T, i).
(b) If Ti 6= ∅, use GENERATENODE(Ti,gi) to build the child node recursively.

4. If T specifies repeated children:
(a) Compute gcur,gnext = SPLITREPEATEDT (gm).
(b) Sample s ∼ STOPREPEATT (gcur) from a Bernoulli distribution. If s = 1, stop

generating repeated children.
(c) Sample Tchild ∼ WHICHCHILDTYPET,repeated(gcur), a probability distribution

over the types in REPEATEDCHILDREN(T ).
(d) Use GENERATENODE(Tchild,gcur) to build this child recursively.
(e) Set gm := gnext and repeat this loop.

For building the entire tree starting from the root, we assume that we have an embedding z
which encodes information about the entire tree (we describe how we obtain this in the next
section). We sample Troot ∼ WHICHROOTTYPE(z), the type for the root node, and then run
GENERATENODE(Troot, z).

3.3 ENCODING A TREE

Recall that the variational autoencoder framework involves training two models simultaneously:
p(x | z), the generative (or decoding) model, and q(z | x), the inference (or encoding) model. The
previous section described how we specify p(x | z), so we now turn our attention to q(z | x).
Overall, we build the inference model by inverting the flow of data in the generative model. Specif-
ically, we use ENCODE(n) to encode a node n with type T :

• If T is a terminal type, return EMBEDDING(v) ∈ Rk by performing a lookup of the con-
tained value v within a table.

• If T is a non-terminal type:

1. Compute gi = ENCODE(ni) for each singular child ni of n. If ni is missing, then
gi = 0.

2. If T specifies repeated children, set grepeated := 0 and nchild to the last repeated child
of n, and then run:
(a) Compute gchild = ENCODE(nchild).
(b) Set grepeated := MERGEREPEATEDT (grepeated, gchild) ∈ Rk.
(c) Move nchild to the previous repeated child, and repeat (until we run out of repeated

children).
3. Return MERGET (g1, . . . , gm, goptional, grepeated) ∈ Rk.

Thus hroot = ENCODE(nroot) gives a summary of the entire tree as a k-dimensional embedding. We
then construct q(z | x) = N (µ, σ) where µ = Wµhroot and σ = softplus(Wσhroot). Applying
softplus(x) = log(1 + ex) as a nonlinearity gives us a way to ensure that σ is positive as required.

3.4 IMPLEMENTING SPLIT, MERGE, AND WHICH FUNCTIONS

In the previous two sections, we described how the model traverses the tree bottom-up to produce
an encoding of it (q(z | x)), and how we can generate a tree top-down from the encoding (p(x | z)).
In this section, we explicate the details of how we implemented the SPLIT, MERGE, and WHICH
functions that we used previously.

COMBINE. We can consider SPLIT : Rk → Rk × · · · × Rk and MERGE : Rk × · · · × Rk → Rk
functions to be specializations of a more general function COMBINE : Rk×· · ·×Rk → Rk×· · ·×Rk
which takes m inputs and produces n outputs.

5



Under review as a conference paper at ICLR 2017

A straightforward implementation of COMBINE is the following:
y1, . . . ,yn := COMBINE(x1, . . . ,xm)

[y1 · · · yn] = f(W [x1 · · · xm] + b)

where we have taken xi and yi to be column vectors Rk, [x1 · · ·xm] stacks the vectors xi vertically,
W ∈ Rn·k×m·k and b ∈ Rn·k are the learned weight matrix and bias vector respectively, and f is a
nonlinearity applied elementwise.

For WHICH : Rk → Rd, which computes a probability distribution over d choices, we use a special-
ization of COMBINE with one input and one (d-sized rather than k-sized) output, and use softmax
as the nonlinearity f .

While this basic implementation sufficed initially, we discovered that two modifications led to better
performance, which we describe subsequently.

Gating. We added a form of multiplicative gating, similar to those used in Gated Recur-
rent Units (Chung et al., 2014), Highway Networks (Srivastava et al., 2015), and Gated Pixel-
CNN (van den Oord et al., 2016). The multiplicative gate enables the COMBINE function to more
easily pass through information in the inputs to the outputs if that is preferable to transforming the
input. Furthermore, the multiplicative interactions used in computing the gates may help the neural
network learn more complicated functions.

First, we compute candidate values for yi using a linear layer as before:
[ŷ1 · · · ŷn] = f(W [x1 · · · xm] + b)

Then we compute multiplicative gates for each ŷi and each (xi,yj) combination, or (m+ 1)n gate
variables (recall that m is the number of inputs and n is the number of outputs).

[gy1 · · · gyn ] = σ(Wgy [x1 · · · xm] + bgy )[
g(x1,y1) · · · g(x1,yn)

]
= σ(Wg1 [x1 · · · xm] + bg1)

...[
g(xm,y1) · · · g(xm,yn)

]
= σ(Wgm [x1 · · · xm] + bgm)

Then we compute the final outputs yi:
yi = gyi � ŷi + g(x1,yi) � x1 + · · ·+ g(xm,yi) � xm.

σ is the sigmoid function σ(x) = 1/(1 + e−x) and � is the elementwise product.

We initialized bgi = 1 and bgy = −1 so that gyi would start out as a small value and g(xi,yj) would
be large, encouraging copying of the inputs xi to the outputs yi.

Layer normalization. We found that using layer normalization (Ba et al., 2016) also helps sta-
bilize the learning process. For our model, it is difficult to use batch normalization because the
connections of each layer (the functions MERGE, SPLIT, WHICH) occur at variable points accord-
ing to the particular tree we are considering.

Following the procedure in the appendix of Ba et al. (2016), we replace each instance of
f(W [x1 · · · xm] + b) with f(LN(W1x1;α1) + · · · + LN(Wmxm;αm) + b) where Wi ∈
Rnk×k are horizontal slices of W and αi ∈ R are learned multiplicative constants. We use
LN(z;α) = α · (z − µ)/σ where µ ∈ R is the mean of z ∈ Rk and σ ∈ R is the standard
deviation of z.

3.5 WEIGHT SHARING

In the above model, each function with a different name has different weights. For example, if we
have two types PLUS and MINUS each with two required children, then SPLITPLUS and SPLITMINUS

will have different weights even though they both have the same signature Rk → Rk × Rk.

However, this may be troublesome when we have a very large number of types, because in this
scheme the amount of weights increases linearly with the number of types. For such cases, we can
apply some of the following modifications:
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• Replace all instances of SPLITT : Rk → Rk × · · · × Rk and SPLITREPEATED with a
single SPLITREC : Rk → Rk×Rk. We can apply SPLITREC recurrently to get the desired
number of child embeddings.

• Similarly, replace instances of MERGE with MERGEREC.
• Share weights across the WHICH functions: a WHICH function which produces a distribu-

tion over T1, . . . , Tn contains weights and a bias for each Ti. We can share these weights
and biases across all WHICH functions where Ti appears.

3.6 VARIABLE-SIZED LATENT STATE

In order to achieve low reconstruction error Eqφ(z|x)[log pθ(x | z)], the encoder and decoder net-
works must learn how to encode all information about a tree in z and then be able to reproduce the
tree from this representation. If the tree is large, it becomes a difficult optimization problem to learn
how to do this effectively, and may require higher-capacity networks in order to succeed at all which
would require more time to train.

Instead, we can encode the tree with a variable number of latent state vectors. For each node ni in
the tree, we specify q(zni | x) = N (µni , σni) where[

µni
σni

]
=

(
id

softplus

)[
Wµ

Wσ

]
ENCODE(ni)

Then when computing GENERATENODE(T,h), we first sample zni ∼ q(zni | x) at training time
or zni ∼ p(z) at generation time, and then use ĥ = MERGELATENT(h, zni) in lieu of h.

We fixed the prior of each latent vector zi to be the standard multivariate normal distribution with
diagonal unit covariance, and did not investigate computing the prior as a function of other samples
of zi as in Chung et al. (2015) or Fraccaro et al. (2016) which also used a variable number of latent
state vectors.

4 EXPERIMENTS

4.1 TYPE-AWARE SEQUENTIAL MODEL

For purposes of comparison, we implemented a standard LSTM model for generating each node of
the tree sequentially with a depth-first traversal, similar to Vinyals et al. (2015). The model receives
each non-terminal type, and terminal value, as a separate token. We begin the sequence with a
special 〈BOS〉 token. Whenever an optional child is not present, or at the end of a sequence of
repeated children, we insert 〈END〉. This allows us to unambiguously specify a tree following a
given grammar as a sequence of tokens.

At generation time, we keep track of the partially-generated tree in order to only consider those to-
kens which would be syntactically allowed to appear at that point. We also tried using this constraint
at training time: when computing the output probability distribution, only consider the syntactically
allowed tokens and leave the unnormalized log probabilities of the others unconstrained. However,
we found that for our datasets, this did not help much with performance and led to overfitting.

4.2 SYNTHETIC ARITHMETIC DATA

To evaluate the performance of our models in a controlled way, we created a synthetic dataset con-
sisting of arithmetic expressions of a given depth which evaluate to a particular value.

Grammar. We have two non-terminal types, PLUS and MINUS, and one terminal type NUMBER.
PLUS and MINUS have two required children, left and right, each of which can be any of PLUS,
MINUS, or NUMBER. For NUMBER, we allowed terminal values 0 to 9.

Generating the data. We generate trees with a particular depth, defined as the maximal distance
from the root to any terminal node. As such, we consider 1 + (2 + 3) and (1 + 2) − (3 + 4) to
both have depth 3. To get trees of depth d which evaluate to v, we first sampled 1,000,000 trees
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Number of nodes Tree, no VAE Tree VAE Tree VAE (var. latent) Sequential

Depth Mean Min Max log p(x) log p(x) ≥ log p(x) ≈ log p(x) ≥ log p(x) ≈ log p(x)

5 15 11 19 -28.26 -27.03 -26.85 -27.02 -26.86 -25.21
7 58 39 75 -106.06 -82.08 -80.19 -95.32 -92.68 -74.81
9 206 187 251 -332.66 -331.03 -330.68 -331.12 -330.78 -330.75
11 710 641 1279 -1172.96 -1169.85 -1169.44 -1404.18

Table 1: Statistics of the synthetic arithmetic datasets, and log likelihoods of models trained on
them. To estimate a tighter bound for log p(x), we use IWAE (Burda et al., 2015) with 50 samples
of z. “Tree, no VAE” means there was no encoder; instead, we learned a fixed z for all trees.

Number of Number of nodes Tree, no VAE Tree VAE Sequential

Functions Predicates Mean Min Max log p(x) log p(x) ≥ log p(x) ≈ log p(x)

6798 3140 15 1 2455 -57.74 -33.53 -30.52 -29.22

Table 2: Statistics for first-order logic proof clauses, and log likelihoods of models trained on them.
See Table 1 for more information about the column names.

uniformly at random from all binary tree structures up to depth d− 1, and randomly assigning each
non-terminal node to PLUS or MINUS and setting each terminal node to a random integer between
0 and 9. Then we randomly pick two such trees, which when combined with PLUS or MINUS,
evaluate to v to build a tree of depth d.

As training data, we generated 100,000 trees of depth 5, 7, 9, and 11. Within each set of trees, each
quarter evaluates to −10, −5, 5, and 10 respectively. We use a test set of 1,024 trees, which we
generated by first sampling a new set of 1,000,000 subtrees independently.

Results. Table 1 shows statistics on the datasets and the experimental results we obtained from
training various models. The tree variational autoencoder model achieves better performance on
deeper trees. In particular, the sequential model fails to learn well on depth 11 trees. However,
it appears that a tree-structured model but with a fixed z performs similarly, although consistently
worse than with the VAE.

4.3 FIRST-ORDER LOGIC PROOF CLAUSES

We next consider a dataset derived from Alemi et al. (2016): fragments of automatically-generated
proofs for mathematical theorems stated in first-order logic. An automated theorem prover tries to
prove a hypothesis given some premises, producing a series of steps until we conclude the hypothesis
follows from the premises. Many theorem provers work by resolution; it negates the hypothesis and
shows that a contradiction follows. However, figuring out the intermediate steps in the proof is a
highly nontrivial search procedure. If we can use machine learning to generate clauses which are
likely to appear as a proof step, we may be able to speed up automated theorem proving significantly.

Grammar. We generate first-order logic statements which are clauses, or a disjunction of literals.
Each literal either contains one predicate invocation or asserts that two expressions are equal. Each
predicate invocation contains a name, which also determines a fixed number of arguments; each
argument is an expression. An expression is either a function invocation, a number, or a variable. A
function invocation is structurally identical to a predicate invocation.

We consider the set of functions and predicates to be closed. Furthermore, given that each function
and predicate has a fixed number of arguments, we made each of these its own type in the grammar.
To avoid having a very large number of weights as a consequence, we applied the modifications
described in Section 3.5.

Results. Table 2 describes our results on this dataset. We trained on 955,529 trees and again tested
on 1,024 trees. The sequential model demonstrates slightly better log likelihood compared to the
tree variational autoencoder model. However, on this dataset we observe a significant improvement
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in log likelihood by adding the variational autoencoder to the tree model, unlike on the arithmetic
datasets.

5 DISCUSSION AND FUTURE WORK

Conditioning on an outside context. In many applications for modeling tree-structured data, we
have an outside context that informs which trees are more likely than others. For example, when
generating clauses which may appear in a proof, the hypothesis in question greatly influences the
content of the clauses. We leave this question to future work.

Scaling to larger trees. Currently, training the model requires processing an entire tree at once,
first to encode it into z and then to decode z to reproduce the original tree. This can blow up
the memory requirements, requiring an undesirably small batch size. For autoregressive sequence
models, truncated backpropagation through time provides a workaround as a partial form of the
objective function can be computed on arbitrary subsequences. In our case, adapting methods from
Gruslys et al. (2016) and others may prove necessary.

Improving log likelihood. In terms of log likelihood, our model performed significantly better
than an autoregressive sequential model only on one of the datasets we tested, and about the same or
slightly worse on the others. Adding depth to the tree structure (Irsoy & Cardie, 2014), and a more
sophisticated posterior (Rezende & Mohamed, 2015; Kingma et al., 2016; Sønderby et al., 2016),
are some modifications which might help with learning a more powerful model. Introducing more
dependencies between the dimensions of x during generation is another possibility but one which
may reduce the usefulness of of the latent representation (Bowman et al., 2015).
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Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Ko-
ray Kavukcuoglu. Conditional image generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Gram-
mar as a foreign language. In Advances in Neural Information Processing Systems, pp. 2773–
2781, 2015.

10



Under review as a conference paper at ICLR 2017

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Xingxing Zhang, Liang Lu, and Mirella Lapata. Top-down tree long short-term memory networks.
arXiv preprint arXiv:1511.00060, 2015.

11



Under review as a conference paper at ICLR 2017

0 30000 60000
102

103

104

105
log p(x)

(1)
(2)
(3)
(4)

0 30000 60000
100

101

102

103

104

105
KL divergence

(1)
(2)
(3)
(4)

0 30000 60000
0

100

200

300

400

500

600
Reconstruction loss

(1)
(2)
(3)
(4)

Figure 2: Metrics of the same model trained with different KL-related hyperparameters. The x axis
is the step count. (1): We annealed the KL cost weight from step 5000 to 25000. (2): We set the KL
cost minimum (λ) to 150. (3): We annealed the KL cost weight from step 20000 to 40000. (4): We
annealed the KL cost weight from 5000 to 25000 and also set the minimum to 150.

A MODEL HYPERPARAMETERS

We used the Adam optimizer with a learning rate of 0.01, multiplied by 0.98 every 10000 steps. We
clipped gradients to have L2 norm 3. For the synthetic arithmetic data, we used a batch size of 64;
for the first-order logic proof clauses, we used a batch size of 256. For the tree-structured variational
autoencoder, we set k = 256 and used the ELU nonlinearity wherever another one was not explicitly
specified. For the sequential models, we used two stacked LSTMs each with hidden state size 256,
no dropout. We always unrolled the network to the full length of the sequence during training, and
did not perform any bucketing of sequences by length.

B KL DIVERGENCE DYNAMICS DURING TRAINING

Optimizing the variational autoencoder objective turned out to be a significant optimization chal-
lenge, as pointed out by prior work (Bowman et al., 2015; Sønderby et al., 2016; Kingma et al.,
2016). Specifically, it is easy for the KL divergence term DKL(qφ(z | x) ‖ p(z)) to collapse to zero,
which means that qφ(z | x) is equal to the prior and does not convey any information about x. This
leads to uninteresting latent representations and reduces the generative model to one that does not
use a latent representation at all.

As explained by Kingma et al. (2016), this phenomenon occurs as at the beginning of training it is
much easier for the optimization process to move qφ(z | x) closer to the prior p(z) than to improve
p(x | z), especially when qφ(z | x) has not yet learned how to convey any useful information. To
combat this, we use a combination of two techniques described in the previous work:

• Anneal the weight on the KL cost term slowly from 0 to 1. Similar to Bowman et al. (2015),
our schedule was a shifted and horizontally-scaled sigmoid function.1

• Set a floor on the KL cost, i.e. use −max(DKL(qφ(z | x) ‖ p(z)), λ) instead of
DKL(qφ(z | x) ‖ p(z)) in the objective (Kingma et al., 2016). This change means that
the model receives no penalty for producing a KL divergence below λ, and as the other part
of the objective (the reconstruction term) benefits from a higher KL divergence, it naturally
learns a more informative qφ(z | x) at least λ in KL divergence.

We found that at least one of these techniques were required to avoid collapse of the KL divergence
to 0. However, as shown in Figure 2, we found that different combinations of these techniques
could led to different overall results, suggesting that finding the desired equilibrium necessitates a
hyperparameter search.

1To anneal from a to b, we used σ
(
step − a+b

2

)
/10 to weight the KL cost as a function of the number of

optimization steps taken.
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