
Under review as a conference paper at ICLR 2018

LEARNING DEEP GENERATIVE MODELS OF GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs are fundamental data structures required to model many important real-
world data, from knowledge graphs, physical and social interactions to molecules
and proteins. In this paper, we study the problem of learning generative models of
graphs from a dataset of graphs of interest. After learning, these models can be used
to generate samples with similar properties as the ones in the dataset. Such models
can be useful in a lot of applications, e.g. drug discovery and knowledge graph
construction. The task of learning generative models of graphs, however, has its
unique challenges. In particular, how to handle symmetries in graphs and ordering
of its elements during the generation process are important issues. We propose a
generic graph neural net based model that is capable of generating any arbitrary
graph. We study its performance on a few graph generation tasks compared to
baselines that exploit domain knowledge. We discuss potential issues and open
problems for such generative models going forward.

1 INTRODUCTION

Graphs are natural representations of information in many problem domains. For example, relations
between entities in knowledge graphs and social networks are well captured by graphs, and they are
also good for modeling the physical world, e.g. molecular structure and the interactions between
objects in physical systems. Thus, the ability to capture the distribution of a particular family
of graphs has many applications. For instance, sampling from the graph model can lead to the
discovery of new configurations that share same global properties as is, for example, required in drug
discovery (Gómez-Bombarelli et al., 2016). Obtaining graph-structured semantic representations for
natural language sentences (Kuhlmann & Oepen, 2016) requires the ability to model (conditional)
distributions on graphs. Distributions on graphs can also provide priors for Bayesian structure
learning of graphical models (Margaritis, 2003).

Probabilistic models of graphs have been studied for a long time, from at least two perspectives.
On one hand, there are random graph models that robustly assign probabilities to large classes of
graphs (Erdős & Rényi, 1960; Barabási & Albert, 1999). These make strong independence assump-
tions and are designed to capture only certain graph properties, like degree distribution and diameter.
While these are effective models of the distributions of graphs found in some domains, such as social
networks, they are poor models of more richly structured graphs where small structural differences can
be functionally significant, such as those encountered in chemistry or when representing the meaning
of natural language sentences. As an alternative, a more expressive class of models makes use of graph
grammars, which generalize devices from formal language theory so as to produce non-sequential
structures (Rozenberg, 1997). Graph grammars are systems of rewrite rules that incrementally derive
an output graph via a sequence of transformations of intermediate graphs.While symbolic graph
grammars can be made stochastic or otherwise weighted using standard techniques (Droste & Gastin,
2007), from a learnability standpoint, two problems remain. First, inducing grammars from a set of
unannotated graphs is nontrivial since formalism-appropriate derivation steps must be inferred and
transformed into rules (Lautemann, 1988; Aguiñaga et al., 2016, for example). Second, as with linear
output grammars, graph grammars make a hard distinction between what is in the language and what
is excluded, making such models problematic for applications where it is inappropriate to assign 0
probability to certain graphs.

1

Under review as a conference paper at ICLR 2018

In this work we develop an expressive model which makes no assumptions on the graphs and can
therefore assign probabilities to any arbitrary graph.1 Our model generates graphs in a manner similar
to graph grammars, where during the course of a derivation new structure (specifically, a new node or
a new edge) is added to the existing graph, and where the probability of that addition event depends
on the history of the graph derivation. To represent the graph during each step of the derivation,
we use a representation based on graph-structured neural networks (graph nets). Recently there has
been a surge of interest in graph nets for learning graph representations and solving graph prediction
problems (Henaff et al., 2015; Duvenaud et al., 2015; Li et al., 2016; Battaglia et al., 2016; Kipf &
Welling, 2016; Gilmer et al., 2017). These models are structured according to the graph being utilized,
and are parameterized independent of graph sizes therefore invariant to isomorphism, providing a
good match for our purposes.

We evaluate our model by fitting graphs in three problem domains: (1) generating random graphs
with certain common topological properties (e.g., cyclicity); (2) generating molecule graphs; and
(3) conditional generation of parse trees. Our proposed model performs better than random graph
models and LSTM baselines on (1) and (2) and is close to a LSTM sequence to sequence with
attention model on (3). We also analyze the challenges our model is facing, e.g. the difficulty of
learning and optimization, and discuss possible ways to make it better.

2 RELATED WORK

The earliest probabilistic model of graphs developed by Erdős & Rényi (1960) assumed an inde-
pendent identical probability for each possible edge. This model leads to rich mathematical theory
on random graphs, but it is too simplistic to model more complicated graphs that violate this i.i.d.
assumption. Most of the more recent random graph models involve some form of “preferential
attachment”, for example in (Barabási & Albert, 1999) the more connections a node has, the more
likely it will be connect to new nodes added to the graph. Another class of graph models aim to
capture the small diameter and local clustering properties in graphs, like the small-world model
(Watts & Strogatz, 1998). Such models usually just capture one property of the graphs we want to
model and are not flexible enough to model a wide range of graphs. Leskovec et al. (2010) proposed
the Kronecker graphs model which is capable of modeling multiple properties of graphs, but it still
only has limited capacity to allow tractable mathematical analysis.

There are a significant amount of work from the natural language processing and program synthesis
communities on modeling the generation of trees. Socher et al. (2011) proposed a recursive neural
network model to build parse trees for natural language and visual scenes. Maddison & Tarlow
(2014) developed probabilistic models of parsed syntax trees for source code. Vinyals et al. (2015c)
flattened a tree into a sequence and then modeled parse tree generation as a sequence to sequence
task. Dyer et al. (2016) proposed recurrent neural network models capable of modeling any top-down
transition-based parsing process for generating parse trees. Kusner et al. (2017) developed models for
context-free grammars for generating SMILES string representations for molecule structures. Such
tree models are very good at their task of generating trees, but they are incapable of generating more
general graphs that contain more complicated loopy structures.

Our graph generative model is based on a class of neural net models we call graph nets. Originally
developed in Scarselli et al. (2009), a range of variants of such graph structured neural net models
have been developed and applied to various graph problems more recently (Henaff et al., 2015; Li
et al., 2016; Kipf & Welling, 2016; Battaglia et al., 2016; Gilmer et al., 2017). Such models learn
representations of graphs, nodes and edges based on a propagation process which communicates
information across a graph, and are invariant to graph isomorphism because of the graph size
independent parameterization. We use these graph nets to learn representations for making various
decisions in the graph generation process.

Our work share some similarity to the recent work of Johnson (2017), where a graph is constructed
to solve reasoning problems. The main difference between our work and (Johnson, 2017) is that

1We may make the analogy to language modeling prior to the advent of RNN language models. On one
hand, we had formal grammars that were expressive (e.g., various classes could capture the long range syntactic
dependencies found in natural language), but they were brittle and hard to learn; on the other, we had n-gram
models that were robust and easy to learn, but made naïve Markov assumptions. RNNs offered a way of making
models more expressive without increasing fragility or making learning unreasonably difficult.

2

Under review as a conference paper at ICLR 2018

Generation steps

Add edge?
(yes/no)

Add edge?
(yes/no)

2

Add node (2)?
(yes/no)

2

Pick node (0) to
add edge (0,2)

Add node (1)?
(yes/no)

Add edge?
(yes/no)

Add edge?
(yes/no)

1 1

0 0

Add node (1)?
(yes/no)

1

Pick node (0) to
add edge (0,1)

0

1

0

1

0

1
0

1

0

2

Add edge?
(yes/no)

1

0

2

0 0

Figure 1: Depiction of the steps taken during the generation process.

our goal in this paper is to learn and represent unconditional or conditional densities on a space of
graphs given a representative sample of graphs, whereas Johnson (2017) is primarily interested in
using graphs as intermediate representations in reasoning tasks. However, (Johnson, 2017) do offer a
probabilistic semantics for their graphs (the soft, real-valued node and connectivity strengths). But,
as a generative model, Johnson (2017) did make a few strong assumptions for the generation process,
e.g. a fixed number of nodes for each sentence, independent probability for edges given a batch of
new nodes, etc.; while our model doesn’t make any of these assumptions. On the other side, as we
are modeling graph structures, the samples from our model are graphs where an edge or node either
exists or does not exist; whereas in (Johnson, 2017) all the graph components, e.g. existence of a
node or edge, are all soft, and it is this form of soft node / edge connectivity that was been used for
other reasoning tasks. Dense and soft representation may be good for some applications, while the
sparse discrete graph structures may be good for others. Potentially, our graph generative model can
also be used in an end-to-end pipeline to solve prediction problems as well, like (Johnson, 2017).

3 MODEL

Our generative model of graphs is a sequential process which generates one node at a time and
connects each node to the partial graph already generated by creating edges one by one.

3.1 THE SEQUENTIAL GRAPH GENERATION PROCESS

The actions by which our model generates graphs is illustrated in Figure 1 (for the formal presentation,
refer to Algorithm 1 in Appendix A). Briefly, in this generative process, in each iteration we (1)
sample whether to add a new node of a particular type or terminate; if a node type is chosen, (2) we
add a node of this type to the graph and (3) check if any further edges are needed to connect the
new node to the existing graph; if yes (4) we select a node in the graph and add an edge connecting
the new node to the selected node. The algorithm goes back to step (3) and repeats until the model
decides not to add another edge. Finally, the algorithm goes back to step (1) to add subsequent nodes.

There are many different ways to tweak this generation process. For example, edges can be made
directional or typed by jointly modeling the node selection process with type and direction random
variables (in the molecule generation experiments below, we use typed nodes and edges). Additionally,
constraints on certain structural aspects of graphs can be imposed such as forbidding self-loops or
multiple edges between a pair of nodes.

The graph generation process can be seen as a sequence of decisions, i.e., (1) add a new node or not
(with probabilities provided by an faddnode module), (2) add a new edge or not (probabilities provided
by faddedge), and (3) pick one node to connect to the new node (probabilities provided by fnodes). One
example graph with corresponding decision sequence is shown in Figure 6 in the Appendix. Note that
different ordering of the nodes and edges can lead to different decision sequences for the same graph,
how to properly handle these orderings is therefore an important issue which we will discuss below.

Once the graph is transformed into such a sequence of structure building actions, we can use a
number of different generative models to model it. One obvious choice is to treat the sequences as
sentences in natural language, and use conventional LSTM language models. We propose to use
graph nets to model this sequential decision process instead. That is, we define the modules that
provide probabilities for the structure building events (faddnode, faddedge and fnodes) in terms of graph
nets. As graph nets make use of the structure of the graph to create representations of nodes and

3

Under review as a conference paper at ICLR 2018

edges via an information propagation process, this parameterization will be more sensitive to the
structures being constructed than might be possible in an LSTM-based action sequence model.

3.2 PROPAGATION ON GRAPHS AND GRAPH REPRESENTATIONS

For any graph G = (V,E), we associate a node embedding vector hv ∈ RH with each node v ∈ V .
These vectors can be computed initially from node inputs, e.g. node type embeddings, and then
propagated on the graph to aggregate information from the local neighborhood. The propagation
process is an iterative process, in each round of propagation, a “message” vector is computed on
each edge, and after all the messages are computed, each node collects all incoming messages and
updates its own representation, as characterized in Eq. 1, 2 and 3, where fe and fn are mappings that
can be parameterized as neural networks, xu,v is a feature vector for the edge (u, v), e.g. edge type
embedding, mu→v is the message vector from u to v2, av is the aggregated incoming message for
node v and h′v is the new representation for node v after one round of propagation. A typical choice
for fe and fn is to use fully-connected neural nets for both, but fn can also be any recurrent neural
network core like GRU or LSTM as well. In our experience LSTM and GRU cores perform similarly,
we therefore use the simpler GRUs for fn throughout our experiments.

mu→v = fe(hu,hv,xu,v) ∀(u, v) ∈ E, (1)

av =
∑

u:(u,v)∈E

mu→v ∀v ∈ V, (2)

h′v = fn (av,hv) ∀v ∈ V, (3)

hG =
∑
v∈V

hGv (4)

hG =
∑
v∈V

gGv � hGv (5)

Given a set of node embeddings hV = {h1, . . . ,h|V |}, one round of propagation denoted as
prop(hV , G) returns a set of transformed node embeddings h′V which aggregates information from
each node’s neighbors (as specified by G). It does not change the graph structure. Multiple rounds
of propagation, i.e. prop(prop(· · · (hV , G), · · · , G), can be used to aggregate information across
a larger neighborhood. Furthermore, different rounds of propagation can have different set of
parameters to further increase the capacity of this model, all our experiments use this setting.

To compute a vector representation for the whole graph, we first map the node representations to a
higher dimensional hGv = fm(hv), then these mapped vectors are summed together to obtain a single
vector hG (Eq. 4). The dimensionality of hG is chosen to be higher than that of hv as the graph
contains more information than individual nodes. A particularly useful variant of this aggregation
module is to use a separate gating network which predicts gGv = σ(gm(hv)) for each node, where σ
is the logistic sigmoid function and gm is another mapping function, and computes hG as a gated
sum (Eq. 5). Also the sum can be replaced with other reduce operators like mean or max. We use
gated sum in all our experiments. We denote the aggregation operation across the graph without
propagation as hG = R(hV , G).

3.3 PROBABILITIES OF STRUCTURE BUILDING DECISIONS

Our graph generative model defines a distribution over the sequence of graph generating decisions by
defining a probability distribution over possible outcomes for each step. Each of the decision steps is
modeled using one of the three modules defined according to the following equations:

h
(T)
V = prop(T)(hV , G) (6)

hG = R(h
(T)
V , G) (7)

faddnode(G) = softmax(fan(hG)) (8)

faddedge(G, v) = σ(fae(hG,h
(T)
v)) (9)

su = fs(h
(T)
u ,h(T)

v), ∀u ∈ V (10)
fnodes(G, v) = softmax(s) (11)

(a) faddnode(G) In this module, we take an existing graph G as input, together with its node repre-
sentations hV , to produce the parameters necessary to make the decision whether to terminate the
algorithm or add another node (this will be probabilities for each node type if nodes are typed).

2Here we only considered messages along the edge direction mu→v for (u, v) ∈ E, but it is also
possible to consider the reverse information propagation as well m′

v→u = f ′
e(hu,hv), and make av =∑

u:(u,v)∈E mu→v +
∑

u:(v,u)∈E m′
u→v , which is what we used in all experiments.

4

Under review as a conference paper at ICLR 2018

To compute these probabilities, we first run T rounds of propagation to update node vectors, after
which we compute a graph representation vector and predict an output from there through a standard
MLP followed by softmax or logistic sigmoid. This process is formulated in Eq. 6, 7, 8. Here the
superscript (T) indicates the results after running the propagation T times. fan is a MLP that maps
the graph representation vector hG to the action output space, here it is the probability (or a vector of
probability values) of adding a new node (type) or terminating.

After the predictions are made, the new node vectors h(T)
V are carried over to the next step, and the

same carry-over is applied after each and any decision step. This makes the node vectors recurrent,
across both the propagation steps and the different decision steps.

(b) faddedge(G, v) This module is similar to (a), we only change the output module slightly as in
Eq. 9 to get the probability of adding an edge to the newly created node v through a different MLP
fae, after getting the graph representation vector hG.

(c) fnodes(G, v) In this module, after T rounds of propagation, we compute a score for each node
(Eq. 10), which is then passed through a softmax to be properly normalized (Eq. 11). fs maps
node state pairs hu and hv to a score su for connecting u to the new node v, and p(y) is the output
distribution over nodes. This can be extended to handle typed edges by making su a vector of scores
same size as the number of edge types, and taking the softmax over all nodes and edge types.

Initializing Node States Whenever a new node is added to the graph, we need to initialize its state
vector. If there are some inputs associated with the node, they can be used to get the initialization
vector. We also aggregate across the graph to get a graph vector, and use it as an extra source of input
for initialization. More concretely, the node state for a new node v is initialized as the following:

hv = finit(Rinit(hV , G),xv). (12)

Here xv is any input feature associated with the node, e.g. node type embeddings, and Rinit(hV , G)
computes a graph representation, finit is an MLP. If not using Rinit(hV , G) as part of the input to the
initialization module, nodes with the same input features added at different stages of the generation
process will have the same initialization. Adding the graph vector fixes this issue.

Conditional Generative Model The graph generative model described above can also be used to
do conditional generation, where some input is used to condition the generation process. We only
need to make a few minor changes to the model architecture, by making a few design decisions about
where to add in the conditioning information.

The conditioning information comes in the form of a vector, and then it can be added in one or
more of the following modules: (1) the propagation process; (2) the output component for the three
modules, i.e. in fn, fe and fs; (3) the node state initialization module finit. In our experiments, we
use the conditioning information only in fn and finit. Standard techniques for improving conditioning
like attention can also be used, where we can use the graph representation to compute a query vector.

3.4 TRAINING AND EVALUATION

Our graph generative model defines a joint distribution p(G, π) over graphs G and node and edge
ordering π (corresponding to the derivation in a traditional graph grammar). When generating
samples, both the graph itself and an ordering are generated by the model. For both training and
evaluation, we are interested in the marginal p(G) =

∑
π∈P(G) p(G, π). This marginal is, however,

intractable to compute for moderately large graphs as it involves a sum over all possible permutations.
To evaluate this marginal likelihood we therefore need to use either sampling or some approximation
instead. One Monte-Carlo estimate is based on importance sampling, where

p(G) =
∑
π

p(G, π) =
∑
π

q(π | G) p(G, π)
q(π | G)

= Eq(π|G)

[
p(G, π)

q(π | G)

]
. (13)

Here q(π|G) is any proposal distribution over permutations, and the estimate can be obtained by
generating a few samples from q(π | G) and then average p(G, π)/q(π | G) for the samples. The
variance of this estimate is minimized when q(π | G) = p(π | G). When a fixed canonical ordering
is available for any arbitrary G, we can use it to train and evaluate our model by taking q(π | G) to
be a delta function that puts all the probability on this canonical ordering. This choice of q, however,

5

Under review as a conference paper at ICLR 2018

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Iterations 1e5

20

25

30

35

40

45

50

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

Cycles
Graph Model
LSTM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Iterations 1e5

36

38

40

42

44

46

48

50

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

Trees
Graph Model
LSTM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Iterations 1e5

48

50

52

54

56

58

60

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

Barabasi-Albert Graphs
Graph Model
LSTM

Figure 2: Training curves for the graph model and LSTM model on three sets.

only gives us a lower bound on the true marginal likelihood as it does not have full support over the
set of all permutations.

In training, since direct optimization of log p(G) is intractable, we can therefore learn the joint
distribution p(G, π) instead by maximizing the expected joint log-likelihood

Epdata(G,π)[log p(G, π)] = Epdata(G)Epdata(π|G)[log p(G, π)]. (14)

Given a dataset of graphs, we can get samples from pdata(G) fairly easily, and we have the freedom to
choose pdata(π|G) for training. Since the maximizer of Eq. 14 is p(G, π) = pdata(G, π), to make the
training process match the evaluation process, we can take pdata(π | G) = q(π | G). Training with
such a pdata(π | G) will drive the posterior of the model distribution p(π | G) close to the proposal
distribution q(π | G), therefore improving the quality of our estimate of the marginal probability.

Ordering is an important issue for our graph model, in the experiments we always use a fixed ordering
or uniform random ordering for training, and leave the potentially better solution of learning an
ordering to future work. In particular, in the learning to rank literature there is an extensive body of
work on learning distributions over permutations, for example the Mallows model (Mallows, 1957)
and the Plackett-Luce model (Plackett, 1975; Luce, 1959), which may be used here. Interested readers
can also refer to (Leskovec et al., 2010; Vinyals et al., 2015a; Stewart et al., 2016) for discussions of
similar ordering issues from different angles.

4 EXPERIMENTS

We study the properties and performance of different graph generation models and odering strategies
on three different tasks. More experiment results and detailed settings are included in Appendix C.

4.1 GENERATION OF GRAPHS WITH CERTAIN TOPOLOGICAL PROPERTIES

In the first experiment, we train graph generative models on three sets of synthetic undirected graphs:
(1) cycles, (2) trees, and (3) graphs generated by the Barabasi–Albert model (Barabási & Albert,
1999), which is a good model for power-law degree distribution. We generate data on the fly during
training, all cycles and trees have between 10 to 20 nodes, and the Barabasi–Albert model is set to
generate graphs of 15 nodes and each node is connected to 2 existing nodes when added to the graph.

For comparison, we contast our model against the Erdős & Rényi (1960) random graph model and
a LSTM baseline. We estimate the edge probability parameter p in the Erdős–Rényi model using
maximum likelihood. For the LSTM model, we sequentialized the decision sequences (see Figure 6
for an example) used by the graph model and trained LSTM language models on them. During
training, for each graph we uniformly randomly permute the orderings of the nodes and order the
edges by node indices, and then present the permuted graph to the graph model and the LSTM model.
In experiments on all three sets, we used a graph model with node state dimensionality of 16 and set
the number of propagation steps T = 2, and the LSTM model has a hidden state size of 64. The two
models have roughly the same number of parameters (LSTM 36k, graph model 32k).

The training curves plotting − log p(G, π) with G, π sampled from the training distribution, compar-
ing the graph model and the LSTM model, are shown in Figure 2. From these curves we can clearly
see that the graph models train faster and have better asymptotic performance as well.

6

Under review as a conference paper at ICLR 2018

Dataset Graph Model LSTM Erdős–Rényi Model
Cycles 84.4% 48.5% 0.0%
Trees 96.6% 30.2% 0.3%

Barabasi–Albert Graphs 0.0013 0.0537 0.3715

Table 1: Percentage of valid samples for three models on cycles and trees datasets, and the KL-
divergence between the degree distributions of samples and data for Barabasi–Albert graphs.

0 2 4 6 8 10 12 140.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40 Barabasi-Albert Graphs

Ground Truth
Graph Model
LSTM
Erdos Renyi

Figure 3: Degree histogram for samples
generated by models trained on Barabasi–
Albert Graphs. The histogram labeled
“Ground Truth” shows the data distribu-
tion estimated from 10,000 examples.

Since our graphs have topological properties, we can also
evaluate the samples of these models and see how well
they align with these properties. We generated 10,000
samples from each model. For cycles and trees, we eval-
uate what percentage of samples are actually cycles or
trees. For graphs generated by the Barabasi–Albert model,
we compute the node degree distribution. The results are
shown in Table 1 and Figure 3. Again we can see that the
proposed graph model has the capability of matching the
training data well in terms of all these metrics. Note that
we used the same graph model on three different sets of
graphs, and the model learns to adapt to the data.

Here the success of the graph model compared to the
LSTM baseline can be partly attributed to the ability to
refer to specific nodes in a graph. The ability to do this
inevitably requires keeping track of a varying set of objects
and then pointing to them, which is non-trivial for a LSTM to do. Pointer networks (Vinyals et al.,
2015b) can be used to handle the pointers, but building a varying set of objects is challenging in the
first place, and the graph model provides a way to do it.

4.2 MOLECULE GENERATION

Figure 4: NNc1nncc(O)n1

In the second experiment, we train graph generative models for the
task of molecule generation. Recently, there has been a number of
papers tackling this problem by using RNN language models on
SMILES string representations of molecules (Gómez-Bombarelli
et al., 2016; Segler et al., 2017; Bjerrum & Threlfall, 2017). An
example of a molecule and its corresponding SMILES string are
shown in Figure 4. Kusner et al. (2017) took one step further and
used context free grammar to model the SMILES strings. However, inherently molecules are graph
structured objects where it is possible to have cycles.

We used the ChEMBL database (the latest version, 23) for this study; previous versions of ChEMBL
were also used in (Segler et al., 2017; Olivecrona et al., 2017) for molecule generation. We filtered
the database and chose to model molecules with at most 20 heavy atoms. This resulted in a training /
validation / testing split of 130,830 / 26,166 / 104,664 examples each. The chemical toolkit RDKit
(2006) is used to convert between the SMILES strings and the graph representation of the molecules.
Both the nodes and the edges in molecule graphs are typed. All the model hyperparameters are tuned
on the validation set, number of propagation steps T is chosen from {1, 2}.
We compare the graph model with baseline LSTM language models trained on the SMILES strings
as well as the graph generating sequences used by the graph model. RDKit can produce canonical
SMILES representations for each molecule with associated edge ordering, we therefore train the
models using these canonicalized representations. We also trained these models with permuted
ordering. For the graph model, we randomly permute the node ordering and change the edge
ordering correspondingly, for the LSTM on SMILES, we first convert the SMILES string into a
graph representation, permute the node ordering and then convert back to a SMILES string without
canonicalization, similar to (Bjerrum, 2017).

7

Under review as a conference paper at ICLR 2018

Model Gen.Seq Ordering N NLL %valid %valid and novel
LSTM SMILES Fixed 1 21.48 93.59 81.27
LSTM SMILES Random < 100 19.99 93.48 83.95
LSTM Graph Fixed 1 22.06 85.16 80.14
LSTM Graph Random O(n!) 63.25 91.44 91.26
Graph Graph Fixed 1 20.55 97.52 90.01
Graph Graph Random O(n!) 58.36 95.98 95.54

Table 2: Results on the molecule generation task. N is the number of permutations for each molecule
the model is trained on. Typically the number of different SMILES strings for each molecule < 100.

Model Gen.Seq Ordering N Fixed Ordering Best Ordering Marginal
LSTM SMILES Fixed 1 17.28 15.98 15.90
LSTM SMILES Random < 100 15.95 15.76 15.67
LSTM Graph Fixed 1 16.79 16.35 16.26
LSTM Graph Random O(n!) 20.57 18.90 15.96
Graph Graph Fixed 1 16.19 15.75 15.64
Graph Graph Random O(n!) 20.18 18.56 15.32

Table 3: Negative log-likelihood evaluation on small molecules with no more than 6 nodes.

We evaluate the negative log-likelihood for all models with the canonical ordering on the test set.
We also generate 100,000 samples from each model and evaluate how many of them are valid
well-formatted molecule representations and how many of the generated samples are not already seen
in the training set following (Segler et al., 2017; Olivecrona et al., 2017). The results are shown in
Table 2, which also lists the type of graph generating sequence and the ordering the models are trained
on. Note that the models trained with random ordering are not tailored to the canonical ordering used
in evaluation. In Appendix C.2, we show the distribution of a few chemical metrics for the generated
samples to further assess the their quality. The LSTM on SMILES strings has a slight edge in terms
of likelihood evaluated under canonical ordering (which is domain specific), but the graph model
generates significantly more valid and novel samples. It is also interesting that the LSTM model
trained with random ordering improves performance on canonical ordering, this is probably related to
overfitting. Lastly, when compared using the generic graph generation decision sequence, the Graph
architecture outperforms LSTM in NLL as well.

It is intractable to estimate the marginal likelihood p(G) =
∑
π p(G, π) for large molecules. However,

for small molecules this is possible. We did the enumeration and evaluated the 6 models on small
molecules with no more than 6 nodes. As we evaluate, we compare the negative log-likelihood we
got with the fixed ordering and the best possible ordering, as well as the true marginal, the results
are shown in Table 3. On these small molecules, the graph model trained with random ordering has
better marginal likelihood, and surprisingly for the models trained with fixed ordering, the canonical
ordering they are trained on are not always the best ordering, which suggests that there are big
potential for actually learning an ordering.

Figure 5 shows a visualization of the molecule generation processes for the graph model. The model
trained with canonical ordering learns to generate nodes and immediately connect it to the latest part
of the generated graph, while the model trained with random ordering took a completely different
approach by generating pieces first and then connect them together at the end.

4.3 PARSE TREE GENERATION

In the last experiment, we look at a conditional graph generation task - generating parse trees given
an input natural language sentence. We took the Wall Street Journal dataset with sequentialized
parse trees used in (Vinyals et al., 2015c), and trained LSTM sequence to sequence models with
attention as the baselines on both the sequentialized trees as well as on the decision sequences used
by the graph model. In the dataset the parse trees are sequentialized following a top-down depth-first
traversal ordering, we therefore used this ordering to train our graph model as well. Besides this, we
also conducted experiments using the breadth-first traversal ordering. We changed our graph model
slightly and replaced the loop for generating edges to a single step that picks one node as the parent

8

Under review as a conference paper at ICLR 2018

Fi
xe

d
O

rd
er

O

C

C

C

O

C

C

C

C

C
C

Br

C

O

C

C

C

C

C
C

Br

C

C

N

C

C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C
C

Step 5 Step 15 Step 25 Final Sample

R
an

do
m

O
rd

er C

C

C

C

N

C

C

C

C
C

N
C

C
O

C

C

C

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C C

Step 5 Step 15 Step 25 Final Sample

Figure 5: Visualization of the molecule generation processes for graph model trained with fixed and
random ordering. Solid lines represent single bonds, and dashed lines represent double bounds.

Model Gen.Seq Ordering Perplexity %Correct
LSTM Sequentialized Tree Depth-First 1.114 31.1
LSTM Sequentialized Tree Breadth-First 1.187 28.3
LSTM Graph Depth-First 1.158 26.2
LSTM Graph Breadth-First 1.399 0.0
Graph Graph Depth-First 1.124 28.7
Graph Graph Breadth-First 1.238 21.5

Table 4: Parse tree generation results, evaluated on the Eval set.

for each new node to adapt to the tree structure. This shortens the decision sequence for the graph
model, although the flattened parse tree sequence the LSTM uses is still shorter. We also employed
an attention mechanism to get better conditioning information as for the sequence to sequence model.

Table 4 shows the perplexity results of different models on this task. Since the length of the decision
sequences for the graph model and sequentialized trees are different, we normalized the log-likelihood
of all models using the length of the flattened parse trees to make them comparable. To measure
sample quality we used another metric that checks if the generated parse tree exactly matches the
ground truth tree. From these results we can see that the LSTM on sequentialized trees is better on
both metrics, but the graph model does better than the LSTM trained on the same and more generic
graph generating decision sequences, which is compatible with what we observed in the molecule
generation experiment.

One important issue for the graph model is that it relies on the propagation process to communicate
information on the graph structure, and during training we only run propagation for a fixed T steps,
and in this case T = 2. Therefore after a change to the tree structure, it is not possible for other
remote parts to be aware of this change in such a small number of propagation steps. Increasing T
can make information flow further on the graph, however the more propagation steps we use the
slower the graph model would become, and more difficult it would be to train them. For this task,
a tree-structured model like R3NN (Parisotto et al., 2016) may be a better fit which can propagate
information on the whole tree by doing one bottom-up and one top-down pass in each iteration. On
the other hand, the graph model is modeling a longer sequence than the sequentialized tree sequence,
and the graph structure is constantly changing therefore so as the model structure, which makes
training of such graph models to be considerably harder than LSTMs.

5 DISCUSSIONS AND FUTURE DIRECTIONS

The graph model in the proposed form is a powerful model capable of generating arbitrary graphs.
However, as we have seen in the experiments and the analysis, there are still a number of challenges
facing these models. Here we discuss a few of these challenges and possible solutions going forward.

9

Under review as a conference paper at ICLR 2018

Ordering Ordering of nodes and edges is critical for both learning and evaluation. In the experiments
we always used predefined distribution over orderings. However, it may be possible to learn an
ordering of nodes and edges by treating the ordering π as a latent variable, this is an interesting
direction to explore in the future.

Long Sequences The generation process used by the graph model is typically a long sequence of
decisions. If other forms of sequentializing the graph is available, e.g. SMILES strings or flattened
parse trees, then such sequences are typically 2-3x shorter. This is a significant disadvantage for the
graph model, it not only makes it harder to get the likelihood right, but also makes training more
difficult. To alleviate this problem we can tweak the graph model to be more tied to the problem
domain, and reduce multiple decision steps and loops to single steps.

Scalability Scalability is a challenge to the graph generative model we proposed in this paper. Large
graphs typically lead to very long graph generating sequences. On the other side, the graph nets use a
fixed T propagation steps to propagate information on the graph. However, large graphs require large
T s to have sufficient information flow, this would also limit the scalability of these models. To solve
this problem, we may use models that sequentially sweep over edges, like (Parisotto et al., 2016), or
come up with ways to do coarse-to-fine generation.

Difficulty in Training We have found that training such graph models is more difficult than training
typical LSTM models. The sequence these models are trained on are really long, but also the model
structure is constantly changing, which leads to various scaling issues and only adds to the difficulty.
We found lowering the learning rate can solve a lot of the instability problem, but more satisfying
solutions may be obtained by tweaking the model architecture.

6 CONCLUSION

In this paper, we proposed a powerful deep generative model capable of generating arbitrary graphs
through a sequential process. We studied its properties on a few graph generation problems. This
model has shown great promise and has unique advantages over standard LSTM models. We hope
that our results can spur further research in this direction to obtain better generative models of graphs.

REFERENCES

Salvador Aguiñaga, Rodrigo Palacios, David Chiang, and Tim Weninger. Growing graphs from
hyperedge replacement graph grammars. In Proc. CIKM, 2016.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. 2016.

Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network modeling of
molecules. arXiv preprint arXiv:1703.07076, 2017.

Esben Jannik Bjerrum and Richard Threlfall. Molecular generation with recurrent neural networks
(rnns). CoRR, 2017.

Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theoretical Computer
Science, 380(1–2):69–86, 2007.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776, 2016.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960.

10

Under review as a conference paper at ICLR 2018

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-
Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical de-
sign using a data-driven continuous representation of molecules. arXiv preprint arXiv:1610.02415,
2016.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.
arXiv preprint arXiv:1506.05163, 2015.

Daniel D. Johnson. Learning graphical state transitions. In International Conference on Representa-
tion Learning (ICLR), 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Marco Kuhlmann and Stephan Oepen. Towards a catalogue of linguistic graph banks. Computational
Linguistics, 42(4):819–827, 2016.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
arXiv preprint arXiv:1703.01925, 2017.

Clemens Lautemann. Decomposition trees: Structured graph representation and efficient algorithms.
In Proc. of the 13th Colloquium on Trees in Algebra and Programming, 1988.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research, 11
(Feb):985–1042, 2010.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. 2016.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959.

Chris Maddison and Daniel Tarlow. Structured generative models of natural source code. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 649–657,
2014.

Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

Dimitris Margaritis. Learning Bayesian Network Model Structure from Data. PhD thesis, Carnegie
Mellon University, Pittsburgh, 5 2003.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de novo design
through deep reinforcement learning. arXiv preprint arXiv:1704.07555, 2017.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Robin L Plackett. The analysis of permutations. Applied Statistics, pp. 193–202, 1975.

RDKit. Rdkit: Open-source cheminformatics. 2006. URL http://www.rdkit.org.

Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformation:
Volume 1 Foundations. 1997.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating fo-
cussed molecule libraries for drug discovery with recurrent neural networks. arXiv preprint
arXiv:1701.01329, 2017.

11

http://www.rdkit.org

Under review as a conference paper at ICLR 2018

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and natural
language with recursive neural networks. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 129–136, 2011.

Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people detection in crowded
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2325–2333, 2016.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015a.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015b.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Grammar
as a foreign language. In Advances in Neural Information Processing Systems, pp. 2773–2781,
2015c.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

12

Under review as a conference paper at ICLR 2018

Algorithm 1 Generative Process for Graphs
1: E0 = φ, V0 = φ,G0 = (V0, E0), t = 1 . Initial graph is empty
2: paddnode

t ← faddnode(Gt−1) . Probabilities of initial node type and STOP
3: vt ∼ Categorical(paddnode

t) . Sample initial node type or STOP
4: while vt 6= STOP do
5: Vt ← Vt−1 ∪ {vt} . Incorporate node vt
6: Et,0 ← Et−1, i← 1

7: paddedge
t,i ← faddedge((Vt, Et,0), vt) . Probability of adding an edge to vt

8: zt,i ∼ Bernoulli(paddedge
t,i) . Sample whether to add an edge to vt

9: while zt,i = 1 do . Add edges pointing to new node vt
10: pnodes

t,i ← fnodes((Vt, Et,i−1), vt) . Probabilities of selecting each node in Vt
11: vt,i ∼ Categorical(pnodes

t,i)

12: Et,i ← Et,i−1 ∪ {(vt,i, vt)} . Incorporate edge vt − vt,i
13: i← i+ 1
14: paddedge

t,i ← faddedge((Vt, Et,i−1), vt) . Probability of adding another edge
15: zt,i ∼ Bernoulli(paddedge

t,i) . Sample whether to add another edge to vt
16: end while
17: Et ← Et,i−1
18: Gt ← (Vt, Et)
19: t← t+ 1
20: paddnode

t ← faddnode(Gt−1) . Probabilities of each node type and STOP for next node
21: vt ∼ Categorical(paddnode

t) . Sample next node type or STOP
22: end while
23: return Gt

A GRAPH GENERATION PROCESS

The graph generation process is presented in Algorithm 1 for reference.

0

1
2

Possible Sequence 1:
<add node (node 0)>
<don’t add edge>

<add node (node 1)>
<add edge>
<pick node 0 (edge (0, 1))>
<don’t add edge>

<add node (node 2)>
<add edge>
<pick node 0 (edge (0, 2))>
<add edge>
<pick node 1 (edge (1, 2))>
<don’t add edge>

<don’t add node>

Possible Sequence 2:
<add node (node 1)>
<don’t add edge>

<add node (node 0)>
<add edge>
<pick node 1 (edge (0, 1))>
<don’t add edge>

<add node (node 2)>
<add edge>
<pick node 1 (edge (1, 2))>
<add edge>
<pick node 0 (edge (0, 2))>
<don’t add edge>

<don’t add node>

Figure 6: An example graph and two corresponding decision sequences.

Figure 6 shows an example graph. Here the graph contains three nodes {0, 1, 2}, and three edges
{(0, 1), (0, 2), (1, 2)}. Consider generating nodes in the order of 0, 1 and 2, and generating edge
(0, 2) before (1, 2), then the corresponding decision sequence is the one shown on the left. Here the
decisions are indented to clearly show the two loop levels. On the right we show another possible
generating sequence generating node 1 first, and then node 0 and 2. In general, for each graph there
might be many different possible orderings that can generate it.

13

Under review as a conference paper at ICLR 2018

B MODEL IMPLEMENTATION DETAILS

In this section we present more implementation details about our graph generative model.

B.1 THE PROPAGATION MODEL

The message function fe is implemented as a fully connected neural network, as the following:
mu→v = fe(hu,hv,xu,v) = MLP(concat([hu,hv,xu,v])).

We can also use an additional edge function f ′e to compute the message in the reverse direction as
m′v→u = f ′e(hu,hv,xu,v) = MLP′(concat([hu,hv,xu,v])).

When not using reverse messages, the node activation vectors are computed as

av =
∑

u:(u,v)∈E

mu→v.

When reverse messages are used, the node activations are

av =
∑

u:(u,v)∈E

mu→v +
∑

u:(v,u)∈E

m′u→v.

The node update function fn is implemented as a recurrent cell in RNNs, as the following:
h′v = RNNCell(hv,av),

where RNNCell can be a vanilla RNN cell, where
h′v = σ(Whv +Uav),

a GRU cell
zv = σ(Wzhv +Uzav),

rv = σ(Wrhv +Uzav),

h̃v = tanh(W(rv � hv) +Uav),

h′v = (1− zv)� hv + zv � h̃v,

or an LSTM cell
iv = σ(Wihv +Uiav +Vicv),

fv = σ(Wfhv +Ufav +Vvcv),

c̃v = tanh(Wchv +Ucav),

c′v = fv � cv + iv � c̃v,

o′v = σ(Wohv +Uoav +Voc
′
v),

h′v = o′v � tanh(c′v).

In the experiments, we used a linear layer in the message functions fe in place of the MLP, and we
set the dimensionality of the outputs to be twice the dimensionality of the node state vectors hu. For
the synthetic graphs and molecules, fe and f ′e share the same set of parameters, while for the parsing
task, fe and f ′e have different parameters. We always use GRU cells in our model. Overall GRU cells
and LSTM cells perform equally well, and both are significantly better than the vanilla RNN cells,
but GRU cells are slightly faster than the LSTM cells.

Note that each round of propagation can be thought of as a graph propagation “layer”. When
propagating for a fixed number of T rounds, we can have tied parameters on all layers, but we found
using different parameters on all layers perform consistently better. We use untied weights in all
experiments.

For aggregating across the graph to get graph representation vectors, we first map the node repre-
sentations hv into a higher dimensional space hGv = fm(hv), where fm is another MLP, and then
hG =

∑
v∈V hGv is the graph representation vector. We found gated sum

hG =
∑
v∈V

gGv � hGv

to be consistently better than a simple sum, where gGv = σ(gm(hv)) is a gating vector. In the
experiments we always use this form of gated sum, and both fm and gm are implemented as a single
linear layer, and the dimensionality of hG is set to twice the dimensionality of hv .

14

Under review as a conference paper at ICLR 2018

B.2 THE OUTPUT MODEL

(a) faddnode(G) This module takes an existing graph as input and produce a binary (non-typed
nodes) or categorical output (typed nodes). More concretely, after obtaining a graph representation
hG, we feed that into an MLP fan to output scores. For graphs where the nodes are not typed, we
have fan(hG) ∈ R and the probability of adding one more node is

faddnode(G) = p(add one more node|G) = σ(fan(hG)).

For graphs where the nodes can be one of K types, we make fan output a K + 1-dimensional vector
fan(hG) ∈ RK+1, and

p̂ = [p̂1, ..., p̂K+1]
> = fan(hG)

pk =
exp(p̂k)∑
k′ exp(p̂

′
k)
, ∀k

then
p(add one more node with type k|G) = pk.

We add an extra type K + 1 to represent the decision of not adding any more nodes.

In the experiments, fan is always implemented as a linear layer and we found this to be sufficient.

(b) faddedge(G, v) This module takes the current graph and a newly added node v as input and
produces a probability of adding an edge. In terms of implementation it is treated as exactly the same
as (a), except that we add the new node into the graph first, and use a different set of parameters both
in the propagation module and in the output module where we use a separate fae in place of fan.
This module always produces Bernoulli probabilities, i.e. probability for either adding one edge or
not. Typed edges are handled in (c).

(c) fnodes(G, v) This module picks one of the nodes in the graph to be connected to node v. After
propagation, we have node representation vectors h(T)

u for all u ∈ V , then a score su ∈ R for each
node u is computed as

su = fs(h
(T)
u ,h(T)

v) = MLP(concat([h(T)
u ,h(T)

v])),

The probability of a node being selected is then a softmax over these scores

pu =
exp(su)∑
u′ exp(su′)

.

For graphs with J types of edges, we produce a vector su ∈ RJ for each node u, by simply changing
the output size of the MLP for fs. Then the probability of a node u and edge type j being selected is
a softmax over all scores across all nodes and edge types

pu,j =
exp(su,j)∑

u′,j′ exp(su′,j′)
.

B.3 INITIALIZATION AND CONDITIONING

When a new node v is created, its node vector hv need to be initialized. In our model the node
vector hv is initialized using inputs from a few different sources: (1) a node type embedding or any
other node features that are available; (2) a summary of the current graph, computed as a graph
representation vector after aggregation; (3) any conditioning information, if available.

Among these, (1) node type embedding e comes from a standard embedding module; (2) is imple-
mented as a graph aggregation operation, more specifically

hinit
G =

∑
v∈V

ginit
v � hinit

v

where ginit
v and hinit

v are the gating vectors and projected node state vectors as described in B.1, but
with different set of parameters; (3) is a conditioning vector c if available.

15

Under review as a conference paper at ICLR 2018

hv is then initialized as

hv = finit(e,h
init
G , c) = MLP(concat([e,hinit

G , c])).

The conditioning vector c summarizes any conditional input information, for images this can be the
output of a convolutional neural network, for text this can be the output of an LSTM encoder. In the
parse tree generation task, we employed an attention mechanism similar to the one used in Vinyals
et al. (2015c).

More specifically, we used an LSTM to obtain the representation of each input word hci , for i ∈
{1, ..., L}. Whenever a node is created in the graph, we compute a query vector

hqG =
∑
v∈V

gqv � hqv

which is again an aggregate over all node vectors. This query vector is used to compute a score for
each input word as

uci = v> tanh(Whci +UhqG),

these scores are transformed into weights

ac = Softmax(uc),

where ac = [ac1, ..., a
c
L]
> and uc = [uc1, ..., u

c
L]
>. The conditioning vector c is computed as

c =
∑
i

acih
c
i .

B.4 LEARNING

For learning we have a set of training graphs, and we train our model to maximize the expected joint
likelihood Epdata(G)Epdata(π|G)[log p(G, π)] as discussed in Section 3.4.

Given a graph G and a specified ordering π of the nodes and edges, we can obtain a particular graph
generating sequence (Appendix A shows an example of this). The log-likelihood log p(G, π) can
then be computed for this sequence, where the likelihood for each individual step is computed using
the output modules described in B.2.

For pdata(π|G) we explored two possibilities: (1) canonical ordering in the particular domain; (2)
uniform random ordering. The canonical ordering is a fixed ordering of a graph nodes and edges
given a graph. For molecules, the SMILES string specified an ordering of nodes and edges which
we use as the canonical ordering. In the implementation we used the default ordering provided in
the chemical toolbox rdkit as the canonical ordering. For parsing we tried two canonical orderings,
depth-first-traversal ordering and breadth-first-traversal ordering. For uniform random ordering we
first generate a random permutation of node indices which gives us the node ordering, and then sort
the edges according to the node indices to get edge ordering. When evaluating the marginals we take
the permutations on edges into account as well.

C MORE EXPERIMENT DETAILS AND RESULTS

In this section we describe more detailed experiment setup and present more experiment results not
included in the main paper.

C.1 SYNTHETIC GRAPH GENERATION

For this experiment the hidden size of the LSTM model is set to 64 and the size of node states in the
graph model is 16, number of propagation steps T = 2.

For both models we selected the learning rates from {0.001, 0.0005, 0.0002} on each of the three
sets. We used the Adam (Kingma & Ba, 2014) optimizer for both.

16

Under review as a conference paper at ICLR 2018

C.2 MOLECULE GENERATION

Model Details Our graph model has a node state dimensionality of 128, the LSTM models have
hidden size of 512. The two models have roughly the same number of parameters (around 2
million). Our graph model uses GRU cores as fn, we have tried LSTMs as well but they perform
similarly as GRUs. We have also tried GRUs for the baselines, but LSTM models work slightly
better. The node state dimensionality and learning rate are chosen according to grid search in
{32, 64, 128, 256} × {0.001, 0.0005, 0.0002, 0.0001}, while for the LSTM models the hidden size
and learning rate are chosen from {128, 256, 512, 1024}×{0.001, 0.0005, 0.0002}. The best learning
rate for the graph model is 0.0001, while for the LSTM model the learning rate is 0.0002 or 0.0005.
The LSTM model used a dropout rate of 0.5, while the graph model used a dropout rate of 0.2 which
is applied to the last layer of the output modules. As discussed in the main paper, the graph model is
significantly more unstable than the LSTM model, and therefore a much smaller learning rate should
be used. The number of propagation steps T is chosen from {1, 2}, increasing T is in principle
beneficial for the graph representations, but it is also more expensive. For this task a small T is
already showing a good performance so we didn’t explore much further. Overall the graph model is
roughly 2-3x slower than the LSTM model with similar amount of parameters in our comparison.

Distribution of chemical properties for samples Here we examine the distribution of chemical
metrics for the valid samples generated from trained models. For this study we chose a range of
chemical metrics available from RDKit (2006), and computed the metrics for 100,000 samples
generated from each model. For reference, we also computed the same metrics for the training set,
and compare the sample metrics with the training set metrics.

For each metric, we create a histogram to show its distribution across the samples, and compare the
histogram to the histogram on the training set by computing the KL divergence between them. The
results are shown in Figure 7. Note that all models are able to match the training distribution on these
metrics quite well, notably the graph model and LSTM model trained on permuted node and edge
sequences has a bias towards generating molecules with higher SA scores which is a measure of the
ease of synthesizing the molecules. This is probably due to the fact that these models are trained to
generate molecular graphs in arbitrary order (as apposed to following the canonical order that makes
sense chemically), therefore more likely to generate things that are harder to synthesize. However,
this can be overcome if we train with RL to optimize for this metric. The graph model trained with
permuted nodes and edges also has a slight bias toward generating larger molecules with more atoms
and bonds.

We also note that the graph and LSTM models trained on permuted nodes and edge sequences can
still be improved as they are not even overfitting after 1 million training steps. This is because with
node and edge permutation, these models see on the order of n! times more data than the other models.
Given more training time these models can improve further.

Changing the bias for faddnode and faddedge Since our graph generation model is very modular, it
is possible to tweak the model after it has been trained. For example, we can tweak a single bias
parameter in faddnode and faddedge to increase or decrease the graph size and edge density.

In Figure 8 (a) we show the shift in the distribution of number of atoms for the samples when changing
the faddnode bias. As the bias changes, the samples change accordingly while the model is still able to
generate a high percentage of valid samples.

Figure 8 (b) shows the shift in the distribution of number of bonds for the samples when changing
the faddedge bias. The number of bonds, i.e. number of edges in the molecular graph, changes as this
bias changes. Note that this level of fine-grained control of edge density in sample generation is not
straightforward to achieve with LSTM models trained on SMILES strings. Note that however here
the increasing the faddedge slightly changed the average node degree, but negatively affected the total
number of bonds. This is because the edge density also affected the molecule size, and when the bias
is negative, the model tend to generate larger molecules to compensate for this change, and when this
bias is positive, the model tend to generate smaller molecules. Combining faddedge bias and faddnode
bias can achieve the net effect of changing edge density.

17

Under review as a conference paper at ICLR 2018

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30

HBA
rg_lstm_perm, KL 0.0074
rg_lstm, KL 0.0013
lstm_perm, KL 0.0005
lstm, KL 0.0024
graph_perm, KL 0.0237
graph, KL 0.0013
training_data

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

HBD
rg_lstm_perm, KL 0.0034
rg_lstm, KL 0.0027
lstm_perm, KL 0.0003
lstm, KL 0.0014
graph_perm, KL 0.0132
graph, KL 0.0077
training_data

25 20 15 10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25
logP

rg_lstm_perm, KL 0.0173
rg_lstm, KL 0.0011
lstm_perm, KL 0.0018
lstm, KL 0.0022
graph_perm, KL 0.0060
graph, KL 0.0080
training_data

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SA

rg_lstm_perm, KL 1.7549
rg_lstm, KL 0.0559
lstm_perm, KL 0.0036
lstm, KL 0.0043
graph_perm, KL 1.0446
graph, KL 0.0252
training_data

0 50 100 150 200 250 300
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

TPSA
rg_lstm_perm, KL 0.0016
rg_lstm, KL 0.0018
lstm_perm, KL 0.0018
lstm, KL 0.0009
graph_perm, KL 0.0031
graph, KL 0.0050
training_data

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0
QED

rg_lstm_perm, KL 0.2054
rg_lstm, KL 0.0011
lstm_perm, KL 0.0010
lstm, KL 0.0011
graph_perm, KL 0.0813
graph, KL 0.0060
training_data

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NumAromaticRings
rg_lstm_perm, KL 0.8577
rg_lstm, KL 0.0190
lstm_perm, KL 0.0010
lstm, KL 0.0040
graph_perm, KL 0.1327
graph, KL 0.0109
training_data

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30
NumAtoms

rg_lstm_perm, KL 0.0083
rg_lstm, KL 0.0052
lstm_perm, KL 0.0918
lstm, KL 0.0918
graph_perm, KL 0.1038
graph, KL 0.1035
training_data

0 5 10 15 20 25 30
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

NumBonds
rg_lstm_perm, KL 0.0107
rg_lstm, KL 0.0024
lstm_perm, KL 0.0233
lstm, KL 0.0245
graph_perm, KL 0.1281
graph, KL 0.0398
training_data

Figure 7: Distribution of chemical properties for samples from different models and the training set.
rg_lstm: LSTM trained on fixed graph generation decision sequence; rg_lstm_perm: LSTM trained on
permuted graph generation decision sequence; lstm: LSTM on SMILES strings; lstm_perm: LSTM
on SMILES strings with permuted nodes; graph: graph model on fixed node and edge sequence;
graph_perm: graph model on permuted node and edge sequences.

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

NumAtoms
graph_perm_nb-2, valid 96.40%
graph_perm_nb-1, valid 96.25%
graph_perm_nb1, valid 95.63%
graph_perm_nb2, valid 95.18%
graph_perm, valid 95.98%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
AvgNodeDegree

graph_perm_eb-2, valid 94.45%
graph_perm_eb-1, valid 95.69%
graph_perm_eb1, valid 96.24%
graph_perm_eb2, valid 94.20%
graph_perm, valid 95.98%

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

NumBonds
graph_perm_eb-2, valid 94.45%
graph_perm_eb-1, valid 95.69%
graph_perm_eb1, valid 96.24%
graph_perm_eb2, valid 94.20%
graph_perm, valid 95.98%

(a) shift faddnode bias (b) shift faddedge bias (c) shift faddedge bias

Figure 8: Changing the faddnode and faddedge biases can affect the generated samples accordingly,
therefore achieving a level of fine-grained control of sample generation process. nb<bias> and
eb<bias> shows the bias values added to the logits.

Step-by-step molecule generation visualization Here we show a few examples for step-by-step
molecule generation. Figure 9 shows an example of such step-by-step generation process for a graph
model trained on canonical ordering, and Figure 10 shows one such example for a graph model
trained on permuted random ordering.

Overfitting the Canonical Ordering When trained with canonical ordering, our model will adapt
its graph generating behavior to the ordering it is being trained on, Figure 9 and Figure 10 show
examples on how the ordering used for training can affect the graph generation behavior.

On the other side, training with canonical ordering can result in overfitting more quickly than training
with uniform random ordering. In our experiments, training with uniform random ordering rarely

18

Under review as a conference paper at ICLR 2018

O

O

C

O

C

O

C

C

O

C

C

(1) (2) (3) (4) (5)
O

C

C

C

O

C

C

C

O

C

C

C

C

O

C

C

C

C

O

C

C

C

C

C

(6) (7) (8) (9) (10)
O

C

C

C

C

C

O

C

C

C

C

C

C

O

C

C

C

C

C
C

O

C

C

C

C

C
C

Br

O

C

C

C

C

C
C

Br

(11) (12) (13) (14) (15)
O

C

C

C

C

C
C

Br

C

O

C

C

C

C

C
C

Br

C

O

C

C

C

C

C
C

Br

C

C

O

C

C

C

C

C
C

Br

C

C

O

C

C

C

C

C
C

Br

C

C

(16) (17) (18) (19) (20)
O

C

C

C

C

C
C

Br

C

C

N O

C

C

C

C

C
C

Br

C

C

N

O

C

C

C

C

C
C

Br

C

C

N

C

O

C

C

C

C

C
C

Br

C

C

N

C

O

C

C

C

C

C
C

Br

C

C

N

C

C

(21) (22) (23) (24) (25)

O

C

C

C

C

C
C

Br

C

C

N

C

C

O

C

C

C

C

C
C

Br

C

C

N

C

CC

O

C

C

C

C

C
C

Br

C

C

N

C

CC

O

C

C

C

C

C
C

Br

C

C

N

C

CC

C

O

C

C

C

C

C
C

Br

C

C

N

C

CC

C

(26) (27) (28) (29) (30)

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C
C

(31) (32) (33) (34) (35)

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C
C

O
C

C

C

C

C
C

Br

C

C

N
C

CC
C

C C
C

(36) (37)

Figure 9: Step-by-step generation process visualization for a graph model trained with canonical
ordering.

overfits at all, but with canonical ordering the model overfits much more quickly. Effectively, with
random ordering the model will see potentially factorially many possible orderings for the same
graph, which can help reduce overfitting, but this also makes learning harder as many orderings do
not exploit the structure of the graphs at all.

19

Under review as a conference paper at ICLR 2018

Another interesting observation we have about training with canonical ordering is that models trained
with canonical ordering may not assign the highest probabilities to the canonical ordering after
training. From Table 3 we can see that the log-likelihood results for the canonical ordering (labeled
“fixed ordering”) is not always the same as the best possible ordering, even though they are quite
close.

Figure 11 shows an example histogram of negative log-likelihood log p(G, π) across all possible
orderings π for a small molecule under a model trained with canonical ordering. We can see that
the small negative log-likelihood values concentrate on very few orderings, and a large number
of orderings have significantly larger NLL. This shows that the model can learn to concentrate
probabilities to orderings close to the canonical ordering, but it still “leaks” some probability to other
orderings.

C.3 PARSING TASK

Model Details In this experiment we used a graph model with node state dimensionality of 64,
and an LSTM encoder with hidden size 256. Attention over input is implemented using a graph
aggregation operation to compute a query vector and then use it to attend to the encoder LSTM states,
as described in B.3. The baseline LSTM models have hidden size 512 for both the encoder and
the decoder. Dropout of 0.5 is applied to both the encoder and the decoder. For the graph model
the dropout in the decoder is reduced to 0.2 and applied to various output modules and the node
initialization module. The baseline models have more than 2 times more parameters than the graph
model (52M vs 24M), mostly due to using a larger encoder.

The node state dimensionality for the graph model and the hidden size of the encoder LSTM is chosen
from a grid search {16, 32, 64, 128} × {128, 256, 512}. For the LSTM seq2seq model the size of the
encoder and decoder are always tied and selected from {128, 256, 512}. For all models the learning
rate is selected from {0.001, 0.0005, 0.0002}.
For the LSTM encoder, the input text is always reversed, which empirically is silghtly better than the
normal order.

For the graph model we experimented with T ∈ {1, 2, 3, 4, 5}. Larger T can in principle be beneficial
for getting better graph representations, however this also means more computation time and more
instability. T = 2 results in a reasonable balance for this task.

20

Under review as a conference paper at ICLR 2018

C

C

C

C

C

C

C

C

C

C

C

C

C

C

N

(1) (2) (3) (4) (5)

C

C

C

C

N

C

C

C

C

C

N

C

C

C

C

C

N

C

C

C

C

C

C

N

C

C
O

C

C

C
C

N
C

C
O

C

(6) (7) (8) (9) (10)

C

C

C
C

N
C

C
O

C

C

C

C
C

N
C

C
O

C

C

C

C

C
C

N
C

C
O

C

C

C

C

C
C

N
C

C
O

C

C

C

C

C

C
C

N
C

C
O

C

C

C

(11) (12) (13) (14) (15)

C

C

C

C

N
C

C
O

C

C

C

C
C

C

C

C

N
C

C
O

C

C

C

C
C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

(16) (17) (18) (19) (20)

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

(21) (22) (23) (24) (25)

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O
C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

(26) (27) (28) (29) (30)

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

(31) (32) (33) (34) (35)

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

C

C

C
C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C

(36) (37) (38) (39) (40)

C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C C
C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C C
C

C

C

C

N
C

C
O

C

C

C

C

Cl

C

O

C

O

C

C

C C

(41) (42) (43)

Figure 10: Step-by-step generation process visualization for a graph model trained with permuted
random ordering.

21

Under review as a conference paper at ICLR 2018

Figure 11: Histogram of negative log-likelihood log p(G, π) under different orderings π for one small
molecule under a model trained with canonical ordering.

22

	Introduction
	Related Work
	Model
	The Sequential Graph Generation Process
	Propagation on Graphs and Graph Representations
	Probabilities of Structure Building Decisions
	Training and Evaluation

	Experiments
	Generation of Graphs with Certain Topological Properties
	Molecule Generation
	Parse Tree Generation

	Discussions and Future Directions
	Conclusion
	Graph Generation Process
	Model Implementation Details
	The Propagation Model
	The Output Model
	Initialization and Conditioning
	Learning

	More Experiment Details and Results
	Synthetic Graph Generation
	Molecule Generation
	Parsing Task

