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Abstract

Offline imitation learning enables learning a policy solely from a set of expert demonstrations,
without any environment interaction. To alleviate the issue of distribution shift arising due
to the small amount of expert data, recent works incorporate large numbers of auxiliary
demonstrations alongside the expert data. However, the performance of these approaches
rely on assumptions about the quality and composition of the auxiliary data, and they are
rarely successful when those assumptions do not hold. To address this limitation, we propose
Robust Offline Imitation from Diverse Auxiliary Data (ROIDA). ROIDA first identifies high-
quality transitions from the entire auxiliary dataset using a learned reward function. These
high-reward samples are combined with the expert demonstrations for weighted behavioral
cloning. For lower-quality samples, ROIDA applies temporal difference learning to steer the
policy towards high-reward states, improving long-term returns. This two-pronged approach
enables our framework to effectively leverage both high and low-quality data without any
assumptions. Extensive experiments validate that ROIDA achieves robust and consistent
performance across multiple auxiliary datasets with diverse ratios of expert and non-expert
demonstrations. ROIDA effectively leverages unlabeled auxiliary data, outperforming prior
methods reliant on specific data assumptions.

1 Introduction

Integration of deep neural networks in reinforcement learning (RL), coupled with the development of efficient
training algorithms, has yielded remarkable performance across a wide variety of sequential decision-making
tasks, such as playing games (Mnih et al., 2015; Silver et al., 2017; 2018) and solving complex robotics
tasks (Duan et al., 2016; Levine et al., 2016; Kaufmann et al., 2023). Despite this progress, two challenges
still remain: the need for extensive environment interactions (Levine et al., 2020), and the inherent difficulty
in designing reward functions for complex real-world tasks (Abbeel & Ng, 2004).

Imitation learning (IL), where an agent learns directly from task demonstrations, has been employed as one
way to tackle the aforementioned challenges (Abbeel & Ng, 2004; Ross & Bagnell, 2010; Ho & Ermon, 2016).
IL methods can be categorized as online or offline. Online IL algorithms rely on experiences gathered from
the environment by executing intermediate policies during training (Ho & Ermon, 2016; Kostrikov et al.,
2019). However, online interaction may be infeasible, unsafe, or expensive in many real-world settings. Offline
IL provides a safer alternative, where agents learn solely from pre-collected expert demonstrations without
environmental interaction. Offline IL methods like behavioral cloning (BC) (Bojarski et al., 2016) remove the
need for online experience. However, offline imitation remains vulnerable to distribution shifts as a result of
error accumulation over time (Ross et al., 2011).

To address the challenge of distribution shift, recent offline IL methods incorporate a substantial number of
auxiliary imperfect demonstrations alongside expert demonstrations. These auxiliary demonstrations are
not expected to meet any optimality criteria, encompassing a mix of expert, near-expert, and non-expert
trajectories. A recent work, DWBC (Xu et al., 2022), treats this auxiliary data as a mixture of expert and sub-
optimal data, and trains a discriminator for weighted behavioral cloning. On the other hand, DemoDICE (Kim
et al., 2022) performs state-action distribution matching on the auxiliary data as a regularization term, in
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addition to matching the distribution over the expert set by solving a convex optimization problem in the
dual space. Both methods share the assumption that some high-reward behavioral data are present in the
auxiliary dataset, and consequently, utilize only these expert transitions for policy learning by filtering out
the non-expert trajectories. However, as shown in Fig. 1, their performance fluctuates as the proportion of
expert data in the auxiliary set varies, since they fail to leverage the information available in the non-expert
data. Although non-expert data may not explicitly provide knowledge of the optimal policy, it contains
substantial dynamics information for the agent. In practical scenarios, it is highly unlikely that the quality
of the demonstration data in the auxiliary dataset will be known a priori. Thus, we design an offline IL
algorithm that is more robust to the demonstration quality in the auxiliary data. Our approach does not
make any assumptions about the quality of the auxiliary data and achieves reasonably consistent performance
as the proportion of high quality to low quality data varies, as shown in Fig. 1.
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Figure 1: Robustness to composition of auxiliary data.
Performance of existing offline IL algorithms, such as DWBC (Xu
et al., 2022), varies significantly depending on the amount of high-
quality transitions present in the auxiliary data (given expert set
is kept fixed). In contrast, ROIDA is more robust, highlighting its
ability to extract information even from low-quality transitions.
The setup shown here is on the Hopper environment; refer to
Sec. 5 for details.

In this paper, we present Robust Offline
Imitation from Diverse Auxiliary Data
(ROIDA), an algorithm that combines the
simplicity of BC with the capability of of-
fline RL to leverage transition data of
varying quality in the auxiliary dataset.
ROIDA does not impose any assump-
tions on the composition of the auxiliary
dataset, and can effectively utilize diverse
auxiliary datasets encompassing different
ratios of expert and non-expert demon-
strations. To achieve this, we identify
potential expert state-action pairs in the
auxiliary set and assign large weights to
these samples in the subsequent weighted
BC objective. This involves two key steps:
1) training a discriminator to distinguish
between expert and non-expert transi-
tions using Positive-Unlabeled (PU) learn-
ing (Elkan & Noto, 2008), and 2) applying
weighted BC to all state-action pairs in
the auxiliary data, with weights derived
from importance sampling ratios based
on thresholded scores provided by the dis-
criminator. However, as previously men-
tioned, the auxiliary dataset may lack ex-
pert state-action pairs. To address sub-optimal transitions, we perform temporal difference learning using the
importance sampling ratios from the discriminator as rewards. This approach aims to guide the policy toward
the expert states, thereby improving long-term returns (as measured by the discriminator) on states not
observed by experts. This guidance allows ROIDA to extract value from low-quality transitions, in addition
to expert behaviors, in contrast to previous works.

Experiments on the D4RL benchmark (Fu et al., 2020) show that ROIDA consistently achieves high
performance across seven environments, using auxiliary datasets with varying proportions of expert data.
This consistent success highlights ROIDA’s ability to leverage diverse unlabeled data without assumptions
on data quality. In contrast, existing offline IL methods perform well only in selective scenarios that match
their specific assumptions about the data composition. Our approach is the first to relax the data quality
assumptions of the auxiliary dataset, utilizing it to gain comprehensive knowledge about the expert policy
and the environment. No other method fully utilizes both the expert and sub-optimal demonstrations in the
auxiliary data for policy learning, leading to suboptimal performance.

To summarize, our primary contributions are as follows:
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1. We analyze state-of-the-art (SOTA) offline IL methods that utilize auxiliary data along with a
small expert set. Our empirical analysis highlights the unrealistic assumptions of these methods,
particularly regarding the composition of the auxiliary set. With this in mind, we design an offline
IL algorithm, ROIDA, that addresses the limitations of these different methods and remains robust
to the quality of demonstrations in the auxiliary dataset.

2. ROIDA incorporates PU learning alongside temporal difference learning to effectively utilize both
expert and sub-optimal transitions in the auxiliary data.

3. We empirically validate that ROIDA is robust to the quality of the auxiliary data and consistently
achieves high performance across different environments.

2 Related Works

2.1 Imitation learning

Imitation learning (Schaal, 1999) leverages expert demonstrations to train a policy that successfully mimics
the expert’s behavior. A common approach is behavioral cloning (BC) (Pomerleau, 1989; Bojarski et al.,
2016), which frames policy learning as a supervised learning problem. However, BC exhibits sub-optimal
performance in states distant from the training data (Ross et al., 2011). Alternatively, inverse reinforcement
learning (IRL) first learns a reward function to explain the demonstrated actions before using it to train a
policy through any RL algorithm. While popular IRL algorithms (Ho & Ermon, 2016; Fu et al., 2017; Abbeel
& Ng, 2004; Ziebart et al., 2008) can outperform BC, the majority are online methods requiring a substantial
number of environment interactions during training, resulting in poor sample efficiency. To circumvent the
need for environment interactions, several offline IRL methods (Kostrikov et al., 2019; Swamy et al., 2021;
Garg et al., 2021) based on adversarial training have been proposed. However, these approaches assume
that all demonstrations are equally good, resulting in performance degradation when demonstrations contain
sub-optimal data, as in our case.

2.2 Learning from noisy demonstrations

Various approaches have been introduced to address the challenge of imitation learning from sub-optimal
or noisy experts (Wu et al., 2019; Tangkaratt et al., 2020; Brown et al., 2019; Wang et al., 2021; Sasaki
& Yamashina, 2021). However, many of these works rely on strong assumptions about the dataset, such
as the expert data dominating the majority of the offline dataset (Sasaki & Yamashina, 2021) or defining
sub-optimality as additive Gaussian noise to the action (Tangkaratt et al., 2020). Other works assume that
trajectories are provided with labels indicating degree of optimality (Wu et al., 2019; Wang et al., 2021) or
preference rankings between trajectory pairs (Brown et al., 2019). Furthermore, these approaches require
environment interactions during learning while we focus on the offline setting.

The offline IL setup with an auxiliary dataset was first explored in DemoDICE (Kim et al., 2022). DemoDICE
conducts state-action distribution matching over the expert set and introduces a regularization constraint to
ensure the learned policy remains close to the behavior policy of the auxiliary dataset. DWBC (Xu et al.,
2022) treats the auxiliary data as a mixture of expert and sub-optimal data, and utilizes positive-unlabeled
learning to train a discriminator for weighted behavioral cloning. Both approaches encounter challenges
when the auxiliary data is highly sub-optimal and might even exhibit inferior performance compared to
counterparts utilizing only expert data. In a recent work (Shao et al., 2023), the authors propose an offline
IL algorithm specifically for cases where no expert data is present in the auxiliary dataset. This approach
assigns a reward of 1 to the expert transitions and 0 to all auxiliary transitions, employing an offline RL
approach alongside BC. While this design can enhance performance when there is no expert data in the
auxiliary dataset, the assignment of zero reward to all auxiliary transitions can lead to poor performance
when the proportion of experts in the auxiliary dataset is increased. In practical settings, it is highly unlikely
that the data quality in the auxiliary dataset will be known beforehand. With this in mind, we design an
offline IL algorithm that addresses the limitations of these different approaches and remains robust to the
quality of demonstrations in the auxiliary dataset.
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2.3 Offline reinforcement learning

Offline RL (Levine et al., 2020) aims to learn policies by utilizing static offline datasets without requiring
additional interactions with the environment. Notably, in offline RL, the training dataset is permitted to
contain non-optimal trajectories, and the reward for each state-action-next state transition triplet is known.
Our algorithm takes inspiration from a subset of methods within the offline RL literature, specifically those
employing filtered advantage weighted regression (Peng et al., 2019; Wang et al., 2020; Nair et al., 2020) and
behavioral cloning augmented off-policy learning (Fujimoto & Gu, 2021) In another recent work, UDS (Yu
et al., 2022) utilizes an auxiliary set without reward labels in addition to the usual reward labeled offline RL
dataset. The approach applies zero rewards uniformly to any unlabeled data and can be effective in highly
specific offline RL scenarios. Different from this related work, we do not have access to any reward-labeled
dataset in the offline IL setting.

3 Problem Setting

We formulate our problem using the standard fully-observable Markov Decision Process (MDP) frame-
work (Sutton & Barto, 2018). An MDP M is characterized by the tuple (S, A, T , r, γ, p0), where S denotes
the state space, p0 denotes the initial state distribution, and A represents the action space. At each time
step t, given a state st ∈ S, the agent selects an action at ∈ A according to its policy π(at|st) ∈ ∆(A),
where ∆(A) denotes the probability simplex over A. Following the execution of action at, the MDP transi-
tions to a new state st+1 ∈ S based on the transition probability T (st+1|st, at), while the agent receives a
reward r(st, at) ∈ R. The primary objective for the agent is to maximize the expected discounted reward
E [

∑
t γtr(st, at)] with discount factor γ ∈ [0, 1]. The state-action distribution of this policy π under the

transition function T is defined as dπ = (1 − γ)
∑

t γtdπ
t , where dπ

t is the distribution of (st, at) under π at
step t.

In the offline IL setup we do not have access to the reward function r. Instead, we utilize a set of demonstrations
provided by an expert policy πE in the form of a dataset of expert tuples DE = {(si, ai, s′

i)}NE
i=0, where (s, a)

is sampled from dπE and s′ is sampled from T (s′|s, a). Additionally, we assume access to a substantial
amount of pre-collected demonstrations DO = {(si, ai, s′

i)}NO
i=0 gathered by some unknown behavior policy

from the distribution dπO (NO ≫ NE). It is important to note that these tuples are not presumed to satisfy
any optimality criteria for the specific task at hand. Given this expert set DE and the auxiliary set DO, our
objective is to learn a policy π∗ capable of maximizing the unknown reward r, without the need for direct
interaction with the environment.

4 Method

4.1 Overview

As discussed in Sec. 3, the auxiliary demonstrations are not expected to adhere to any optimality criteria,
and can contain a mix of expert, near-expert, and non-expert trajectories. Existing methods rely on
certain assumptions about the quality of this data to effectively utilize them. DWBC (Xu et al., 2022) and
DemoDICE (Kim et al., 2022) assume the presence of high-reward expert data in the auxiliary dataset. In
practice, knowing the data quality in the auxiliary dataset beforehand is highly unlikely. Thus, we propose
ROIDA to effectively leverage transition data of varying quality in the auxiliary dataset. ROIDA uses two
key ideas to achieve this.

First, ROIDA aims to emulate expert behavior by considering both expert demonstrations and any task-
optimal state-action pairs present in the auxiliary dataset. To accomplish this, we employ a discriminator
d(s, a) trained using PU learning to approximate a reward r̃(s, a) for each state-action tuple in the auxiliary
set (Sec. 4.2). This reward assesses the optimality of each data point in the auxiliary set compared to the
expert set. When the reward surpasses a designated threshold, ROIDA includes the corresponding instance
as an approximate expert data point, applying weighted BC on this sample with the discriminator output
acting as the weight (Sec. 4.3).
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Stage 1: Reward model training

Stage 2: Policy training

Figure 2: Framework overview. ROIDA first
learns a reward function using PU learning. It
then identifies high-reward expert-like transitions
and combines them with the expert data for
weighted BC (Sec. 4.2,4.3). To extract value from
lower quality samples, ROIDA applies TD learn-
ing, steering the policy towards high reward states
(Sec. 4.4). By combining weighted BC and TD
learning, ROIDA effectively leverages uncurated
offline data.

However, the auxiliary dataset may contain a significant
number of state-action pairs that do not exceed this re-
ward threshold. Rather than completely excluding these
samples from optimization, ROIDA incorporates its sec-
ond critical element: leveraging the transition information
in the data via temporal difference learning, using the
estimated rewards (Sec. 4.4). This approach aims to steer
the policy toward high-reward states, thereby enhancing
long-term returns on states for which optimal actions are
not readily available. This two-pronged guidance enables
ROIDA to extract value from low-quality transitions in
addition to expert behavior, without imposing any assump-
tions on auxiliary dataset composition. Fig. 2 presents an
overview of our approach.

4.2 Learning a reward model

In order to perform both weighted BC and temporal dif-
ference learning on the auxiliary dataset, we construct a
reward model by training a discriminator d(s, a) to dis-
cern between expert and sub-optimal transitions. Unlike
prior approaches (Ho & Ermon, 2016; Kim et al., 2022)
that treat this as a standard binary classification task,
designating all samples from DO as negative, we opt for
PU learning in the discriminator training process. This
decision is driven by the potential presence of expert transi-
tions within the auxiliary dataset. As a result, we consider
the auxiliary dataset as an unlabeled set, encompassing
both positive samples (expert state-action transitions) and
varied negative samples (non-expert transitions), with the
expert dataset serving as the labeled positive dataset.

The core idea in PU learning is to re-weight the different
losses for the positive and the unlabeled data in an effort
to derive an estimate of the model loss on negative sam-
ples, which is not directly accessible. Due to the limited
amount of expert data, we use a non-negative risk estima-
tor described in (Kiryo et al., 2017) in order to make the
discriminator more robust:

min
d

η E
(s,a)∼DE

[− log d(s, a)]+max
(

0, E
(s,a)∼DO

[− log(1 − d(s, a))] −η E
(s,a)∼DE

[− log(1 − d(s, a))]
)

.

(1)

Here, η is a hyperparameter that represents the positive class prior.

Given the trained discriminator, we calculate the reward for each state-action tuple in the auxiliary dataset
as follows,

r̃(s, a) = log d(s, a)
1 − d(s, a) , (2)

where d(s, a) is clipped to the range of [0.1, 0.9] to prevent unbounded rewards. All samples in DE are
assigned a value of d(s, a) = 0.9 and the reward is calculated accordingly.

The specific form of the reward is inspired by DICE (DIstribution Correction Estimation) approaches (Kim

et al., 2022; Ma et al., 2022) which try to estimate log dπE (s, a)
dπO (s, a) . This ratio serves as an indicator for the
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importance of a state-action tuple; higher values mean that the expert often takes the action a at state s.
While DICE methods perform this estimation by training a simple binary classifier, we use PU learning to
train a more robust discriminator to prevent treating expert samples from DO as negatives.

4.3 Reward-weighted behavioral cloning

Using the rewards obtained from the discriminator, we can identify the expert transitions in the auxiliary
dataset for policy training. Instead of directly employing the rewards as weights, we employ a direct
thresholding scheme to exclude highly sub-optimal state-action tuples. Finally, we use the filtered samples,
alongside those from the expert dataset, to perform weighted behavioral cloning:

min
π

E
(s,a)∼DE

[− log π(a|s)] + α E
(s,a)∼DO

[− log π(a|s) · r̃(s, a) · 1[r̃ > τ ]] . (3)

Here, τ is a hyperparameter that governs the strength of thresholding and helps balance between excluding
sub-optimal transitions and incorporating expert transitions from the auxiliary dataset. Hyperparameter
α is used to weigh in the overall BC loss from the auxiliary dataset. The auxiliary dataset may include
state-action pairs which fall below the reward threshold. Instead of discarding them, we integrate these
samples into the training process via temporal difference (TD) learning, as elaborated below.

4.4 TD learning using learned rewards

Despite not meeting the reward threshold, sub-optimal state-action tuples possess the potential to enhance
the learned policy, augmenting its robustness against distribution shifts during deployment. This is due to
the broader coverage of the state space within the auxiliary dataset, surpassing the limited span of the small
expert dataset. In the absence of access to expert behavior in these states for direct learning, we employ
a shortest path strategy to leverage these samples. More precisely, our objective on these states is to steer
the policy toward states observed by the expert and subsequently imitate the expert’s behavior accordingly.
To accomplish this, we use a TD3-style (Fujimoto & Gu, 2021) algorithm to learn a Q-function using the
approximated rewards and then direct the policy to maximize the long-term return on these expert-unobserved
states. The Q-function is learned as follows,

argmin
Q

∑
(s,a,s′)∼DE∪DO

∥BπQ(s, a) − Q(s, a)∥2 , (4)

where Bπ denotes the Bellman operator, that is

BπQ(s, a) = r̃(s, a) + γ
∑

a′∈A

[π(a′|s′)Q(s′, a′)] . (5)

Using this Q-function we can formulate our refined policy learning objective as

min
π

E
(s,a)∼DE

[− log π(a|s)] + α E
(s,a)∼DO

[− log π(a|s) · r̃(s, a) · 1[r̃ > τ ]] + β E
s∼DE∪DO

[−Q(s, π(s))] . (6)

Here, β is a hyperparameter which controls the contribution of the Q-loss. By maximizing this Q-function
alongside the weighted BC objective, we incentivize the policy to: 1) act optimally in states where we have
expert actions, and 2) guide the agent efficiently from expert-unobserved states to expert-observed states and
act optimally subsequently.

The pseudo-code for the overall framework is presented in Algorithm 1.

5 Experiments

In this section, we analyze the effectiveness of ROIDA for offline IL by utilizing an unlabeled auxiliary dataset.
We begin by explaining our experimental setup, including the datasets used and the baseline methods for
comparison. Next, we evaluate ROIDA against these baselines across multiple imitation learning scenarios.
Specifically, our experiments aim to answer two key questions:
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Algorithm 1 Robust Offline Imitation from Diverse Auxiliary Data (ROIDA )
Require: Dataset DE and DE , hyperparameter η, α, β, γ

1: Initialize the imitation policy π, the discriminator d and Q-function approximator Q
2: Train discriminator d with non-negative PU learning following Equation 1
3: for t=1 to T do
4: Sample (se, ae) ∼ DE and (so, ao) ∼ DO to form a training batch B
5: Compute log π(a|s) values for samples in B using the learned policy π
6: Compute Q-function output values Q(s, a) using sampled (s, a) and BπQ(s, a) using Equation 5
7: Update Q by minimizing the learning objective given in Equation 4
8: if t mod tfreq then
9: Update π by minimizing the learning objective in Equation 6

10: end if
11: end for

1. How robust is ROIDA when the quality of the auxiliary data varies? (Sec. 5.3.1)

2. How does ROIDA compare to other methods as the size of the expert dataset changes? (Sec. 5.3.2)

In addition to benchmarking against other methods, we perform ablation studies to analyze the contribution
of each component of our framework and its scalability.

5.1 Experimental setup

We conduct experiments on locomotion and manipulation tasks from the D4RL benchmark (Fu et al., 2020).

Locomotion We use 4 MuJoCo environments for the locomotion tasks: hopper, halfcheetah, walker2d, and
ant. For expert demonstrations in each environment, we use the corresponding dataset: hopper-expert-v2,
halfcheetah-expert-v2, walker2d-expert-v2, and ant-expert-v2. For the sub-optimal demonstrations, we source
trajectories from the respective random-v2 datasets. To create DE , we randomly sample 3, 5, or 7 trajectories
per environment depending on the chosen setting. For DO, we create 3 settings per environment: 1000
randomly sampled sub-optimal trajectories plus another 0, 3, or 5 expert trajectories. This allows us to test
our method’s ability to identify and leverage expert demonstrations within different mixes of sub-optimal and
expert data.

Manipulation We evaluate our method on 4 ADROIT manipulation tasks from using a simulated 24 DoF
hand: pen twirling, hammering a nail, opening a door, and relocating a ball. For expert demonstrations,
we sample 50 trajectories from pen-expert-v1, hammer-expert-v1, door-expert-v1, and relocate-expert-v1
respectively. For the sub-optimal demonstrations, we use 1000 trajectories from the datasets pen-cloned-v1,
hammer-cloned-v1, door-cloned-v1, and relocate-cloned-v1, plus 0, 30, or 50 expert trajectories from the
corresponding expert-v1 datasets.

Note that for all the evaluations, we report the average of the mean normalized score for the last 10
evaluations of training over 5 random seeds. Additional implementation details for our method can be
found in Appendix A.2. We also present evaluations using the rliable (Agarwal et al., 2021) framework in
Appendix A.4.

5.2 Baselines

We compare ROIDA against the following algorithms:

• BC-exp: BC-exp denotes behavioral cloning solely on the expert dataset DE . Since DE contains only a
small number of expert demonstrations, training only on this data can lead to degraded performance at
test time due to compounding errors caused by distribution shift.
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• BC-all: In this case, both DE and DO are used to learn the policy. Despite the large number of
demonstrations, a significant portion of them are random or low quality. As a result, the learned policy
tends to be sub-optimal due to the inclusion of poor demonstrations.

• DWBC: DWBC (Xu et al., 2022) treats the auxiliary data as a mixture of expert and sub-optimal data,
and utilizes PU learning to train a discriminator for weighted behavioral cloning. They perform a dual
learning strategy where they alternately train the discriminator and the policy by taking the output of
each model as an input to the other. Due to relying solely on BC, DWBC performs poorly when the
number of expert transitions is low.

• DemoDICE: DemoDICE (Kim et al., 2022) conducts state-action distribution matching over DE and
introduces a regularization constraint to ensure the learned policy remains close to the behavior policy of
DO. It shares the same drawbacks as DWBC due to the second term, resulting in a suboptimal policy
especially when DO contains a large proportion of noisy data.

• ORIL: ORIL (Zolna et al., 2020) first learns a reward function and then performs Critic-Regularized
Regression (Wang et al., 2020) to learn the policy by enriching the data using different augmentation
strategies.

5.3 Results

5.3.1 Varying the quality of auxiliary data

Table 1 demonstrates how imitation performance changes with auxiliary data of different quality levels. The
Setting column denotes the specific quality level; here, x/y indicates using x expert trajectories in DE and
y expert trajectories in DO. We evaluate three auxiliary datasets of increasing quality (higher number of
expert demonstrations) for each of the environments. To evaluate each method’s capacity to extract maximal
information from the auxiliary data, regardless of its quality, we present the average performance across all
these settings (shown in gray).

Our results show that ROIDA significantly outperforms the baselines, achieving the best performance on
21 out of 24 tested scenarios. Most notably, ROIDA attains the highest average performance across all
auxiliary datasets for every environment. As expected, the performance generally increases with higher
quality auxiliary data. However, ROIDA is able to extract substantially more information from the auxiliary
datasets even when those contain lower quality trajectories. This demonstrates the robustness of our approach
across diverse settings, without relying on assumptions about the data. In summary, ROIDA consistently
outperforms baselines, especially with lower-quality auxiliary data. This highlights ROIDA’s effectiveness at
leveraging unlabeled data for offline imitation learning.

The poor BC-exp results highlight the challenge of imitation learning with scarce expert data. BC-all uses all
available offline data for cloning, without accounting for potentially low-quality policies in the unlabeled data.
This often leads to weaker performance than BC-exp.

Although DWBC achieves the second highest average performance, it degrades substantially compared to
ROIDA when auxiliary data quality is poor (5/0 and 5/3). This stems from DWBC’s inability to extract
useful information from poor quality unlabeled demos. In contrast, ROIDA can utilize the auxiliary data
through temporal difference learning, despite poor quality. Both DemoDICE and ORIL perform worse in all
settings.

5.3.2 Varying the size of the expert dataset

In Table 2, we study the effect of varying the size of the expert dataset on policy performance. We hold
the auxiliary dataset fixed, with the number of expert trajectories in DO set to 5, and vary the number of
expert trajectories in DE across 3, 5, and 7. ROIDA achieves comparable performance to DWBC, slightly
outperforming in all 4 environments. As the amount of expert data in DE increases, all the methods improve,
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Table 1: Imitation learning performance on locomotion (first 4 rows) and manipulation (next 4 rows) tasks
from the D4RL benchmark. Results are shown as the number of expert demonstrations in DO is increased.
The best performing method on each task is highlighted in red and the second best in blue.

Env. Setting Method

BC-exp BC-all DemoDICE ORIL DWBC ROIDA

Hopper

5 / 0 2.12 ± 0.26 38.56 ± 8.65 3.83 ± 1.24 72.04 ± 36.82 84.63 ± 16.01
5 / 3 2.38 ± 0.76 51.00 ± 17.65 15.69 ± 18.78 74.62 ± 11.58 86.66 ± 21.94
5 / 5 2.67 ± 1.05 68.82 ± 15.36 17.83 ± 21.72 80.85 ± 23.56 88.45 ± 8.46

Avg. 67.15 ± 16.03 2.39 ± 0.76 52.80 ± 14.40 12.45 ± 16.59 75.84 ± 26.11 86.58 ± 16.42

HalfCheetah

5 / 0 2.25 ± 0.00 2.25 ± 0.00 2.25 ± 0.00 9.02 ± 2.88 15.89 ± 9.60
5 / 3 2.25 ± 0.00 3.20 ± 0.21 2.25 ± 0.00 16.04 ± 6.40 18.73 ± 3.67
5 / 5 2.25 ± 0.00 4.70 ± 0.13 2.25 ± 0.00 21.19 ± 7.53 24.70 ± 4.95

Avg. 8.70 ± 2.83 2.25 ± 0.00 3.38 ± 0.14 2.25 ± 0.00 15.41 ± 5.94 19.78 ± 6.58

Walker2D

5 / 0 1.42 ± 2.28 105.13 ± 3.35 0.65 ± 0.06 106.50 ± 4.09 108.73 ± 0.28
5 / 3 0.31 ± 0.06 107.99 ± 3.52 0.58 ± 0.07 108.09 ± 0.37 108.52 ± 0.21
5 / 5 0.34 ± 0.16 106.32 ± 2.44 10.02 ± 21.00 108.04 ± 0.43 108.79 ± 0.09

Avg. 103.12 ± 11.48 0.69 ± 1.32 106.48 ± 3.14 3.75 ± 12.13 107.54 ± 2.39 108.68 ± 0.21

Ant

5 / 0 31.48 ± 0.07 49.85 ± 6.12 38.31 ± 7.36 61.33 ± 11.26 65.73 ± 25.19
5 / 3 31.49 ± 0.04 51.64 ± 6.86 38.82 ± 21.29 73.03 ± 6.33 77.52 ± 4.98
5 / 5 31.46 ± 0.07 46.97 ± 11.43 37.30 ± 13.98 72.92 ± 22.64 76.68 ± 9.44

Avg. 58.78 ± 2.46 31.48 ± 0.06 49.49 ± 8.47 38.14 ± 15.31 69.10 ± 15.05 73.31 ± 15.79

Pen

50 / 0 10.12 ± 16.08 58.68 ± 14.95 35.79 ± 18.71 88.52 ± 16.14 102.55 ± 8.92
50 / 30 17.32 ± 17.43 68.03 ± 7.26 48.47 ± 17.88 101.45 ± 7.85 97.39 ± 6.91
50 / 50 12.32 ± 16.40 77.46 ± 30.08 33.95 ± 12.94 100.00 ± 16.66 96.41 ± 8.64

Avg. 73.92 ± 10.76 13.25 ± 16.65 68.06 ± 19.84 39.40 ± 16.70 96.66 ± 14.14 98.78 ± 8.21

Door

50 / 0 −0.11 ± 0.05 0.00 ± 0.00 0.02 ± 0.01 6.03 ± 8.21 9.79 ± 14.66
50 / 30 −0.12 ± 0.07 0.03 ± 0.03 0.01 ± 0.01 9.01 ± 8.85 7.29 ± 9.47
50 / 50 −0.08 ± 0.05 0.24 ± 0.48 0.01 ± 0.01 14.89 ± 18.51 17.70 ± 16.42

Avg. 5.59 ± 12.37 −0.10 ± 0.06 0.09 ± 0.28 0.01 ± 0.01 9.98 ± 12.76 11.59 ± 13.84

Hammer

50 / 0 0.27 ± 0.01 7.55 ± 9.78 0.30 ± 0.01 81.82 ± 18.14 118.33 ± 18.71
50 / 30 0.25 ± 0.01 8.28 ± 9.09 0.29 ± 0.01 102.75 ± 29.83 124.71 ± 4.31
50 / 50 0.26 ± 0.01 5.52 ± 4.80 0.29 ± 0.01 110.45 ± 20.49 120.91 ± 5.47

Avg. 73.26 ± 14.89 0.26 ± 0.01 7.12 ± 8.19 0.29 ± 0.01 98.34 ± 23.37 121.32 ± 11.53

Relocate

50 / 0 −0.04 ± 0.04 2.25 ± 0.77 8.44 ± 9.72 35.12 ± 13.59 59.74 ± 19.47
50 / 30 −0.06 ± 0.07 3.24 ± 0.96 11.11 ± 9.47 51.68 ± 11.05 62.45 ± 18.54
50 / 50 −0.04 ± 0.05 2.12 ± 1.81 13.67 ± 9.66 62.94 ± 17.92 71.89 ± 10.50

Avg. 32.97 ± 19.28 −0.05 ± 0.05 2.54 ± 1.26 11.07 ± 9.62 49.91 ± 14.47 64.69 ± 16.67

as expected. In summary, ROIDA maintains competitive performance across varying expert dataset sizes.
Due to space constraints, we present the results on the manipulation tasks in Appendix A.1.2.

5.4 Ablation study

In this section, we conduct ablation studies to validate the importance of each component in ROIDA, and
also benchmark the performance as the scale of the auxiliary dataset is varied.

First, we systematically remove each part of ROIDA and evaluate the resulting performance impact. The abla-
tion results in Table 3 present averaged results across three auxiliary dataset settings: 5/0, 5/3, 5/5 (denoting
different auxiliary data qualities). The full ablation results per setting are presented in Appendix A.1.1.

9



Under review as submission to TMLR

Table 2: Imitation learning performance on locomotion tasks as the number of expert demonstrations in DE

is increased. The best performing method on each task is highlighted in red and the second best in blue.

Environment Setting Method

BC-exp BC-all DemoDICE ORIL DWBC ROIDA

Hopper

3 / 5 74.84 ± 18.88 2.44 ± 1.36 75.75 ± 28.31 17.11 ± 25.33 87.00 ± 14.70 81.53 ± 10.77
5 / 5 67.15 ± 16.03 2.67 ± 1.05 68.82 ± 15.36 17.83 ± 21.72 80.85 ± 23.56 88.45 ± 8.46
7 / 5 78.83 ± 16.52 2.12 ± 0.34 72.57 ± 10.67 23.10 ± 29.66 87.74 ± 3.93 90.88 ± 11.32

Avg. 73.61 ± 17.19 2.41 ± 1.01 72.38 ± 19.59 19.35 ± 25.77 85.20 ± 16.19 86.95 ± 10.26

HalfCheetah

3 / 5 5.40 ± 3.16 2.25 ± 0.00 2.25 ± 0.00 2.25 ± 0.00 7.87 ± 1.12 8.59 ± 0.62
5 / 5 14.50 ± 9.88 2.25 ± 0.00 4.70 ± 0.13 2.25 ± 0.00 21.19 ± 7.53 24.70 ± 4.95
7 / 5 25.75 ± 9.37 2.25 ± 0.00 7.84 ± 4.28 2.25 ± 0.00 31.79 ± 5.76 39.19 ± 2.10

Avg. 15.21 ± 8.07 2.25 ± 0.00 4.93 ± 2.47 2.25 ± 0.00 20.28 ± 5.51 24.16 ± 3.12

Walker2D

3 / 5 94.23 ± 15.91 0.21 ± 0.05 106.84 ± 2.31 6.89 ± 25.02 106.49 ± 3.65 106.95 ± 3.82
5 / 5 103.12 ± 11.48 0.34 ± 0.16 106.32 ± 2.44 10.02 ± 21.00 108.04 ± 0.43 108.79 ± 0.09
7 / 5 108.14 ± 0.55 0.31 ± 0.06 107.64 ± 5.51 21.59 ± 17.22 106.76 ± 3.65 107.71 ± 0.17

Avg. 101.83 ± 11.33 0.29 ± 0.10 106.93 ± 3.72 12.83 ± 21.32 107.10 ± 2.99 107.82 ± 2.21

Ant

3 / 5 43.83 ± 26.82 31.51 ± 0.04 42.09 ± 15.02 26.88 ± 13.50 57.52 ± 12.40 61.43 ± 9.22
5 / 5 58.78 ± 2.46 31.46 ± 0.07 46.97 ± 11.43 37.30 ± 13.98 76.27 ± 26.05 76.68 ± 9.44
7 / 5 80.19 ± 6.22 31.38 ± 0.16 69.10 ± 27.95 52.59 ± 32.42 89.14 ± 10.18 95.19 ± 6.00

Avg. 60.93 ± 15.96 31.45 ± 0.10 52.72 ± 19.47 38.93 ± 21.82 74.31 ± 17.66 77.77 ± 8.37

Table 3: Ablation study on each module’s contribution to final policy performance. For each locomotion
environment the performance is averaged across scenarios containing different number of expert trajectories
in DO (5/0, 5/3, 5/5).

Method Environment

Hopper HalfCheetah Walker2D Ant

ROIDA 86.58 ± 16.42 19.78 ± 6.58 108.68 ± 0.21 73.31 ± 15.79
- w/o reward-weighted BC 67.08 ± 26.34 14.19 ± 5.70 101.27 ± 16.70 60.25 ± 17.14
- w/o modified reward 84.96 ± 9.97 17.61 ± 6.55 104.99 ± 6.60 62.81 ± 13.95

We study the impact of ablating the reward weighted BC component by setting α = 0. Performance drops
indicate the importance of filtering the data using a learned reward model. The precise reward assignment
enables ROIDA to discern the varying quality of transitions in the data and utilize them accordingly.

We also study the impact of the reward function formulation by directly using the discriminator output as
the reward. The results demonstrate that our reward formulation based on the DICE methods improves
policy performance compared to directly using the discriminator rewards.

Second, we study the impact of the reward threshold τ . Our specific reward formulation leads to rewards
in the range [−2.19, 2.19]. Based on this, we decide to set the threshold τ = 1 to strike a balance between
utilizing the “good” transitions in the auxiliary data and neglecting the poor quality transitions. To evaluate
the impact of the threshold on the results, we vary on the Hopper environment as shown in Table 4.

We observe that setting τ = 0 does not impact the results too much due to it being the midpoint of the
reward range. When we increase the threshold to τ = 2 we see a drop in performance in the 5/0 setting
- no experts are present and thus, the majority of the performance increase should come from the “good”
transitions which are rejected due to the high value of the threshold. The performance increase between 5/0
and 5/3 also sheds light on the threshold parameter. When a higher threshold is set, the increase between
the settings is quite high, indicating that the performance improvements are coming mostly from the expert
data in the auxiliary set and not from the “good” transitions.
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Table 4: Performance on the Hopper task as the reward threshold τ is varied.

Setting Reward threshold
τ = 0 τ = 1 (Ours) τ = 2

5 / 0 83.20 ± 24.58 84.63 ± 16.01 70.24 ± 27.75
5 / 3 86.82 ± 6.85 86.66 ± 21.94 81.91 ± 18.33
5 / 5 88.23 ± 11.42 88.45 ± 8.46 90.70 ± 6.88
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Figure 3: Scalability to the size of the auxiliary dataset. We
visualize the performance of ROIDA on the Hopper environment as
the number of random transitions is varied. Here, we show 3 scenarios
corresponding to different proportions of the D4RL random set. This
highlights ROIDA’s ability to learn policies even when the expert and
noisy data ratio is quite imbalanced.

Third, we change the scale of the
auxiliary dataset and analyze the
impact on the results. We achieve
this by including 25%, 50% or 100%
of the entire random set from D4RL
(instead of the fixed 1000 trajecto-
ries in the previous experiments).
As shown in Fig. 3, even with
an increased number of subopti-
mal demonstrations, performance
improves as more expert trajecto-
ries are added. This clearly high-
lights ROIDA’s ability to distinguish
expert data even when the ratio
of expert to noisy data is highly
skewed. We also observe that adding
more auxiliary data while keeping
the number of expert trajectories
fixed slightly improves performance,
indicating ROIDA’s ability to ex-
tract information from suboptimal
data.

6 Conclusion

We propose ROIDA, a simple yet effective framework for offline imitation that can maximize utilization of
an unlabeled auxiliary dataset of unknown quality alongside a small set of expert demonstrations. Unlike
previous methods that make assumptions about auxiliary dataset quality, ROIDA can seamlessly leverage
uncurated, unlabeled offline datasets without relying on any quality assumptions. We demonstrate ROIDA’s
efficacy on multiple manipulation and locomotion tasks, encompassing a wide variety of auxiliary dataset
quality settings. The consistent performance gains over baselines validate ROIDA’s ability to unlock the full
potential of heterogeneous offline datasets without relying on quality assumptions.

Broader impact statement

Training robots for various tasks using human demonstrations is well-established. However, obtaining
high-quality demonstrations in large numbers is extremely challenging and impractical in many cases. Our
work provides a method where a robot can learn from a mixture of a limited number of expert high-quality
demonstrations and a large number of lower-quality demonstrations. This is a more practically feasible setting
and offers promise for developing more efficient approaches to train robots. One possible risk is that the
robot can learn unsafe behaviors since the training set may have large numbers of non-expert demonstrations.
However, since this is an offline training procedure, the risk is very minimal and can be mitigated through
evaluations in lab settings.
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A Appendix

A.1 Ablation study

A.1.1 Expanded ablation results

Table 5 shows the full ablation results for locomotion tasks across three auxiliary data settings: 5/0, 5/3,
and 5/5. Removing any component from ROIDA decreases performance, with the most significant drop
when ablating reward-weighted BC. This highlights the importance of filtering auxiliary data to leverage
high-quality transitions. In summary, the ablation study validates the contribution of each proposed technique
in ROIDA to effectively leverage diverse quality offline data.

Table 5: Ablation study on locomotion tasks as the number of expert demonstrations in DO is increased.
The best performing method on each task is highlighted in red and the second best in blue.

Environment Setting Method

ROIDA w/o reward-weighted BC w/o modified reward

Hopper
5 / 0 84.63 ± 16.01 41.68 ± 39.67 78.07 ± 11.00
5 / 3 86.66 ± 21.94 78.06 ± 16.17 92.06 ± 7.10
5 / 5 88.45 ± 8.46 81.51 ± 15.70 84.73 ± 11.26

Avg. 86.58 ± 16.42 67.08 ± 26.34 84.96 ± 9.97

HalfCheetah
5 / 0 15.89 ± 9.60 9.42 ± 1.48 13.93 ± 3.31
5 / 3 18.73 ± 3.67 14.93 ± 8.61 16.35 ± 4.44
5 / 5 24.70 ± 4.95 18.22 ± 4.61 22.53 ± 9.91

Avg. 19.78 ± 6.58 14.19 ± 5.70 17.61 ± 6.55

Walker2D
5 / 0 108.73 ± 0.28 87.72 ± 28.91 104.65 ± 7.79
5 / 3 108.52 ± 0.21 108.11 ± 0.66 104.77 ± 6.83
5 / 5 108.794 ± 0.090 107.97 ± 0.55 105.56 ± 4.81

Avg. 108.68 ± 0.21 101.27 ± 16.70 104.99 ± 6.60

Ant
5 / 0 65.73 ± 25.19 57.42 ± 20.89 49.37 ± 11.64
5 / 3 77.52 ± 4.98 64.40 ± 11.52 62.94 ± 10.27
5 / 5 76.68 ± 9.44 58.95 ± 17.68 76.14 ± 18.52

Avg. 73.31 ± 15.79 60.25 ± 17.14 62.81 ± 13.95

A.1.2 Varying experts on manipulation tasks

Similar to locomotion experiment for increasing number of experts in DE , we vary the expert set for Adroit
tasks in Table 6. We show the comparative performance of our model with 4 other baselines by changing the
expert set from 50 to 70 while keeping the auxiliary data constant. Here, too, we observe improved average
performance in our method compared to the other baselines.

A.2 Experimental details

A.2.1 Implementation

We largely follow the architecture and hyperparameters from DWBC (Xu et al., 2022) for fair comparison.
The policy network is a 3-layer MLP with 256 hidden units and tanh outputs. The discriminator is a 4-layer
MLP with 128 hidden units, with sigmoid outputs clipped to [0.1, 0.9]. In the PU learning objective 1, we
replace the non-differentiable max with the softplus function to make the loss function differentiable. The
Q-function network is an MLP of 3 layers with 256 units. All networks use ReLU activations and the Adam
optimizer.

The discriminator learning rate is set to 1e−4 and a cosine annealing scheduler is added. The policy and
Q-function learning rate is set to 3e−4, with a policy weight decay of 0.005. The balancing factors α and
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Table 6: Imitation learning performance on Adroit tasks as the number of expert demonstrations in DE is
increased. The best performing method on each task is highlighted in red and the second best in blue.

Environment Setting Method

BC-exp BC-all DemoDICE ORIL DWBC ROIDA

Pen

50 / 50 73.92 ± 10.76 12.32 ± 16.40 77.46 ± 30.08 33.95 ± 12.94 100.00 ± 16.66 96.41 ± 8.64
70 / 50 84.62 ± 22.74 25.29 ± 20.72 68.65 ± 16.88 55.96 ± 18.43 105.25 ± 17.86 100.19 ± 11.55

Avg. 79.27 ± 17.79 18.80 ± 18.69 73.06 ± 24.39 44.96 ± 15.92 102.62 ± 17.27 98.30 ± 10.20

Door

50 / 50 5.59 ± 12.37 −0.08 ± 0.05 0.24 ± 0.48 0.01 ± 0.01 14.89 ± 18.51 17.70 ± 16.42
70 / 50 8.23 ± 13.56 −0.12 ± 0.03 0.03 ± 0.03 0.02 ± 0.06 8.27 ± 8.56 8.13 ± 7.71

Avg. 6.91 ± 12.98 −0.10 ± 0.04 0.13 ± 0.34 0.02 ± 0.04 11.58 ± 14.42 12.92 ± 12.83

Hammer

50 / 50 73.26 ± 14.89 0.26 ± 0.01 5.52 ± 4.80 0.29 ± 0.01 110.45 ± 20.49 120.91 ± 5.47
70 / 50 96.44 ± 13.43 0.28 ± 0.01 9.43 ± 16.42 1.19 ± 2.92 115.41 ± 9.47 119.53 ± 5.58

Avg. 84.85 ± 14.18 0.27 ± 0.03 7.47 ± 12.10 0.74 ± 2.06 112.93 ± 15.96 120.22 ± 5.52

Relocate

50 / 50 32.97 ± 19.28 −0.04 ± 0.05 2.12 ± 1.81 13.67 ± 9.66 62.94 ± 17.92 71.89 ± 10.50
70 / 50 60.78 ± 15.07 0.00 ± 0.05 4.02 ± 2.87 18.39 ± 7.81 73.65 ± 6.58 74.29 ± 3.33

Avg. 46.88 ± 17.30 −0.02 ± 0.05 3.07 ± 2.40 16.03 ± 8.78 68.30 ± 13.50 73.09 ± 7.79

Table 7: Imitation learning performance on locomotion (first 3 columns) and manipulation (next 4 columns)
tasks from the D4RL benchmark. For each locomotion environment the performance is averaged across
scenarios containing different number of expert trajectories in DO (5/0, 5/3, 5/5). For each manipulation
environment the performance is averaged across scenarios containing different number of expert trajectories
in DO (50/0, 50/30, 50/50).

Method Environment

Hopper Walker2D Ant Pen Door Hammer Relocate

BCDP 65.45 ± 14.81 103.16 ± 8.62 47.38 ± 17.55 11.95 ± 14.90 3.23 ± 9.52 0.27 ± 0.02 0.44 ± 1.14
ROIDA 86.58 ± 16.42 108.68 ± 0.21 73.31 ± 15.79 98.78 ± 8.21 11.59 ± 13.84 121.32 ± 11.53 64.69 ± 16.67

β are set dynamically based on the loss ratios. Considering the batch-wise BC loss on expert data to be
λ1, the batch-wise weighted BC loss on auxiliary data to be λ2, and batch wise Q-function loss to be λ3,
then α = 0.0013 ∗ λ1/λ2 and β = 0.053 ∗ λ1/λ3. The discount factor γ is 0.5. The frequency of actor model
update, tfreq is set to 3 for all the environments.

The DICE reward function bounds r̃(s, a) between [-2.2, 2.2]. For filtering high quality data, we use τ = 1.

All experiments are conducted using PyTorch on a single RTX 3090 GPU.

A.2.2 Dataset

All datasets are from D4RL (Fu et al., 2020), an offline IL benchmark. Expert trajectories for locomotion
tasks are from <environment>-expert-v2. Expert trajectories for manipulation tasks are from <task>-
expert-v1. Sub-optimal transitions are from <environment>-random-v1 (locomotion) and <task>-cloned-v1
(manipulation). Table 8 details the number of trajectories and transitions in each dataset. The column
Transitions† refers to the full D4RL datasets for the corresponding random transitions with total number of
trajectories given in brackets.

A.3 Additional comparisons

We present additional comparisons in Table 7 with another recent unpublished algorithm, BCDP (Shao
et al., 2023), which tailors an offline IL algorithm specifically for scenarios where the auxiliary offline dataset
contains no expert data. While this design can enhance performance when the auxiliary dataset lacks expert
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Table 8: Dataset details

Environment Setting Expert data DE Auxiliary Data DO

Trajectories Transitions Trajectories Transitions Transitions†

Hopper

5 / 0 5 5000 1000 21723 999996 (45239)
5 / 3 5 5000 1003 24723
5 / 5 5 5000 1005 26723
3 / 5 3 3000 1005 26723
7 / 5 7 7000 1005 26723

Halfcheetah

5 / 0 5 5000 999 999999 999999 (999)
5 / 3 5 5000 1002 1002999
5 / 5 5 5000 1004 1004999
3 / 5 3 3000 1004 1004999
7 / 5 7 7000 1004 1004999

Walker2d

5 / 0 5 5000 1000 19877 999997 (48907)
5 / 3 5 5000 1003 22877
5 / 5 5 5000 1005 24877
3 / 5 3 3000 1005 24877
7 / 5 7 7000 1005 24877

Ant

5 / 0 5 4465 1000 180912 999930 (5821)
5 / 3 5 4465 1003 183912
5 / 5 5 4465 1005 185912
3 / 5 3 3000 1005 185377
7 / 5 7 6465 1005 185912

Pen

50 / 0 50 5000 1000 99881 499886 (3754)
50 / 30 50 5000 1030 102862
50 / 50 50 5000 1050 104862
70 / 50 70 7000 1050 104862

Door

50 / 0 50 10000 1000 200000 999939 (4357)
50 / 30 50 10000 1030 206000
50 / 50 50 10000 1050 210000
70 / 50 70 14000 1050 210000

Hammer

50 / 0 50 10000 1000 200000 999872 (3605)
50 / 30 50 10000 1030 206000
50 / 50 50 10000 1050 210000
70 / 50 70 14000 1050 210000

Relocate

50 / 0 50 10000 1000 200000 999724 (3747)
50 / 30 50 10000 1030 206000
50 / 50 50 10000 1050 210000
70 / 50 70 14000 1050 210000

demonstrations, it can lead to suboptimal performance as the proportion of expert data in the auxiliary dataset
increases. The results indicate the ROIDA significantly outperforms BCDP on all the seven environments.

A.4 RLiable evaluation

In this section, we present evaluations using the rliable (Agarwal et al., 2021) framework for our algo-
rithm ROIDA and DWBC, which is the closest contender. The rliable framework aims to reliably evaluate
performance with a limited number of runs by employing a rigorous evaluation methodology that accounts
for uncertainty in results. It presents more robust and efficient aggregate metrics, such as interquartile mean
(IQM) scores, to achieve small uncertainties in the evaluation outcomes.

We group the environments into two benchmarks, locomotion and adroit. Locomotion contains the Hopper,
Walker2D and Ant environments and consists of 9 tasks (3 environments × [5/0, 5/3, 5/5]). Adroit contains
the Pen, Door, Hammer and Relocate environments and consists of 12 tasks (4 environments × [50/0, 50/30,
50/50]). We divide the scores by 100 to obtain values in the [0, 1] range, as used in the rliable paper. Using
this setup, we report the following performance metrics with 95% confidence intervals: 1) Median performance
(higher better), 2) Mean performance (higher better), 3) IQM (higher better), and 4) Optimality gap (lower
better).
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0.72 0.80 0.88
ROIDA
DWBC

Median

0.84 0.88 0.92 0.96

IQM

0.80 0.84 0.88 0.92

Mean

0.12 0.16 0.20

Optimality Gap

Human Normalized Score
Figure 4: rliable evaluation on the Locomotion benchmark.

0.64 0.72 0.80 0.88
ROIDA
DWBC

Median

0.64 0.72 0.80

IQM

0.60 0.65 0.70 0.75

Mean

0.32 0.36 0.40

Optimality Gap

Human Normalized Score
Figure 5: rliable evaluation on the Adroit benchmark.

A.5 Limitations

While ROIDA demonstrates strong performance across various environments, we believe there is still room
for improvement in the reward estimation process. To investigate this, we conduct an experiment shown in
Table 9, where we substitute the estimated reward with the ground-truth reward from the D4RL benchmark.
The results indicate a performance gap between the estimated and ground-truth rewards. This finding
suggests that our method could potentially achieve higher performance if the reward estimation process is
further refined and improved.

Table 9: Performance on the Hopper task with ground-truth rewards.

Setting Method
ROIDA ROIDA w/ GT rewards

5 / 0 84.63 ± 16.01 94.63 ± 20.76
5 / 3 86.66 ± 21.94 98.53 ± 11.70
5 / 5 88.45 ± 8.46 104.46 ± 5.42
Avg. 86.58 ± 16.42 99.21 ± 14.11

In our particular framework, the reward estimation can be improved by an accurate choice of the hyperpa-
rameter η by performing mixture proportion estimation (Zhu et al., 2023; Ramaswamy et al., 2016). However,
this is beyond the scope of our work. In order to avoid any assumption about the auxiliary data in our work,
we have chosen η = 0.5 which is an unbiased estimate. We also provide additional results with η = 0.3 and
η = 0.7 in Table 10. Here, we obtain better results when η is closer (η = 0.3 is closer than η = 0.7) to the
true ratio between expert and suboptimal demonstration in the auxiliary dataset (0.01 for setting 5/0, 0.12
for setting 5/3 and 0.19 for setting 5/5). Since this true ratio is unknown, estimating it would be a problem
in its own right, which could then be combined with our method.

Table 10: Performance on the Hopper task with varying η.

Setting Method
η = 0.3 η = 0.5 η = 0.7

5 / 0 88.12 ± 14.93 84.63 ± 16.01 82.40 ± 20.76
5 / 3 90.42 ± 18.84 86.66 ± 21.94 84.85 ± 7.13
5 / 5 91.02 ± 7.97 88.45 ± 8.46 86.45 ± 18.61
Avg. 89.85 ± 14.62 86.58 ± 16.42 84.57 ± 14.39
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