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ABSTRACT

Single-step retrosynthesis aims to predict a set of reactions that lead to the creation
of a target molecule, which is a crucial task in molecular discovery. Although a
target molecule can often be synthesized with multiple different reactions, it is
not clear how to verify the feasibility of a reaction, because the available datasets
cover only a tiny fraction of the possible solutions. Consequently, the existing
models are not encouraged to explore the space of possible reactions sufficiently.
To resolve these issues, we first propose a Feasibility Thresholded Count (FTC)
metric that estimates the reaction feasibility with a machine-learning model. Sec-
ond, we develop a novel retrosynthesis model, RetroGFN, which can explore out-
side the limited dataset and return a diverse set of feasible reactions. We show that
RetroGFN outperforms existing methods on the FTC metric by a large margin
while maintaining competitive results on the widely used top-k accuracy metric.

1 INTRODUCTION

The rising interest in machine learning led to the development of many deep generative models for
de novo drug design Segler et al. (2017); Gómez-Bombarelli et al. (2018); Maziarka et al. (2020);
Maziarz et al. (2022); Meyers et al. (2021). Such approaches can propose novel molecules with
promising predicted property profiles, however, these virtual compounds eventually need to be syn-
thesized and evaluated in the wet lab. This motivates the development of reliable (retro)synthesis
planning algorithms able to design a synthesis route for an input molecule Coley et al. (2019);
Schwaller et al. (2020); Chen et al. (2020); Xie et al. (2022); Tripp et al. (2022; 2023).

A crucial component of retrosynthesis is the so-called single-step retrosynthesis, which predicts a
reaction that is likely to synthesize a given molecule Coley et al. (2017); Liu et al. (2017); Dai et al.
(2019); Sun et al. (2020); Schwaller et al. (2020). In practice, many feasible reactions can lead to
a given product. Since the success of a synthesis plan depends on factors that may vary over time
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(e.g. the availability or cost of reactants), the retrosynthesis model should ideally return all possible
reactions. In other words, we would like to produce a diverse set of feasible reactions leading to
the requested product. However, the available datasets cover only a fraction of feasible reactions,
so for many of the included products, a lot of alternative reactions are missing. Furthermore, cur-
rent datasets contain only positive reactions, i.e. those that were successfully conducted in the lab,
whereas in reality, reactions can fail, which unfortunately is seldom reported. This limitation of
current reaction datasets causes two major issues which we address in this paper.

So far, the feasibility of a reaction is often not taken into account when evaluating retrosynthesis
models. The most commonly used metric in the field of retrosynthesis, top-k accuracy, disregards
that problem and accounts only for the recall of ground-truth reactions from the dataset. In this
paper, we propose the Feasibility Thresholded Count (FTC) that reports the percentage of reactions
with sufficiently high feasibility scores. To predict the scores we use a reaction feasibility model.
In this way, we can assess both the diversity and feasibility of reactions returned by the model. We
measure the diversity simply with the number of unique reactions, as in the context of retrosynthesis
the reactions for a given product tend to be similar and differ only in small yet crucial details.

The second problem with missing reactions is that the existing models do not explore the space of
feasible reactions well. Therefore, we propose a RetroGFN model that goes beyond the dataset and
returns a diverse set of feasible reactions. RetroGFN is based on the recent GFlowNet framework
Bengio et al. (2021; 2023) which enables exploration of solution space and sampling from that
space with probability proportional to the reward function, e.g. reaction feasibility. In consequence,
GFlowNets can sample a large number of highly scored and diverse solutions. Our RetroGFN
model leverages this property, sampling a large number of feasible reactions. It outperforms existing
methods on the FTC metric by a large margin while achieving competitive results on the top-k
accuracy for k > 3.

To summarize, our contributions are:

1. We introduce a novel metric called Feasibility Thresholded Count (FTC) which assesses
the diversity and feasibility of reactions proposed by backward reaction prediction models,
mitigating the limitations of the standard top-k accuracy metric.

2. We design RetroGFN: a model based on the GFlowNet framework that generates diverse
and feasible reactions. It achieves competitive results on the top-k accuracy metric while
outperforming all considered models on the top-k FTC metrics by a large margin.

2 RELATED WORK

Single-step Retrosynthesis. The single-step retrosynthesis problem is well-known in the drug-
discovery community. The methods in this field can be roughly divided into template-based Segler
& Waller (2017); Coley et al. (2017); Dai et al. (2019); Baylon et al. (2019) and template-free Sacha
et al. (2021); Zhong et al. (2022); Yan et al. (2020); Somnath et al. (2021); Wang et al. (2021); Irwin
et al. (2022); Schwaller et al. (2020); Zheng et al. (2019); Mao et al. (2021).

Feasibility-oriented Metrics. There was some effort in the community to develop the notion of
feasibility and a metric that measures precision Schwaller et al. (2019; 2020); Chen & Jung (2021);
Maziarz et al. (2023a). The most known precision metric is top-k round-trip accuracy. It measures
the percentage of top-k reactions that can be translated back by a forward reaction prediction model
(for a given product, the retrosynthesis model returns reactants; the reactants are valid if the forward
reaction model fed with them returns ”back” the original product). The main issue with round-trip
accuracy is that the reaction feasibility is defined by a forward reaction model which is of limited
reliability Maziarz et al. (2023b), as it only trained on real/positive reactions and lacks the notion
of non-feasible/negative reactions; such forward models will always return a product even for non-
reactive input molecules which may lead to overly optimistic results or ”hallucinations”.

GFlowNets. GFlowNets Bengio et al. (2023) are a type of generative methods devoted to sam-
pling from high-dimensional distributions. GFlowNets were originally proposed as an alternative
to MCMC (offering the benefits of amortization) and reinforcement learning (displaying a mode-
seeking behavior, that is the ability to discover multiple diverse modes), and later shown to be
equivalent with special cases of other generative methods Malkin et al. (2022b); Zhang et al. (2022).
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The diversity, in particular, is a desired property in multiple scientific discovery tasks Jain et al.
(2023a); Bengio et al. (2021); Nica et al. (2022); Roy et al. (2023).

3 FEASIBILITY THRESHOLDED COUNT METRIC

Single-step retrosynthesis is focused on predicting reactions that could lead to the given product. The
retrosynthesis model is evaluated with a reaction dataset D = {(R1, p1), ..., (Rn, pn)} containing
reaction tuples where pi denotes a product and Ri is a set of reactants that can synthesize the product
pi. During inference, the model is requested to return at most k reactions for every product from the
dataset, which are expected to be sorted from the most to the least probable.

In contrast to top-k accuracy, the proposed top-k FTC can account for feasible reactions outside
the evaluation dataset. For a single product, the top-k FTC value denotes the percentage of feasible
reactions among top k reactions returned by the model. The feasibility is estimated with an auxiliary
model RFM described in Appendix B.1. The exact formula for top-k FTC calculated on a product
p and retrosynthesis model f is given by:

FFTC(f, p, k) =
1

k

k∑
i=1

1[RFM(f(p)i) ≥ t], (1)

where RFM(f(p)i) ∈ [0, 1] is the output of the reaction feasibility model for the i-th reaction
proposed by f , and t is a feasibility threshold given by the user. We assume that RFM(x) = 1
for reaction x ∈ D. We report the top-k FTC for the entire dataset D, which can be written as
FTC(f, k) = 1

n

∑n
i FFTC(f, pi, k). Therefore, top-k FTC assesses both the diversity and feasibil-

ity of the returned reactions.

4 RETROGFN

4.1 REACTION TEMPLATES AND PATTERNS

Figure 1: Illustration of a single-step ret-
rosynthesis (a), and a corresponding reaction
template (b). Atoms from a product pattern
on the left side of the template are mapped to
atoms from reactant patterns on the right side
.

Several existing single-step retrosynthesis models,
including ours, work on the (backward) reaction
templates. A reaction template can be seen as a
regular expression on graphs (see Figure 1). It de-
scribes the transformation of a product into the re-
actants and consists of the product pattern (left side
of the regular expression) and a set of reactants’ pat-
terns (right side). The atoms of the product pattern
are mapped to atoms of reactants’ patterns. Reac-
tion templates provide a strong inductive bias to the
model while limiting it to a fixed set of possible
transformations. However, we extend the covered
reaction space by introducing a template composi-
tion process inspired by RetroComposer Yan et al.
(2022). In this approach, we choose the reaction
center where the template is going to be applied and
compose a concrete template step by step using the
building blocks, called patterns.

We extract the templates from the train split of
USPTO-50k, following Chen & Jung (2021). Each
template is then split into product and reactant patterns (see Figure 1 b)). We denote a set of all
encountered product patterns PPS and an analogous set of reactant patterns RPS. The patterns
do not include any molecular regular expression (SMARTS) and can be represented similarly to
molecules - as annotated graphs.
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Figure 2: Illustration of the template composition process in RetroGFN for an input product. In
the first phase, a product pattern and its concrete match to the atoms of the product is chosen. In
the second phase, reactant patterns are gathered until all mappable atoms of the product pattern
(highlighted red) can be mapped to mappable atoms of the reactant pattern (highlighted blue). In the
third phase, the mapping between mappable product and reactant patterns is created and the obtained
template is applied resulting in the reactants.

4.2 GENERATION PROCESS

Given a product, our RetroGFN composes an appropriate template in three phases:

1. The first phase determines a reaction center: a product pattern matched to the atoms of the
product.

2. The second phase gathers the reactant patterns.
3. The third phase constructs atom mapping between the atoms of the product pattern and the

reactants’ patterns.

In the end, the obtained template is applied to the given product and results in a final set of reactants.
Figure 2 shows an example of the composition process while a detailed description of each phase
can be found further in the Appendix A.

4.3 TRAINING

We trained our RetroGFN with a modified version of Trajectory Balance Objective from Malkin
et al. (2022a), which for a trajectory τ = (s1, a1, s2, a2, ..., sk, ak, t) is given with the formula:

L(τ) =

(
log

F (s1)
∏k

i=1 PF (ai|si)
R(t)PB(ak|t)

∏k
i=2 PB(ai−1|si)

)2

.

The main difference from the original formulation comes from the fact that our RetroGFN is condi-
tioned Bengio et al. (2023); Pan et al. (2023); Kim et al. (2023); Jain et al. (2023b); Roy et al. (2023)
on the product from the initial state s1. Therefore, for every initial state, we estimate the incoming
flow separately using F (s1) function which is essentially an index embedding F (s) = EP (s) ∈ R
that looks up the set of training products P and returns a learnable scalar (note that we only eval-
uate F (s) during training). As a backward policy PB(a|s), we use a uniform distribution over
the possible actions that could lead to state s. The reward is an exponential reward of the form
R(x) = exp(βf(x)) where f is a reaction feasibility model with output f(x) ∈ [0, 1]. The feasi-
bility model used during training is distinct from the one used in the FTC metric evaluation (details
are described in Appendix B.1).

During training, we used a combination of three sampling methods: 1) standard exploratory sam-
pling from the forward policy PF with some ϵ probability of taking random actions, 2) backward
sampling from reward-prioritized replay buffer Shen et al. (2023); Fedus et al. (2020); Jain et al.
(2022), and 3) backward sampling from the dataset D. Backward sampling starts with a terminal
state and samples the trajectory in the backward direction using the backward policy PB .
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5 EXPERIMENTS

Datasets. We compared the considered methods on two datasets: USPTO-50k, a default choice for
benchmarking retrosynthesis models, and USPTO-MIT, which we use as a generalization bench-
mark for models trained on USPTO-50k. We used commonly used splits for both datasets Coley
et al. (2017); Jin et al. (2017). We refined the USPTO-MIT to ensure there is no overlap between it
and the USPTO-50k train split.

Retrosynthesis Models. We compared our RetroGFN to well-known and recent state-of-the-art
models: GLN Dai et al. (2019), MEGAN Sacha et al. (2021), MHNreact Seidl et al. (2021), Lo-
calRetro Chen & Jung (2021), RootAligned Zhong et al. (2022), RetroKNN Xie et al. (2023), and
Chemformer Irwin et al. (2022). We used the wrappers of the original implementations and check-
points from the Syntheseus repository1. We used the evaluation procedure from Syntheseus that
queries the model for 100 reactions per product, removes the duplicates, and truncates the list of
reactions to be no larger than 50. The same output was used both to calculate standard and FTC
metrics.

Reaction Feasibility Models. We used different checkpoints of RFM for training and evaluation.
Details can be found in Appendix B.

5.1 RESULTS ON USPTO-50K

We can find the standard metrics evaluated on USPTO-50k in Table 1. Our method achieves rel-
atively low top-k accuracy for k = 1 (46.9%), but it becomes significantly more competitive for
k > 5 which is arguably more important for retrosynthesis search than k = 1.

Figure 3: Trade-off between top-10 accuracy and top-10 FTC metric for feasibility threshold=0.9.
The circle area is proportional to the model’s inference time. The dashed line denotes the Pareto
front - the best result for any trade-off coefficient between accuracy and FTC. We observe that our
RetroGFN maximizes the top-10 FTC while having competitive results on top-10 accuracy.

However, the actual power of our RetroGFN is evidenced in Table 3 which shows the top-k FTC
metric results. Note that the feasibility model used during the training of RetroGFN was trained
on a different data split than the one used for evaluation. We observe that for k > 1, our model
consistently outperforms other models, producing plenty of feasible reactions. The absolute and
relative advantage of RetroGFN over the second-best model on top-k FTC increases with k: from
3.6%p and 5.9% for k=3 to 9%p and 30.8% for k=50. The good results of RetroGFN on standard
metrics and its exceptional performance on FTC evidence that one can greatly improve the results
on FTC without sacrificing the performance on standard metrics. The trade-off between top-10
accuracy and FTC metric can be found in Figure 3 (for other values of k, see Appendix C.5).

5.2 GENERALIZATION RESULTS ON USPTO-MIT

We evaluated the models trained on USPTO-50k further on the USPTO-MIT dataset to assess their
generalization properties. To compute top-k FTC results we used a reaction feasibility model fine-
tuned on the test split of USPTO-MIT. The evaluation of both standard and FTC metrics (Ap-
pendix C.2) echoes the results of USPTO-50k: RootAligned is the best on standard metrics, while

1https://github.com/microsoft/syntheseus
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our model achieves SOTA results on FTC metrics. As in the USPTO-50k case, the absolute and
relative advantage of RetroGFN over the second-best model on top-k FTC increases with k: from
3%p and 4.4% for k=3 to 10.5%p and 25.8% for k=50. The trade-off between top-10 accuracy and
FTC metric can be found in Figure 3.

We include the top-k FTC metrics on USPTO-50k and USPTO-MIT for different thresholds in
Appendix C. Regardless of the chosen threshold, our RetroGFN model consistently outperforms the
rest of the models.

6 CONCLUSIONS

In this paper, we proposed top-k FTC, a novel metric for single-step retrosynthesis model evalua-
tion, that mitigates the limitations of widely used top-k accuracy and recently proposed round-trip
accuracy. Leveraging the GFlowNet framework which is designed for tasks where plenty of sensible
solutions are desired, we developed a RetroGFN model that achieves competitive results on top-k
accuracy and performs outstandingly on the top-k FTC metric. We opened a few interesting paths
for further research: 1) improvement of the RFM model, 2) improvement on FTC metric, and 3)
leveraging off-dataset training using the RFM model. We discuss the limitations of the paper in the
Appendix D.
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A RETROGFN DETAILS

The core component of a GFlowNet model is a forward policy PF (a|s) describing the probability
of taking action a in the state s. The generation process samples a sequence of states and actions
τ = (s1, a1, ..., sk, ak, t) called a trajectory, where t is a terminal state. In RetroGFN, an initial state
s1 is an input product, the intermediate states si correspond to the partially constructed template,
and the terminal state t stores a final template along with a result of its application to the product.
We group the states into three phases and the specific definition of PF (a|s) depends on the phase i:

P i
F (a|s) =

exp(scorei(s, a)α)∑
a′∈Ai(s) exp(scorei(s, a

′)α)
,
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where scorei is a phase-specific score function parameterized with a neural network and Ai(s) is a
set of possible actions that can be taken from s in the i-th phase. The policy is simply a softmax
with temperature coefficient α over the scores of all possible actions Ai(s).

Score functions for all the phases share a common Graph Neural Network (GNN) encoder, denoted
as gnn1 that given a product p = (V,E, T ), embeds its nodes’ features: gnn1(p) ∈ Rn×d, where
n is the number of product nodes and d is the embedding size. We overload the notation and let
gnn1(vj) denote the embedding of a product node vj ∈ V . The GNN architecture we use is similar
to the one from LocalRetro: a stack of MPNN layers with a single Transformer layer Vaswani et al.
(2017) on top. Details can be found in the Appendix A.

A.1 RETROGFN PHASES

First Phase. A state s in the first phase is an input product p. The action space A1(s) contains
all possible atom matchings of product patterns from PPS to the product p. An action a ∈ A1(s)
contains the matched product pattern pp ∈ PPS and the matched atom indices I = {i1, ..., im}.
The value of ij is an index of the product atom matched with j-th product pattern atom. To compute
the score1(s, a), we aggregate the representation of matched product’s nodes and put them into
multi-layer perceptron MLP1 : Rd → R:

score1(s, a) = MLP1

(∑
i∈I

gnn1(vi)

)
.

After the action is chosen and applied, the generation process transitions directly to the second
phase.

Second Phase. The second phase iteratively adds reactant patterns to the composed template. At the
beginning of the phase, the list of reactant patterns is empty. The second phase action a is a reactant
pattern rpj ∈ RPS that is going to be added to the template. The score2(s, a) concatenates the
information from the previous phase and the reactant patterns collected so far (denoted as R) and
feeds it to MLP2 : R3d → R|RPS| that predicts the score for all the reactant patterns in RPS:

score2(s, a) =

= MLP2

(∑
i∈I

gnn1(vi) | EPPS(pp) |
∑
rp∈R

ERPS(rp)

)
j

.

Here we select the jth score returned by the MLP2 as it corresponds to rpj reactant pattern from
the action. Index embedding e = EA(a) is a function that looks up the index of the element a in
the set A and assigns the index a learnable embedding e ∈ Rd (e.g. EPPS assign a unique learnable
embedding to every pp ∈ PPS).

At the end of this phase, we want to be sure that every atom from the product pattern can be mapped
to some atom of the reactant pattern. Originally, each pattern had some atom mapping in the tem-
plate it comes from (see Figure 1). Although those explicit mappings are inadequate in the novel-
composed template, we can leverage the knowledge that an atom was originally mapped. For every
pattern, we construct a set of mappable atoms that consists of the pattern’s atoms that were mapped
in the original template (see Figure 4). The composed template is allowed to map only the mappable
atoms. We ensure that all mappable atoms in the composed template can be mapped by properly
restricting the action space A2(s).

Figure 4: Illustration of a pattern before (left) and after (right) mapping removal. The mappable
atoms of the pattern are colored blue.

Third Phase. The third phase creates a mapping between atoms of product and reactant patterns.
An action a is an atom mapping (j, k, l) ∈ M that links the j-th node from the product pattern pp

10
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with the l-th mappable node of the k-th reactant pattern from the list of reactant patterns R. The
score3(s, a) is given with the formula:

score3(s, a) = MLP3(gnn1(vij ) | gnn2(vkl)),

where vij is a product node matched with the j-th node of the product pattern, and vkl is the l-th
node of the k-th reactant pattern from R. To embed the reactant pattern nodes, we introduce a GNN
gnn2 with the same architecture as gnn1.

The action space A3(s) contains all possible atom mappings. We call an atom mapping between
two nodes possible when the atom symbols of the nodes are the same and neither of the nodes was
previously mapped.

The third phase ends when every node from the product pattern is mapped, resulting in a template
that can be applied to the reaction center chosen in the first phase. The obtained reaction forms the
terminal state t.

A.2 INFERENCE

During inference, the retrosynthesis model is given a product and requested to output at most N
reactions sorted from the most to least promising. RetroGFN samples the reactions using the trained
forward policy PF (a|s) and orders them with the estimated probability. The probability of a reaction
represented by a terminal state t is estimated by summing the probabilities of all sampled trajectories
that end with t:

p(t) =
∑
τ :t∈τ

∏
(s,a)∈τ

PF (a|s). (2)

To increase the accuracy of the estimation, we sample K ·N trajectories. We leave the exploration
of other estimation methods for future work.

A.3 ARCHITECTURES

All neural networks in RetroGFN used the same hidden dimension h = 200. To obtain initial node
and edge features for products, we used featurization from Kearnes et al. (2016) implemented in the
DGL library Wang et al. (2019). For the reactant pattern, we used the same edge featurization and a
custom node featurization that accounted for atom type, degree, aromaticity, whether the atom was
mapped in the original template, relative charge difference between product and reactant atom in the
original template, and analogous implicit hydrogen difference. The node features for both products
and reactant patterns were enriched with random walk positional encoding Dwivedi et al. (2021) of
size n random walk = 16.

Product node encoder gnn1 consists of num layer 1 = 4 layers of the MPNN convolution Gilmer
et al. (2017) and one Transformer layer with num heads = 8. The reactant pattern encoder differs
only in the number of layers num layer 2 = 3. Multi-layer perceptrons MLP1,MLP2,MLP3 had
one hidden layer (with hidden dimension h) and used the GeLU activation function.

During the training probability of taking random action in the forward policy was set to ϵ = 0.05,
the number of sampled forward trajectories in the batch was n forward = 32, and the analogous
numbers for backward dataset trajectories and backward replay buffer trajectories were n dataset =
80 and n replay = 16. The reward temperature β = 12 and the forward policy temperature α =
1. The model was trained with Adam optimizer Kingma & Ba (2014) with a learning rate lr =
0.0005 (with other parameters set to default values in the torch implementation) for niterations =
18000 iterations. In the evaluation, the forward policy temperature was set to α = 0.7. During
the inference, we sampled K · N trajectories to accurately estimate the reaction probability. For
USPTO-50k, we set K = 10 while for, due to limited computational resources, we set K = 6 for
USPTO-MIT.

All the hyperparameters were chosen manually based on the top-k accuracy and top-k FTC metrics
estimated on the USPTO-50k validation split.
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B REACTION FEASIBILITY MODEL DETAILS

B.1 REACTION FEASIBILITY MODEL

The Reaction Feasibility Model (RFM) is a model that takes reaction x as an input and outputs its
feasibility - probability that the reaction is feasible: RFM(x) ∈ [0, 1]. In this paper, we develop a
reliable RFM baseline that can be used as a benchmark in future work. Our RFM implementation
consists of two Graph Neural Networks (GNNs) with a Transformer layer and attention pooling at
the top that create product and reactant embeddings which are then concatenated and fed into the
MLP layer.

B.2 CHECKPOINTS FOR USPTO-50K

To train the model, we augmented the USPTO-50k dataset with negative (non-feasible) reactions
using two methods: 1) application of existing forward templates to obtain a novel product from
existing reactants, 2) swapping a product in the reaction with another product that is similar to the
original one in terms of Tanimoto similarity. Such an approach ensured that the generated nega-
tive reactions are not trivially unfeasible (they use an existing template and/or the product is not
strikingly different from the reactants), but still are very unlikely to occur in reality (the original
reactants were reported to return a different product). We obtained a reaction feasibility dataset with
a negative-to-positive ratio of 5:1. We trained two distinct checkpoints of feasibility models: RFM-
Train-50k and RFM-Eval-50k. The RFM-Train was trained only on the train split of the reaction
feasibility dataset and was then used to calculate the reward in the RetroGFN during the training.
The RFM-Eval was trained on the merged train and test splits of the reaction dataset and used solely
during the final evaluation of FTC metrics. Both models achieved good results on the validation split:
AUROC=0.96, AUPRC=0.82 and AUROC=0.97, AUPRC=0.85, respectively. To additionally mea-
sure the performance of RFM-Eval-50k, we evaluated it on the augmented USPTO-MIT test set. It
obtained a strong AUROC=0.93 and AUPRC=0.74, indicating its good generalization properties.

B.3 CHECKPOINT FOR USPTO-MIT

For USPTO-MIT, we used a slightly modified dataset augmentation procedure and replaced the
application of existing forward templates by swapping a product in the reaction with another random
product. Due to the large size of the augmented USPTO-MIT dataset, we fine-tuned the existing
RFM-Eval on the augmented test split of the USPTO-MIT. Obtained RFM-Eval-MIT achieves
AUROC=0.98 and AUPRC=0.91 on the augmented subset of USPTO-MIT valid split. More details
can be found in the Appendix B.

B.4 DETAILS AND HYPERPARAMETERS

The architecture of the Reaction Feasibility Model consists of two GNNs that encode the product and
reactants. Both GNNs consist of num layers = 4 layers of MPNN convolution Gilmer et al. (2017),
a Transformer layer with num attention heads = 4 attention heads, and an attention pooling that
aggregates the nodes embeddings to a single graph-level representation. The graph-level representa-
tions are then concatenated and fed into an MLP with two hidden layers and ReLU activation. The
hidden dimension of all neural networks is hidden dim = 256.

The model was trained on the augmented USPTO-50k using Adam optimizer with lr = 0.0001 for
n epochs = 100. To create a checkpoint for USPTO-MIT, we fine-tuned the existing model on the
augmented test split of USPTO-MIT using the same optimization parameters for n epochs = 30
epochs.

The hyperparameters were chosen manually to maximize the AUPRC metric calculated on the vali-
dation set.

C EXTENDED RESULTS

This section shows the extended experimental results.
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C.1 USPTO-50K RESULTS

Table 1: Top-k accuracy and mean reciprocal rank (MRR) results on USPTO-50k. The numbers in
columns denote k values. The best results in every column are bolded. We observe that for k > 3
our RetroGFN achieves competitive results.

method MRR top-1 top-3 top-5 top-10 top-20 top-50

GLN 0.6509 52.4 74.6 81.2 88.0 91.8 93.1
MEGAN 0.6226 48.7 72.3 79.5 86.7 91.0 93.5
MHNreact 0.6356 50.6 73.1 80.1 86.4 90.3 92.6
LocalRetro 0.6565 51.5 76.5 84.3 91.0 94.9 96.7
RetroKNN 0.6834 55.3 77.9 85.0 91.5 91.6 96.6
RootAligned 0.6886 56.0 79.1 86.1 91.0 93.3 94.2
Chemformer 0.6312 55.0 70.9 73.7 75.4 75.9 76.0
RetroGFN 0.6144 46.9 72.2 80.0 87.8 91.9 94.7

Table 2: Top-k FTC results on USPTO-50k for threshold=0.8. The numbers in columns denote k
values. The best results in every column are bolded. We observe that for k > 1 our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 80.29 66.44 59.01 47.96 36.82 21.92
MEGAN 76.79 63.13 55.98 46.48 36.78 24.67
MHNreact 77.91 63.01 55.00 44.08 33.11 18.95
LocalRetro 80.33 66.27 59.45 49.96 40.44 26.84
RetroKNN 79.07 63.39 56.08 44.22 28.44 12.00
RootAligned 81.57 66.11 59.27 49.72 39.70 20.85
Chemformer 80.31 46.89 32.83 18.37 9.75 3.98
RetroGFN 79.49 70.15 64.46 56.68 48.81 37.39

Table 3: Top-k FTC results on USPTO-50k for threshold=0.9. The numbers in columns denote k
values. The best results in every column are bolded. We observe that for k > 1 our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 73.96 57.36 49.02 38.11 28.35 16.37
MEGAN 70.38 54.20 46.67 37.28 28.65 18.48
MHNreact 72.00 54.15 45.50 35.04 25.61 14.29
LocalRetro 73.38 57.16 49.78 40.02 31.39 20.12
RetroKNN 71.98 54.73 47.03 35.74 22.53 9.46
RootAligned 75.93 57.21 49.68 40.33 31.38 16.15
Chemformer 74.88 41.50 28.48 15.69 8.24 3.36
RetroGFN 72.38 60.96 54.09 46.05 38.88 29.09
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Table 4: Top-k FTC results on USPTO-50k for threshold=0.95. The numbers in columns denote
k values. The best results in every column are bolded. We observe that for k > 1 our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 68.18 48.31 39.88 29.82 21.44 12.04
MEGAN 64.65 46.00 38.28 29.38 21.91 13.64
MHNreact 66.43 45.97 37.21 27.59 19.62 10.65
LocalRetro 67.45 48.96 41.02 31.58 23.97 14.85
RetroKNN 66.05 46.90 38.87 28.47 17.61 7.37
RootAligned 70.74 49.05 41.03 32.16 24.29 12.32
Chemformer 69.82 36.61 24.67 13.43 6.99 2.84
RetroGFN 66.37 51.96 44.58 36.56 30.03 21.83

C.2 USPTO-MIT RESULTS

Table 5: Top-k accuracy and mean reciprocal rank (mrr) results on USPTO-MIT. The numbers in
columns denote k values. The best results in every column are bolded. We observe that for k > 3
our RetroGFN achieves competitive results.

method MRR top-1 top-3 top-5 top-10 top-20 top-50

GLN 0.4480 35.6 51.5 56.5 61.6 64.2 65.3
MEGAN 0.4498 35.3 52.0 57.6 62.6 65.8 68.1
MHNreact 0.4451 35.3 51.3 56.4 60.9 63.7 65.2
LocalRetro 0.4636 36.0 54.2 59.9 65.1 67.9 69.7
RetroKNN 0.4491 34.9 52.5 58.2 63.5 65.3 65.5
RootAligned 0.4838 38.9 55.6 60.6 65.2 67.7 68.8
Chemformer 0.4362 37.8 49.1 51.2 52.5 52.9 52.9
RetroGFN 0.4375 33.1 51.3 57.5 63.3 66.7 68.9

Table 6: Top-k FTC results on USPTO-MIT for threshold=0.8. The numbers in columns denote
k values. The best results in every column are bolded. We observe that for all k our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 81.54 73.36 68.17 60.04 50.76 35.86
MEGAN 79.82 70.61 65.35 57.26 48.48 35.02
MHNreact 79.99 70.84 64.95 56.04 45.72 29.28
LocalRetro 82.77 74.28 69.12 61.70 53.21 38.83
RetroKNN 81.72 71.53 65.38 53.98 36.38 15.69
RootAligned 83.81 74.56 69.26 61.30 51.47 28.30
Chemformer 80.29 53.45 39.56 23.90 13.24 5.55
RetroGFN 83.92 77.85 74.24 68.63 62.27 50.35
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Table 7: Top-k FTC results on USPTO-MIT for threshold=0.9. The numbers in columns denote k
values. The best results in every column are bolded. We observe that for k > 1 our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 74.82 64.19 58.27 49.70 40.62 27.55
MEGAN 72.90 61.48 55.64 47.25 38.83 27.06
MHNreact 73.34 61.72 55.20 46.14 36.58 22.71
LocalRetro 76.35 65.44 59.41 51.31 42.93 30.24
RetroKNN 75.05 62.87 56.08 45.08 29.84 12.78
RootAligned 77.63 66.00 59.96 51.71 42.41 22.80
Chemformer 73.81 47.07 34.18 20.21 11.02 4.59
RetroGFN 77.37 69.06 64.48 58.13 51.74 40.74

Table 8: Top-k FTC results on USPTO-MIT for threshold=0.95. The numbers in columns denote
k values. The best results in every column are bolded. We observe that for k > 1 our RetroGFN
consistently outperforms other methods.

method top-1 top-3 top-5 top-10 top-20 top-50

GLN 67.70 55.08 48.67 40.08 31.81 20.82
MEGAN 65.90 52.92 46.52 38.26 30.56 20.64
MHNreact 66.47 53.00 46.10 37.17 28.68 17.31
LocalRetro 69.24 56.52 49.90 41.56 33.78 23.08
RetroKNN 67.83 54.26 47.14 36.73 23.87 10.16
RootAligned 70.86 57.12 50.57 42.43 33.98 17.97
Chemformer 66.93 40.93 29.14 16.89 9.10 3.76
RetroGFN 70.04 59.72 54.33 47.69 41.58 31.96

C.3 ABLATION RESULTS

To provide more insight into our RetroGFN model performance, we performed an ablation study
regarding the choice of the reward function used during RetroGFN training. It is a very important
component as it defines the distributions of the reactions that the RetroGFN model aims to model.
Let us recall that the reward function is defined as R(x) = exp(βf(x)) where f is a non-negative
feasibility proxy function. We can define the feasibility proxy function in three main ways:

• Feasibility (Original): f(x) is the output of RFM-Train i.e. f(x) = RFM(x),

• In-dataset: f(x) is the indicator of x being in the dataset i.e. f(x) = 1[x ∈ D],

• Feasibility + In-dataset: f(x) mimics the FTC metric i.e. f(x) = 1 if x ∈ D and f(x) =
TFM(x) otherwise.

Tables 9 and 10 from show the evaluation results for three types of the reward function. We observe
a significant gap between In-dataset and Feasibility + In-dataset in terms of FTC metrics without a
decrease in standard metrics. An additional boost in FTC metrics is given by lowering the influence
of the dataset during training by not using the dataset in reward at all. It comes with a decrease in
top-1 accuracy, which is, however, relatively small concerning gains obtained in the FTC metrics.

The conclusion is that our RetroGFN model can leverage the RFM-Train model to drastically in-
crease the performance of FTC metrics without sacrificing the standard top-k metrics too much.

15



Published at the GEM workshop, ICLR 2024

Table 9: Top-k accuracy and mean reciprocal rank (mrr) results on USPTO-50k for ablation studies.
The numbers in columns denote k values. The best results in every column are bolded.

method MRR top-1 top-3 top-5 top-10 top-20 top-50

Feas. (Original) 0.6144 46.9 72.2 80.0 87.8 91.9 94.7
In-dataset 0.6263 49.2 72.3 79.8 87.2 91.3 94.1
Feas. + In-Dataset 0.6253 48.6 72.6 80.4 88.1 92.1 94.5

Table 10: Top-k FTC results on USPTO-MIT for threshold=0.9 for ablation studies. The numbers
in columns denote k values. The best results in every column are bolded.

method top-1 top-3 top-5 top-10 top-20 top-50

Feas. (Original) 72.38 1 60.96 54.09 46.05 38.88 29.09
In-dataset 71.66 55.07 46.57 36.25 26.63 16.76
Feas. + In-Dataset 72.22 58.33 51.33 43.34 35.98 26.07

C.4 NOVEL TEMPLATES

Thanks to the generality of local templates, the vast majority of the test split of USPTO-50k can
be covered with patterns extracted from the train split of USPTO-50k. However, 20 out of 5007
reactions in the test split are described with patterns unseen in the training set. Our RetroGFN was
able to provide an alternative template for 3 of such reactions.
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C.5 EXTENDED TRADE-OFF RESULTS

Figure 5: Trade-off between top-k accuracy and top-k FTC metric for feasibility threshold=0.9. The
circle area is proportional to the model’s inference time. The dashed line denotes the Pareto front -
the best result for any trade-off coefficient between accuracy and FTC.

D LIMITATIONS AND DISCUSSION

This section briefly discusses the limitations of the paper.

D.1 TOP-K FTC

The main limitation of the top-k FTC metric is that it relies on the Reaction Feasibility Model
(RFM) which suffers both false negative and false positive errors. However, we believe that there is
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an inherent epistemic uncertainty within the notion of feasibility (we cannot screen all the reactions)
and any sensible retrosynthesis metric will have some portion of false negatives (it will not take all
feasible reactions into account). In comparison to top-k accuracy, our Top-k FTC has a strictly lower
number of false negatives, while keeping false positives on a decent level. We believe that the FTC
metric will benefit from the further improvements of the RFM and we leave it for future work.

D.2 RETROGFN

Top-k Accuracy. The main limitation of our RetroGFN method is its results on top-k accuracy for
k < 5. At first glance, it looks like a trade-off necessary to achieve excellent results on the top-k
FTC metric, but the ablation studies in Appendix C.3 show that the top-k accuracy of RetroGFN
does not increase much even if it is trained without RFM-Train using a spiky reward function that
has a non-zero value only for reactions for datasets. We argue that it may be caused by two things: 1)
other hyperparameters of the model are not optimal for top-k accuracy, 2) the GFlowNet framework
struggles with spiky reward function, and 3) the parametrization of the composition process is sub-
optimal. It is possible that further refinements of the method could improve the results.

Leveraging RFM-Train. The fact that RetroGFN leverages the RFM-Train checkpoint can be seen
as an unfair advantage because a similar RFM-Eval model is used in the FTC metric computation.
However, we think that fairness comes from the fact that all models use the same data splits for
training or evaluation. The models differ in the way they learn from the training data and leveraging
the RFM-Train is yet another way of learning. It does not inject any new knowledge that cannot be
extracted from the training data (see Appendix B.1). Once the FTC metric is established, it becomes
reasonable to optimize it using RFM-Train. Moreover, we believe that RFM-Eval and RFM-Train
are expected to be similar because they have similar goals: 1) to extract as much information from
the train and test split as possible, and 2) to extract as much information from the train split as
possible. It is sensible then that they share architecture and data augmentation techniques. The
difference should come from the data split used for training.
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