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ABSTRACT

Machine reading has recently shown remarkable progress thanks to differen-
tiable reasoning models. In this context, End-to-End trainable Memory Networks
(MemN2N) have demonstrated promising performance on simple natural language
based reasoning tasks such as factual reasoning and basic deduction. However,
the task of machine comprehension is currently bounded to a supervised setting
and available question answering dataset. In this paper we explore the paradigm
of adversarial learning and self-play for the task of machine reading comprehen-
sion. Inspired by the successful propositions in the domain of game learning, we
present a novel approach of training for this task that is based on the definition
of a coupled attention-based memory model. On one hand, a reader network is
in charge of finding answers regarding a passage of text and a question. On the
other hand, a narrator network is in charge of obfuscating spans of text in order
to minimize the probability of success of the reader. We experimented the model
on several question-answering corpora. The proposed learning paradigm and as-
sociated models present encouraging results.

1 INTRODUCTION

Automatic comprehension of text is one of the main goals of natural language processing. While the
ability of a machine to understand text can be assessed in many different ways, several benchmark
datasets have recently been created to focus on answering questions as a way to evaluate machine
comprehension (Richardson et al., 2013)); (Hermann et al., 2015); (Hill et al.,[2015a)); (Weston et al.}
2015); (Rajpurkar et al.| 2016); (Nguyen et al.,|2016). In this setup, the machine is presented with
a piece of text such as a news article or a story. Then, the machine is expected to answer one
or multiple questions related to the text. The task is linked to several important incomes. First, it
provides tools that will shortly help users with efficient access to large amounts of information. Also,
it acts as an important proxy task to assess model of natural language understanding and reasoning.
In this context, numerous large-scale machine comprehension/QA datasets (Hermann et al., [2015));
(Rajpurkar et al., 2016)); (Trischler et al.,|2016a); (Nguyen et al.,|2016) have been recently released
and have contributed to significant advancement. From a model perspective, neural models are now
approaching human parity on some of these benchmarks and a large corpus of novel and promissing
research has been produced in the domain of attention, memory and parametric model with so-
called reasoning capabilities. However, the field is currently bounded to the paradigm of supervised
learning and strictly linked to the current annotated dataset. As a counterpart, an increasing research
activity has been dedicated since the 90’s to self-play and adversariality to overcome this boundary
and allow a model to exploit its own decision to improve itself. Two famous examples are related
to policy learning in games. Indeed, TD-Gammon (Tesauro, [1995) was a neural network controller
for backgammon which achieved near top player performance using self-play as learning paradigm.
More recently, DeepMind AlphaGo uses the same paradigm to win against the current world best
human go player. The major advantage of such setting is to partially release the learning procedure
to the limit of an available dataset. The dual models learn and improve their performance by acting
one against the other as so-called sparing patterns.

In this paper, we adapt this paradigm to the domain of machine reading. On the first hand, a reader
network is trained to learn to answer question regarding a passage of text. On the other hand, a
narrator network learns to obfuscate words of a given passage in order to minimize the probability
of successfull answering of the reader model. We developed a sequential learning protocol in order
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to gradually improved the quality of the models. This paradigm separates itself from the current
research direction of joint question and answer learning from text as proposed on Wang et al.| (2017).
Indeed, in comparison to question generation as regularizer of a reader model that sounds promising,
we believe adversarial training unleashs from the constraint of strict and bounded supervision and
brings robustness to the answering model.

Our contributions can be summarized as follows: (1) We propose a new learning paradigm for ma-
chine comprehension based on adversarial training. (2) We show this methodology allows to over-
come the boundaries of strict supervision and provides robustness to noise in question-answering
settings through a set of experiments in several machine reading corpora and (3) visualizations of
the models reveals some useful insights of the attention mechanism for reasoning the questions and
extracting meaning passage of a text given a question.

Roadmap: In Section 2] we formalize our adversarial learning protocol. Also, the reader and
narrator networks are presented. In Section |3|the corpora used for evaluation are detailed. Section
[] presents our current experimental results. Section [5]details several vizualizations of the decisions
and attention values computed by the coupled models. Finally, Section [f]reviews the state-of-the-art
of machine reading comprehension, Memory Network models, the paradigm of self-play and its
links to adversarial learning.

2 ADVERSARIAL READING NETWORKS

Several studies have recently challenged deep machine reading models with adversarial examples as
Miyato et al.[(2016)) and Jia & Liang (2017). This kind of approach is well known in computer vision
(Goodfellow et al.,[2014) but seems to also affects natural language processing. More precisely, Jia
& Liang|(2017)) demonstrates that a large majority of the recent state of the art deep machine reading
models suffers from a lack of robustness regarding adversarial examples because of their so-called
oversensibility. Indeed average accuracies were decreased by half when these models were tested
on corrupted data, i.e a document with an additional sentence at the end which normally does not
affect the answer. The model we propose is built to use this adversariality as an adaptive dropout by
challenging the reader with more and more difficult tasks during the learning. Indeed, we extend the
concept of asymmetric self-play to train a model that we called the narrator during an adversarial
game with a reader. The narrator is acquiring knowledge about the reader behaviour during the
training and it generates harder adversarial examples. Beyond increasing artificially the size of the
available dataset, this adaptive behaviour of the narrator prevents catastrophic forgetting phenomena
from the reader. In this section, we explain the protocol of adversarial training we developed for
robust machine comprehension. Then, we describe the reader and narrator models used.

2.1 MAIN LEARNING PROTOCOL

The overall framework is a turn-based question answering game described in Figure [I] At the
beginning of each round, the narrator obfuscates one word for each document sampled from the
training corpus. We fix the ratio of corrupted data / clear data to a ratio A\ € RI%1 of the dataset.
Indeed, a too low percentage of corrupted data might not have any effect on the training and a too
high one will prevent the reader of learning well. Then, the reader is trained on a subset of this
obfuscated corpus and tested on the remaining subset. Note that both train and test sets contain
corrupted data. Finally the narrator gets back a set of rewards regarding the reader performances
on the obfuscated stories. Given a tuple (d, d,pf, q) Where d is the original document, dp¢ the
document with an obfuscated word proposed by the narrator and ¢ the associated question, the
reward 7 given to the narrator is defined as follow:

_ J 1 if the reader answer well on d and fail on dp¢
"7 0 otherwise

The reward given to the narrator is a direct measurement of the impact of the obfuscation on the
reader performance. All the previously collected rewards are stored and used for experience replay
throughout the turns. After each learning turn, all the parameters of the narrator are reinitialized and
retrained on all the recorded rewards. Throughout the turns, the narrator accumulates information
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about the reader behaviour and proposes more challenging tasks as the game is playing. Each nar-
rator’s dataset is choosen to maximizes its expected rewards for 80% of the stories and randomly
obfuscates a word in the remaining 20% in order to ensure exploration. Finally, the reader keeps
improving through the turn and any catastrophic forgetting is compensated at the next turn of the
narrator by especially focusing on these flaws.
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Figure 1: Adversarial learning protocol

Algorithm 1 Pseudo-code of the adversarial training

Split dataset into 3 pieces (A) train (80%), (B) valid (10%) and (C) test (10%)
Create D an empty dataset
epoch =0
while epoch < NB_.MAX_EPOCHS do
Split A into A1 (80%) and A2 (20%)
if epoch = 0 then
Randomly corrupt 20% of A1 and 100% of A2
else
Reinitialize all the parameters of the narrator
Train the narrator on D
The narrator corrupts 20% of Al and 100% of A2
end if
Train one epoch of the reader on A1l
Let A2 _clear be the dataset that contains the same data as in A2 but without corruption
Test the reader on A2 and on A2_clear
for all (d € A2, d_clear € A2_clear) do
Let r be the reward given to the narrator
if The reader succeed on d_clear and fails on d then
D+ {Du(d,r=1)}
else if The reader succeed on d_clear and succeed on d then
D <+ {Du(d,r=0)}
end if
end for
Test the reader on B and see if it should early stop or not
epoch < epoch + 1
end while
Test the reader on C' and report the results

Finally let a be the predicted distribution and a the the ground-truth.

Categorical cross entropy Lnarrator = — Zfil Z}):l a;;log(@;;), is the loss function for the reader
network as the model decision is a distribution over a vocabulary. Then, binary cross entropy
LReader = — Zﬁvzl[ailog(ai) + (1 — a;)log(1 — @;)] is used as loss function for the narrator
network.
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2.2  BASELINE PROTOCOL

As a reference protocol, one word is obfuscated in several stories of the dataset using a uniform
sampling strategy. This is a naive variation of the first protocol where the narrator doesn’t learn
from the reader feedbacks. In fact, this protocol is similar to a dropout regularization that allows
to avoid overfitting the training set. However without the narrator learning of the first protocol,
we lost the adaptive dropout and all the curriculum learning notions of easier and harder inputs.
In practice this simple adversarial protocol improves the robustness of the results compared to a
standard learning protocol. This learning protocol have strong similarities with the one proposed by
Maaten et al. (2013)).

2.3 READER NETWORK

We use a Gated End-to-End Memory Network, GMemN2N, as reader which was first introduced
by [Perez & Liu| (2016). This architecture is based on two different memory cells and an output
prediction. An input memory representation {m; } and an output representation {c; } are used to store
embedding representations of inputs. Suppose that an input of the model is a tuple (d, q) where d is
a document, i.e. a set of sentences {s; } and ¢ a query about d, the entire set of sentences is converted
into input memory vectors m; = A®(s;) and output memory vectors ¢; = C®(s;) by using two
embedding matrix A and C. The question ¢ is also embedded using a third matrix B, u = B¥(q) of
the same dimension as A and C'. where ® and U are respectively the sentence embedding function
and the question embedding function described in the next paragraph. The input memory is used
to compute the relevance of each sentence in its context regarding the question, by computing the
inner product of the input memory sentence representation with the query. Then a softmax is used
to compute the probability distribution. The response o = ), p;c; from the output memory is the
sum of the output memory vectors {c¢;} weighted with the sentence relevances calculated before
p; = softmax(u”'m;), where softmax(a;) = €%/ > jefin) €+ A gated mechanism is used when
we updated the value of the controller w:

Tk(uk) = U(Wﬁuk + b?)ukJrl =0 o Tk(uk) +uf o (1- Tk(uk)) (1)

Finally, assuming we use a model with K hops of memory, the final prediction is a =
softmax (W (o +u)) where W is a matrix of size d x v and v is the number of candidate answers.
In this model, we do not use the adjacent or layer-wise weight tying scheme and all the matrix A*
and B* of the multiple hops are different.

Text and question representations: To build the sentence representations, we use a 1-dimensional
Convolutional Neural Network (CNN) with a list of filter sizes over all the sentences as proposed in
Kim| (2014). Let [s1, . . ., sy] be the vectorial representation of a document with N sentences where
$i = [wi1,Wi2,...,w;y] is the ¢ — th sentence which contains n words. Given a convolutional
filter F' € R"*? where h is the width of the convolutional window, i.e the number words it overlaps,
the convolutional layer produces:

cij = f(F©[Bwj,... EBw;jip]),Vje€[l,n—j]

where © is the elementwise multiplication, f a rectified linear unit (ReLU), b a bias term and F
the embedding matrix of size d * V' where V is the vocabulary size and d the word embedding
size. Then, a max pooling operator is applied to this vector to extract features. Given a filter F,
after a convolutional operation and a max pooling operation, we obtain a feature ¢; = max;(c; ;)
from the ¢ — th sentence of the text. Multiple filters with varying sizes are used. Assume that our
model uses N, different filter sizes and N for each size, we are able to extract N, x N features
for one sentence. The final representation of the sentence ®(s;) = [CiF,,Cip,, - - -, Ciry,. Nf] is the

concatenation of the extracted features from all the filters.

2.4 NARRATOR NETWORK

The objective of this model is to predict the probability of the reader to successfully respond to a
question given a document with an obfuscated word. This information will be use by the narrator
to determine the position of the obfuscated word in the document which maximizes the probability
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of the reader to fail its task. We use a GMemN2N similarly to the reader. However, on the last
layer a sigmoid function is used to predict the probability of the reader to fail on this input: a =
o (W (o +uf)) where o = H% and @ € [0, 1] is the predicted probability of failure of the reader
and W a matrix of size d x 1.

An input of the reader is a tuple (dgpy, ) Where dpf is a document with an obfuscated word. To
obfuscate a word, we replace it by the word unk for unknown. The output of the narrator is a real
number r € R which is the expected probability of the reader to fail on the question. The
objective of the narrator is to select the stories which maximize this reward. Finally, we use the
same text passage and query representation than for the reader, based on a CNN with different filter
sizes for the document and the two last hidden states of a bidirectional Gated Rectified Unit (GRU)
recurrent network for the question encoding. Both models are fully-differentiable.

3 DATASETS AND DATA PREPROCESSING

Cambridge Dialogs: the transactional dialog corpus proposed by [Wen et al.| (2016)) has been pro-
duced by a crowdsourced version of the Wizard-of-Oz paradigm. It was originally designed for
dialog state tracking but|Perez (2016))) have shown that this task could also be considered as a read-
ing task. In such setting, the informable slots provided as metadata to each dialog were used to
produce questions for a dialog comprehension task. The dataset deals with an agent assisting a user
to find a restaurant in Cambridge, UK. To propose the best matching restaurant the system needs
to extract 3 constraints which correspond to the informable slots in the dialog state tracking task:
Food, Pricerange, Area. Given a dialog between an agent and a user, this informable slots become
questions for the model we propose. The dataset contains 680 different dialogs about 99 different
restaurants. We preprocess the dataset to transform it into a question answering dataset by using the
three informable slot types as questions about a given dialog. After this preprocessing operation, we
end up with our question answering formatted dataset which contains 1352 possible answers.

TripAdvisor aspect-based sentiment analysis: the dataset contains hotel reviews from the TripAd-
visor website (Wang et al.||2010). This dataset contains a total of 235K detailed reviews about 1850
hotels. Each review is associated to an overall rating, between 0 and 5 stars. Furthermore, 7 aspects:
value, room, location, cleanliness, checkin/front desk, service, and business service are available.
We transform the dataset into a question answering task over a given review. Concretely, for each
review a question is an aspect and we use the number of stars as answer. This kind of machine
reading approach to sentiment analysis was previously proposed in Tang et al.| (2016)).

Children’s Book Test (CBT): the dataset is built from freely available books (Hill et al., |2015b)
thanks to Project Gutenbergﬂ The training data consists of tuples (.5, ¢, C, a) where S is the context
composed by 20 consecutive sentences from the book, ¢ is the query, C' a set of 10 candidate
answers and a the answer. The query q is the 215 sentence, i.e the sentence that directly follows
the 20 sentences of the context and where one word is removed and replaced with a missing word
symbol. Questions are grouped into 4 distinct categories depending of the type of the removed word:
Named Entities (NE), (Common) Nouns (CN), Verbs (V) and Prepositions (P). The training contains
669, 343 inputs (context+query) and we evaluated our models on the provided test set which contains
10, 000 inputs, 2, 500 per category.

4 EXPERIMENTS

4.1 TRAINING DETAILS

10% of the dataset was randomly held-out to create a test set. We split the dataset before all the
training operations and each of the protocol we propose was tested on the same test dataset. For
the training phase, we split the training dataset to extract a validation set to perform early stopping.
We use Adam optimizer (Kingma & Ba, [2014)) with a starting learning rate at 0.0005. We set the
dropout to 0.9 which means that during training, 10%, randomly selected, of the parameters are not
used during the forward pass and not updated during the backward propagation of error. We also
added the gated memory mecanism of Perez & Liu| (2016) that dynamically regulates the access

'"https://www.gutenberg.org


https://www.gutenberg.org

Under review as a conference paper at ICLR 2018

to the memory blocks. This mechanism had a very positive effect on the overall performances of
our models. All weights are initialized randomly from a Gaussian distribution with zero mean and
o = 0.1. Moreover, we penalize the loss with the sum of the Ly of the parameters of the models.

We set the batch size to 16 inputs and we use embedding word of size 300. We initialize all the
embedding matrix with pre-trained G1oVe word vectors (Pennington et al.,|2014) and we randomly
initialize the words of our document that are not in the G1oVe model. It seems that for our exper-
iments CNN encoding doesn’t improve only the overall accuracy of the model compared to LSTM
but also the stability by decreasing the variance of the results. So in practice we use 128 filters of
size 2, 3, 5 and 8 so a total of 512 filters for the one dimensional convolutional layer.

We repeat each training 10 times for the two first datasets and report maximum and average accuracy
on the test set. The maximum is the score on the test set of the best of the 10 trained models based
on the validation set. During the adversarial learning, the dataset contains 70% of clear dialogs and
30% of corrupted dialogs, A = 0.3. Inside these corrupted data, 20% are randomly obfuscated by
the narrator in order to make it learn from exploration and the narrator maximizes his reward for the
remaining 80%. Eventually to fit with the format of the dataset, we slightly modified the output layer
of our reader for the CBT task. Instead of projecting on a set of candidate answers the last layer of
the reader makes a projection on the entire vocabulary @ = o (M ® W (0¥ + uX)) where W is a
matrix of size V' * d with V' the vocabulary size, ® the elementwise product and M the mask vector
of size V' containing 1 if the corresponding word is proposed in the candidate answers 0 otherwise.

4.2 RESULTS

Log Reg || ASR GMemN2N uniform GMemN2N || adversarial GMemN2N
hops 4 5 6 4 5 6 4 5 6
Max 58.4 40.8 || 82.1 | 85.8 | 80.6 || 85.1 | 85.8 | 82.8 || 82.8 | 79.8 88.1
Mean 58.2 395 || 769 | 74.8 | 742 || 774 | 77.7 | 749 || 79.8 | 77.8 79.6

Table 1: Average and maximum accuracy (%) on the Cambridge dataset on 10 replications of our
GMemN2N, uniform GMemN2N and adversarial GMemN2N

LogReg || ASR GMemN2N uniform GMemN2N || adversarial GMemN2N
hops 4 5 6 4 5 6 4 5 6
Max 59.4 452 || 623 | 624 | 60.5 || 63.1 | 61.4 | 63.1 || 64.6 | 63.5 | 623
Mean 59.0 423 || 60.8 | 60.6 | 58.5 || 62.3 | 60.3 | 59.6 || 62.8 | 61.2 | 60.8

Table 2: Average and maximum accuracy (%) on the TripAdvisor dataset on 10 replications of our
GMemN2N, uniform GMemN2N and adversarial GMemN2N

Log Reg ASR
Task P \Y NE | CN p \Y NE | CN
Max || 56.3 | 37.1 | 26.5 | 25.6 || 24.7 | 32.7 | 22.1 | 18.3

GMemN2N uniform GMemN2N adversarial GMemN2N
Task P \% NE | CN P A% NE CN P \Y NE | CN
Max || 56.0 | 58.5 | 31.9 | 39.0 || 58.1 | 53.6 | 31.6 | 34.0 || 71.1 | 60.4 | 35.3 | 394

Table 3: Accuracy (%) on the CBT dataset for our GMemN2N, uniform GMemN2N and adversarial
GMemN2N

Performance results on the Cambridge dataset and TripAdvisor are displayed in table[2] We present
the results of our implementation of a standard GMemN2N, a uniform GMemN2N which is the reader
trained with the baseline protocol [2.2] and the GMemN2N trained in the adversarial protocol 2.1]
against the narrator. Each of the experiment was run 10 times and we report in this table the maxi-
mum score on the test (based on validation set) and the average score. The precise number of hops
needed to achieve the best performance with such models is not obvious so we are presenting all the
results for reader and narrator between 4 and 6 hops.
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Figure 2: Narrator output distribution after 100 rounds over a Cambridge dialog.

Adaptive adversarial GMemN2N improves the accuracy of the model on the Cambridge task by
2.3 points for a model with with 6 hops. The best performance on the TripAdvisor dataset was
achieved by the adversarial GMemN2N with 4 hops. It improves the accuracy by 1.5 points.

The uniform protocol improves the stability of the performances compare to a standard reader
but we went further with the adversarial protocol which improve both the overall accuracy and the
stability of the performances. It is not clear for this task that the number of hops, between 4 and 6,
has an influence on the general behaviour but we achieve the best performance with our adversarial
protocol and a reader with 6 hops.

All the average values of the models trained with the adversarial protocol are higher than the
others, even for the 5 hops model which doesn’t achieve a very good max performance during the
10 replications we have run.

Performances on the CBT dataset are displayed in table [3| Because of the size of this dataset, we
didn’t repeat the training 10 times but only once. Results of the uniform training seem similar to
the performances of the standard reader in this case but the accuracy of the models trained with our
adversarial protocol remain higher than others.

5 VISUALIZATIONS AND ANALYSIS

5.1 NARRATOR PREDICTIONS

In order to better understand the narrator learnings from the reader behaviour during the adversarial
protocol, Figure [2] depicts the rewards that the narrator expects for each word of a document after
several rounds of the game. Given a tuple (d, q) where d is a clear document and ¢ a query and
assuming the document contains k£ words, we generate k corrupted documents where one word is
obfuscated in each of them. We then feed the narrator with these corrupted data and report the results.
y-axis represents the document and x-axis the expected reward from the reader if the narrator decides
to generate a corrupted document by obfuscating this word. In red, the words of the documents that
correspond to the answer of the question are highlighted.

The narrator tends to obfuscate some important keywords of the dialogs. Furthermore, the narrator
is not pointing on a single word but it points on a word and on its neighborhood. This might be a
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Figure 3: Reader attentions

consequence of the encoding which is not only a representation of a word but a representation of a
word in its context.

5.2 STANDARD VS ADVERSARIAL READER ATTENTION

Figure [3] depicts the attention values, presented by hops, over a document from the Cambridge
dataset. The document was choosen as only the adversarial protocol answers correctly to the ques-
tion. It displays attention distributions for a reader trained with the three different protocols: [top]
standard, [middle] uniform, [bottom] adversarial. The overall aspect of the first two readers are
comparable. The readers quickly focus on what we assume to be an important span of text. After
two hops the readers start looking at the same position in the document. On the contrary, the reader
trained with the adversarial protocol seems to have a very different behavior regarding the attention
mechanism. It captures the important part of the sentence directly at the first hop and uses the 4
remaining hops to focus more largely on the end of the document. We might interpret this as a con-
sequence of the obfuscation protocol that forces the reader to look on different parts of the sentence
instead of focusing on one precise point during the learning process.

6 RELATED WORK

6.1 END-TO-END MACHINE READING

The task of end-to-end machine reading consist in learning to select an answer to question given a
passage of text in supervised manner. One of the popular formal setting of the problem, the cloze-
style QA task, involves tuples of the form (d, ¢, a, C'), where d is a document (context), g is a query
over the contents of d, in which a phrase is replaced with a placeholder, and a is the answer to g,
which comes from a set of candidates C'. In this work we consider datasets where each candidate
¢ € C has at least one token which also appears in the document. The task can then be described as:
given a document-query pair (d, ¢), find a € C which answers ¢g. Below we provide an overview of
representative neural network architectures which have been applied to this problem.

LSTMs with Attention: Several architectures introduced in [Hermann et al.| (2015) employ LSTM
units to compute a combined document-query representation g(d, ¢), which is used to rank the can-
didate answers. These include the DeepLSTM Reader which performs a single forward pass through
the concatenated (document, query) pair to obtain ¢g(d, q); the Attentive Reader which first computes
a document vector d(q) by a weighted aggregation of words according to attentions based on ¢, and
then combines d(q) and ¢ to obtain their joint representation g(d(q), ¢); and the Impatient Reader
where the document representation is built incrementally. The architecture of the Attentive Reader
has been simplified recently in Stanford Attentive Reader, where shallower recurrent units were used

with a bilinear form for the query-document attention (Chen et al., [2016)).
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Attention Sum: The Attention-Sum (AS) Reader (Kadlec et al., 2016)) uses two bidirectional GRU
networks to encode both d and ¢ into vectors. A probability distribution over the entities in d
is obtained by computing dot products between ¢ and the entity embeddings and taking a softmax.
Then, an aggregation scheme named pointer-sum attention is further applied to sum the probabilities
of the same entity, so that frequent entities the document will be favored compared to rare ones.
Building on the AS Reader, the Attention-over-Attention (AoA) Reader (Cui et al., 2016) introduces
a two-way attention mechanism where the query and the document are mutually attentive to each
other.

Multi-hop Architectures: Memory Networks (MemNets) were proposed in Weston et al.| (2014),
where each sentence in the document is encoded to a memory by aggregating nearby words. At-
tention over the memory slots given the query is used to compute an overall memory and to renew
the query representation over multiple iterations, allowing certain types of reasoning over the salient
facts in the memory and the query. Neural Semantic Encoders (NSE) Munkhdalai & Yu| (2016)
extended MemNets by introducing a write operation which can evolve the memory over time during
the course of reading. Iterative reasoning has been found effective in several more recent models,
including the Iterative Attentive Reader|Sordoni et al|(2016) and ReasoNet|Shen et al.|(2016). The
latter allows dynamic reasoning steps and is trained with reinforcement learning.

Other related works, included EpiReader (Trischler et al.l [2016b)), consist of two networks, where
one proposes a small set of candidate answers, and the other reranks the proposed candidates con-
ditioned on the query and the context; Bi-Directional Attention Flow network (BiDAF) (Seo et al.,
2016) adopts a multi-stage hierarchical architecture along with a flow-based attention mechanism.

6.2 ADVERSARIAL LEARNING AND SELF-PLAY

The main principle of self-play consist in defining a learning task where two, possible antagonist
behaviours, will be learnt jointly by competing from one against the another. In the context of two-
player zero-sum games, such setting falls quite naturally. Two models of the same nature compete
regarding the rules of the considered game and learn from their sucessive performances.

A majority of prior work has focused on learning from self-play data using temporal-difference
learning in backgammon (Tesauro, |1995), chess (Mannen, 2003), or using linear regression in Oth-
ello (van der Ree & Wiering,|2013) and more recently Go (Silver et al.,|2016)). In the general context
of board games, the main advantage of self-play as a method of training neural network controllers
lies in the fact that every position will be the result of a game position from an actual board, rather
than being contrived positions that may fail to teach the network about probabilities or prevent the
network from properly generalizing from the results. In other word, self-play contributes to exhibit
challenging configurations to overcome as a controller. In such setting, the network has the advan-
tage of having seen over several million different board positions, which would have been hardly
feasible in a network trained through a crafted set of training data.

In the domain of reading, it has been recently observed that the tasks of answering to a question given
a passage of text and predicting the question regarding a text passage are interesting tasks to model
jointly. So, several papers have recently proposed to use the question generation as a regularization
task to improve the passage encoding model of a neural reader ((Yuan et al., 2017), (Wang et al.,
2017)). In this paper, we claim these two tasks are indeed complementary but we think adversarial
training of the nature used in two player games will lead to the same advantages than those observed
previously. As generating the question given a passage and a question is hard we inspired ourself
from the recent work proposed in (Guo et al.,2017)) and define a narrator network as complementary
task to the reader learning one. Such narrator have the task of finding the most meaningfull spans
of text to obfuscate in a give passage and given a question in order to minimize the probability of
successfull answering of the reader.

6.3 ADAPTIVE DROPOUT

Recent deep neural networks are composed of a lot of parameters and tend to easily overfit the train-
ing set. One of the main idea which has been developped to prevent this overfitting is to randomly
drop units from the network during the training session (Srivastava et al.l 2014)). Such approach re-
sults to combine many different neural networks to make a prediction. In the same idea of avoiding
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to overfit the training data, training a model on a dataset which contains corrupted data is something
usefull which has been studying in [Maaten et al.|(2013). They have developed different ways to
corrupt a document, for example by adding noise into the input features and our work refers to what
they call the blankout corruption which consist of randomly delete features into the input documents
(texts or images in this case) with probability q.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose an adversarial protocol to train coupled deep memory networks for the
task of machine comprehension. On all reported experiments, the models trained with this novel
protocol outperform the equivalent models trained using a standard supervised protocol. Moreover
our adversarial protocol seems to reduce the variance of the models performances. In future work,
we plan to continue studying this novel protocol using an active question answering task. Moreover,
we currently investigate an adaptation of such protocol to Visual Question Answering.
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