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ABSTRACT

We consider the learning of algorithmic tasks by mere observation of input-output
pairs. Rather than studying this as a black-box discrete regression problem with
no assumption whatsoever on the input-output mapping, we concentrate on tasks
that are amenable to the principle of divide and conquer, and study what are its
implications in terms of learning.
This principle creates a powerful inductive bias that we exploit with neural archi-
tectures that are defined recursively, by learning two scale-invariant atomic op-
erators: how to split a given input into two disjoint sets, and how to merge two
partially solved tasks into a larger partial solution. The scale invariance creates
parameter sharing across all stages of the architecture, and the dynamic design
creates architectures whose complexity can be tuned in a differentiable manner.
As a result, our model is trained by backpropagation not only to minimize the
errors at the output, but also to do so as efficiently as possible, by enforcing shal-
lower computation graphs. Moreover, thanks to the scale invariance, the model
can be trained only with only input/output pairs, removing the need to know or-
acle intermediate split and merge decisions. As it turns out, accuracy and com-
plexity are not independent qualities, and we verify empirically that when the
learnt complexity matches the underlying complexity of the task, this results in
higher accuracy and better generalization in two paradigmatic problems: sorting
and finding planar convex hulls.

1 INTRODUCTION

Many algorithmic tasks can be described as discrete input-output mappings, but this “black-box”
vision hides all the fundamental questions that explain how and why the task can be optimally
solved, which is the starting point of the study of algorithms and complexity. A powerful and
general framework that breaks into this vision is the principle that many tasks have some degree
of scale invariance or self-similarity, meaning that the ability to solve the task for a certain input
size is essentially all that is needed in order to solve it for larger sizes. This principle is the basis
of dynamic programming and is ubiquitous in most areas of discrete mathematics, from geometry
to graph theory. In the case of images and audio signals, invariance principles are also critical for
success: CNNs exploit both translation invariance and scale separation with multilayer, localized
convolutional operators, which breaks the curse of dimensionality and brings the essential inductive
bias explaining the success of CNNs. In our scenario of discrete algorithmic tasks, we build our
model on the principle of divide and conquer, which provides us with a form of parameter sharing
across scales akin to that of CNNs across space or RNNs across time.

While neural networks have been successful so far at providing flexible models for discrete re-
gression and prediction tasks, mostly in Natural Language processing and discrete Reinforcement
Learning, they are typically unaware and uninterested in complexity questions. Whereas some mod-
els are trained and tested at a fixed input/output scale (such as regression problems with generic
fully connected neural networks), authors have explored ways to make training and testing less
dependent of the input scale. The most prominent examples are Convolutional architectures, that
∗Currently on leave from UC Berkeley
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exploit translation invariance to accept variable size inputs by averaging their predictions at the last
layer; and recurrent neural networks, that operate in an auto-regressive fashion to summarize any
variable sized-input into a fixed-dimensional embedding. These two examples are paradigms of
models whose complexity scales linearly with the input size.

Whereas CNN and RNN models define algorithms with linear complexity, attention mechanisms
Bahdanau et al. (2014) generally correspond to quadratic complexity, with notable exceptions
Andrychowicz & Kurach (2016). This can result in a mismatch between the intrinsic complexity
required to solve a given task and the complexity that is given to the neural network to solve it. Our
motivation is that learning cannot be ‘complete’ until these complexities match, and we start this
quest by first focusing on problems for which the intrinsic complexity is well known and under-
stood.

In this paper, we attempt to incorporate the complexity as yet another quantity that one wishes to
minimize while training a model. We achieve this by using an architecture that learns recursively
how to split a given input and learns how to merge each of the partial responses into a final output.
Although these two steps could – and should – eventually be combined, in this work we start by
exploring each of these architectures separately. We do so by only observing input-output pairs,
getting away with the need to provide each of our artificial smaller problems with their correct
output. This is a form of ‘weak’ supervision that is shown to work on tasks that are scale invariant,
i.e. that can be addressed by divide and conquer. Another side benefit of our dynamic programming
networks is their ability to generalize to larger scales. By construction, our model learns the same
decision at each scale, and therefore can generalize well whenever the task is compatible with that
inductive bias.

Summary of Contributions:

• We introduce a recursive split and merge architecture, and a learning framework that opti-
mizes it not only for accuracy but also for computational complexity in a fully differentiable
manner, using only input-output example pairs.

• We provide preliminary empirical evidence that the dynamic programming principle can
be efficiently learnt on simple tasks such as sorting and planar convex hull.

2 RELATED WORK

Using neural networks to solve algorithmic tasks is an active area of current research, but its models
can be traced back to context free grammars Fanty (1994). In particular, dynamic learning appears
in works such as Pollack (1991) and Tabor (2000).

The current research in the area is dominated by Recurrent Neural Networks Joulin & Mikolov
(2015); Grefenstette et al. (2015), LSTMs Hochreiter & Schmidhuber (1997), sequence-to-sequence
neural models Sutskever et al. (2014); Zaremba & Sutskever (2014), attention mechanisms Vinyals
et al. (2015b); Andrychowicz & Kurach (2016) and explicit external memory models Weston et al.
(2014); Sukhbaatar et al. (2015); Graves et al. (2014); Zaremba & Sutskever (2015). We refer the
reader to Joulin & Mikolov (2015) and references therein for a more exhaustive and detailed account
of related work.

Amongst these works, we highlight some that are particularly relevant to us. Neural GPU Kaiser
& Sutskever (2015) defines a neural architecture that acts convolutionally with respect to the input
and is applied iteratively o(n) times, where n is the input size. It leads to fixed computational
machines with total o(n2) complexity. Neural Programmer-Interpreters Reed & de Freitas (2015)
introduce a compositional model based on a LSTM that can learn generic programs. It is trained
with full supervision using execution traces. Hierarchical attention mechanisms have been explored
in Andrychowicz & Kurach (2016). They improve the complexity of the model from o(n2) of
traditional attention to o(n log n), similarly as our models, but they are trained very differently,
using REINFORCE. Finally, Pointer Networks Vinyals et al. (2015b;a) modify classic attention
mechanisms to make them amenable to adapt to variable input-dependent outputs, and illustrate the
resulting models on geometric algorithmic tasks. It belongs to the o(n2) category class.
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3 DIVIDE AND CONQUER WITH NEURAL NETWORKS

In this section we present our basic model architecture with its core Split and Merge blocks, and then
describe how to build the global dynamic programming network. In our formulation, we choose
generic data structures for split and merge. The split module accepts sets of elements as input, and
outputs a disjoint partition of this set. The merge module accepts two ordered sets Ω1 and Ω2 as
input, and produces a subset Λ ⊆ Ω1 ∪ Ω2 of their union that respects the partial ordering; i.e, if
x1 �Ω1 x2, x1, x2 ∈ Ω1 ∩ Λ, then necessarily x1 �Λ x2.

3.1 SPLIT

Split blocks receive an input set of elements Ω, and output a partition Ω = Ω1 ∪ Ω2. The corre-
sponding neural network architecture is permutation invariant. We use a simple block that computes
nonlinear moments of the input. Denote n = |Ω| and assume the elements of Ω to be in Rd. Define
the matrix x ∈ Rd×n as the elements in Ω organized in columns under an arbitrary ordering and xi
as the i-th column. This architecture must take sets as inputs, i.e, (S(x, θ))σ = S(xσ, θ) ∀σ ∈ Sn

(where σ acts in rows). We propose a Θ(n) architecture in Appendix A, a somewhat simpler ver-
sion of similar set-to-set models such as those in Vinyals et al. (2015a); Sukhbaatar et al. (2016).
We can compute both subsets either by sampling from the output probabilities or taking the mode
(1[pi ≥ 0.5]).

3.2 MERGE

Merge blocks receive two ordered inputs and produce a subset of their union that preserves the
partial ordering. We can visualize the merge block as having two different tasks:

• Choose a mask over each input to rule out some elements.
• Merge both subsets preserving the partial ordering.

In this paper, for simplicity, we only learn the first task of the merge block and leave the learnability
of the second for future work. Let y1 and y2 be two ordered sequences of elements in Rd of lengths
n1 and n2 respectively. We parametrize the first part of the merge block using Bi-directional LSTMs.
The input of the merge block will be a sequence of vectors in Rd+1. The first d dimensions of the
elements in the sequence will correspond to the concatenation of y1 and y2. The last dimension
of each element in the input sequence will be a boolean indicating to which sequence the element
belongs. We produce the element-wise probabilities by concatenating the hidden states at every
element and computing pi = σ(wT [h1, h2] + b) for i = 1, . . . , n1 and pi = σ(wT [h2, h1] + b) for
i = n1 + 1, . . . , n2 where b is a scalar bias and w is a vector in R2nh with nh being the number
of hidden units of each LSTM. We can also compute both subsets either by sampling from these
probabilities or taking the mode (1[pi ≥ 0.5]).

To merge the chosen subsets we will use a deterministic procedure which will produce the correct
output if both subsets are correct and will be stable for small errors in the mask. This procedure will
be specific for each task and we explain our choice in the experiments section when addressing the
convex hull task.

3.3 BUILDING THE MODEL

Figure 1 illustrates our architecture. The divide and conquer principle is implemented by succes-
sively splitting inputs until the input x0 of size |x0| = n is broken into a collection of sets {xv}v∈Vi ,
i ≤ l such that they reach a critical size K0. At that critical scale we consider that the task at hand
can be solved with a generic mapping with constant complexity to produce the outputs {xv}v∈Vl .
We consider problems where the outputs are defined as partially ordered subsets of the input. The
second phase consists in merging this collection of outputs into the global solution. As described
earlier, in this work we consider the two phases separately, and leave the joint training of split and
merge operations for future work.

The model has parameters for each split and merge, but these parameters are shared across all the
instances. Also, the structure of the binary tree is dynamic: each input determines the respective
sizes of the split, which in turn determine the length of each corresponding branch of the tree.
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Figure 1: Instantiation of our Dynamic Programming Net. An input instance is recurrently split
into smaller instances until we reach a critical scale. The merge procedure works in the opposite
direction. We highlight the fact that split and merge sizes can vary and are data dependent, and
therefore the binary tree is sample-dependent. All split blocks share the same parameters θ and
similarly for the merge blocks with φ.

4 LEARNING

The training objective is to both maximize the accuracy at the output, but also to be able to do so
with minimal complexity. This section describes how our dynamic architecture allows to optimize
both objectives with gradient descent.

4.1 ADJUSTING COMPLEXITY WITH GRADIENT DESCENT

The average case complexity of the split phase satisfies the following recursion:

ECs(n) = E{Cs(αsn) + Cs((1− αs)n)}+A · n , (1)

where (αs, 1 − αs) are the fraction of input elements that are respectively sent to each output and
A · n is the cost of running our split module described in Section 3.1. Since this fraction is input-
dependent, the average case is obtained by taking expectations with respect to the underlying input
distribution. Assuming without loss of generality that E(αs) ≥ 0.5, the resulting complexity is of
the order of

ECs(n) ' An log n

logEα−1
s

. (2)

The overall complexity of the resulting model can be thus partially controlled by enforcing αs to
be as close as possible to 0.5. The range αs ∈ [0.5, 1) gives us the ability to span complexities
between Θ(n log2 n) (perfectly balanced trees) and Θ(n2) (perfectly unbalanced trees with n − 1
and 1 elements).

Similarly, our merge selection phase performs a selection of a subset of the union of its two inputs.
Let n = |Ω1| + |Ω2| be the total amount of incoming data at any given node and αm = |Λ|

n denote
the fraction of elements that is sent to the next level. If we assume an execution tree given by a split
phase with factor αs, we verify that the resulting complexity satisfies

CM (n) = Bnα
− logn
logαs
m + CM (nαs) + CM (n(1− αs)) . (3)

When Eαm < 1, by applying the Akra-Bazzi method Akra & Bazzi (1998) this results in

ECM (n) = Θ(n) , (4)

and ECM (n) = Θ(n log n) when Eαm = 1. The merge block thus operates in linear time as soon
as each merge operation removes a constant fraction of its inputs at each scale. We shall impose
that Eαm ≥ Eαs to ensure that the merge decisions do not reach the target size before the tree has
reached its end. This creates an incentive to make decisions to discard elements early in the process,
but as we shall see in the next section, this is offset by the fact that labeled information exists only at
the bottom of the merge process. In the next subsections we shall see how to control the branching
factors in a differentiable fashion, enabling learning by simple gradient descent.

4



Under review as a conference paper at ICLR 2017

4.2 WEAK VERSUS STRONG SUPERVISION

A key requirement of our approach is the ability to learn only from input-output pairs of training
examples. Since the examples have arbitrary size, in general we have no supervision for each in-
dividual instance of split and merge operations. The challenge is that each of these blocks sends
information to the next by making discrete sampling decisions.

One possibility is to embark in optimization strategies that differentiate under sampling, such as
those arising in Reinforcement Learning and in particular the REINFORCE. However, these opti-
mization methods involve gradient estimates with large variance, resulting in poor sample complex-
ity. We study an alternative that exploits the powerful inductive bias given by sharing parameters
at all scales and also the fact that we optimize for both accuracy and complexity, and requires only
backpropagation and no intermediate sampling.

We first focus on the training of each split and merge phase separately, and we assume first that we
have available labels at the output of each of these phases. That is, we assume we have a dataset
{(xk, yk)}k≤K of K examples. In the case of the split phase, we assume that xk is a set of nk
(possibly varying with k) elements, and yk is an ordered partition of xk. In the case of the merge,
xk represents an ordered partition of a certain set zk, and yk is a certain (ordered) subset of zk.
Each of these subproblems already contains the challenge of training several instances of split and
merge connected through discrete, non-differentiable sampling operations. We shall now describe
in detail our strategy to compute gradients with respect to parameters θ (split) and φ (merge) just
with backpropagation.

4.3 TRAINING SPLIT

In order to train the split block we must create artificial targets at every node of the generated tree
from the available final target partition, which is an ordered sequence of disjoint subsets of the input.

Figure 1 shows that every scale of the generated tree corresponds to a partition of the final target,
and every node of the tree at that scale corresponds to one of the sets of the partition, whose size
equals the length of the input at that node.

For simplicity, we drop here the superscript denoting the training instance. Let us denote by Ωv =
xv ∩ yv the intersection of the input xv at node v, and the corresponding target subset yv . The
elements in that intersection will provide gradient signal to update θ for each node as follows. The
split block at v with current parameters computes the vector of probabilities pv(θ,x), encoding the
probability that each element in xv will be sent towards the first output or the second. In order
to create targets for these outputs, we first sample from pv(θ,x) to obtain a partition of xv: xv =

T 1∪T 2. This partition in turn defines a ‘valid’ partition Ωv = Ωinp,1
v ∪Ωinp,2

v , with Ωinp,j
v = Ωv∩T j

for j = 1, 2.

Similarly, we consider the target partition of the same size defined by the order in the target subset
Ωv = Ωtarg,1

v ∪ Ωtarg,2
v where |Ωtarg,i

v | = |Ωinp,i
v |, i = 1, 2. This partition creates the targets

t = 1(x ∈ Ωtarg,1
v ) , x ∈ Ωv .

As described in Section 4.1, besides providing targets corresponding to correct solutions, we also
attempt to minimize the average complexity of the model. The contribution of node v to the loss is
thus

l(θ, xv, yv) = −
∑

x∈Ωtarg,1
v

log(pv(θ, x))−
∑

x∈Ωtarg,2
v

log(1− pv(θ, x))− βSR(v, θ) , (5)

where

R(v, θ) =
1

|Ωv|

(∑
x∈Ωv

pv(θ, x)2

)
−

(
1

|Ωv|
∑
x∈Ωv

pv(θ, x)

)2

(6)

is a regularization term similar to an empirical variance which will encourage the split block to
partition the input into equal parts when maximized. Increasing βS will give more preference to
split inputs into equal parts, but using a large value can make the performance go down.
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We can finally define the total loss by aggregating the losses across all the nodes of the tree:

LS(θ, η, x, y) =

l−1∑
i=0

ηi
1

|Vi|
∑
v∈Vi

l(θ, xv, yv) , (7)

where Vi is the set of vertices at depth i, and η = (η1, . . . , ηl) is a vector of dynamic hyperparameters
that can be changed during training and βS is a real positive hyperparameter.

REMARK: if Ωv = ∅, the corresponding node will not be trained because we can’t create a target
for it.

We will consider η as being a binary vector, but non-binary η can make sense in some situations.
Its role is to dynamically control which scales are trained and which are not, so putting ηi = 1 will
make the i-th scale trainable. Observe that there is a hierarchy in the generated tree, i.e, the ability
to discriminate at a given node will strongly depend on the performance at smaller depths. This
ability can be quantified by |Ωv|, which will increase as performance of previous nodes becomes
better. This observation encourages us to give more preference at the top nodes at the beginning
of the training, which motivates the definition of the dynamic hyperparameter η, and is a form of
automatic curriculum learning, since by construction the model has to first learn to do well at the
coarsest scales before targets can be defined at the finer scales.

REMARK: If we just train the split architecture neglecting the merge, there is no need to first split
recursively the input storing the activations at every node and train all the nodes afterwards. We can
train the nodes while we are generating the tree. This training procedure reduces considerably the
amount of storing space needed for every batch. However, our goal in future work is to train both
architectures together. In this case, we must save the activations because the final target for the split
will only be available after a full forward pass through split and merge.

4.4 TRAINING MERGE

We describe here the procedure to learn how to perform the merging selection described in Section
3.2. Analogously to the split, the key point on the merge training is how to build proper targets at
every node of the tree having only the final target available y. In this case, this question is more
complicated because the merge block not only merges the two inputs preserving the inner ordering
of each, but also rules some of them out. Since we only observe input-output pairs, input elements
that are not in the target should be ruled out, but we don’t know at which scale of the tree they
should be discarded. Let us describe how again thanks to the scale invariance and with appropriate
regularization, we can train these operation with only external supervision.

The input x of the merge architecture will be an ordered sequence of disjoint subsets. They corre-
spond to an underlying split tree, so they can be seen as the leaves of a binary tree. First we forward
the input to the architecture and merge the outputs of each block recursively storing the activations
at every node until we reach the root node. To create the output mask from the probabilities at every
node, we always pick the elements belonging to the final convex hull, and the rest will be sampled
according to the probabilities. This way, the target elements will always appear in one node at every
scale. Denote by x1

v, x2
v the inputs at node v and yv = y ∩ (x1

v ∪ x2
v) the intersection of both inputs

with the final target. Let pv(φ, xi, x
{1,2}
v ) denote the probability computed by the merge model that

element xi is discarded at node v. The contribution of node v to the total loss is defined as

l(φ, x1
v, x

2
v, yv)+βMR(αM , x1

v, x
2
v) = −

∑
xi∈yv

log pv(φ, xi, x{1,2}v )+βM

 ∑
xi∈x1v,x2v

pv(φ, xi, x{1,2}v )− αM |x1
v ∪ x2

v|

2

.

(8)
Here, βM is the hyperparameter controlling the tradeoff between accuracy and complexity, and αM
is a shrinkage factor that models the rate by which each input is shrunk at each scale. This shrinkage
rate depends on the task at hand and we have not enough supervision in our setup to estimate it from
the data. We thus settle for a rate that is scale invariant, that is the total amount of elements at scale i
will follow a law of the form αiM . Notice that the cross-entropy term is unbalanced: it only penalizes
false negatives, since false positives can be recovered at other scales, but not false negatives.
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Finally, we define the total loss of the architecture as

LM (φ, x, y) = l0(φ, x1
v0 , x

2
v0 , yv0) +

l−1∑
i=1

∑
v∈Vi

[
l(φ, x1

v, x
2
v, yv) + βMR(α, x1

v, x
2
v)
]
, with (9)

l0(φ, x1
v, x

2
v, yv) = −

∑
xi∈yv

log pv(φ, xi, x{1,2}v )−
∑

xi∈(x1v∪x2v)−yv

log(1− pv(φ, xi), x{1,2}v ) . (10)

On the last node of the tree we can penalize for both false positives and negatives because its node
target corresponds to the final target.

5 EXPERIMENTS

Experiments are implemented in Tensorflow, with reproducible code soon available at https:
//github.com/alexnowakvila/DP.

5.1 SORTING

We implemented the split architecture for the task of sorting. This is a good task to test the split
block because we can solve it using an oracle splitting block (quicksort), which consists in finding a
centered pivot – such as the median. The final targets will be the sorted vector and the input will be
the set of elements of the vector. In this case, the dimensionality of the input is d = 1 because we
are sorting scalars.

We train the model for vectors of length n = 256 and train until depth 8. We use 40 layers for the
sorting block defined in Appendix A, resulting in a total of 240 parameters for the architecture in a
whole. The dataset has 4096 input-output pairs and we train during 5 epochs, by varying the input
distribution; see Figure 2. The training is performed using batches of size 32. At the beginning we
only train the first two scales and train one step deeper every 100 batches.

As described in Appendix A, we normalize the input set before feeding it into the next block using
the empirical mean and standard deviation. This normalization is lossless if one also feeds these two
empirical moments to the split block, as explained in Appendix A, but we observed no noticeable
change in the performance in the sorting case. This is consistent with the fact that sorting is invariant
to affine transformations of the input. Similarly as in Ioffe & Szegedy (2015), normalizing the input
by its first two moments reduces the effect of numerical instabilities and reduces covariate shift.

We sample from the output probabilities during training to connect different blocks. Sampling is
shown to be helpful during the first steps of training because it provides some exploration and avoids
the probabilities to get stuck. However, we observed an increase in performance using the mode at
test time. We measure our accuracy using the ratio between the inversions of the output and the
mean number of inversions. We denote it by Inversions Ratio (IR): IR = inversions

1
2 (n2)

. We trained the

model using normal and exponential distributions. If we use a uniform distribution the splitting task
reduces to split by the mean and this can be achieved with a much simpler block. The results show
an impressive generalization performance with input length and robustness with respect to input
distribution. It is remarkable to achieve this only using weak supervision (i.e, input-output pairs).
Figure 2 presents our numerical results and its analysis.

5.2 PLANAR CONVEX HULL

We trained the merge architecture for the planar convex hull with both weak and strong supervision
assuming an oracle split, i.e, the inputs are disjoint convex hulls. By now, for simplicity, the model
only learns how to choose a subset of each of both inputs, but not how to merge both subsets. The
deterministic policy to merge both chosen subsets is the following. The procedure will compute
angles between the vector that goes from the barycenter to every point and the unit vector (−1, 0).
The merged ordered sequence will be the points sorted by the corresponding angles. This policy
will produce outputs which are stable for small errors in the masking. We used 15 hidden units for
each LSTM, giving a total number of parameters of 2511. We trained with batches of size 16 over a
training set of size 1024.
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(a) Dataset ∼ N (0.5, 0.25) (b) Dataset ∼ Exp(µ = 0.1)

(c) IR (d) Average depths

Figure 2: (a) and (b): The loss at every scale is computed averaging over all the losses of the nodes
for all elements in the batch. We only show the first 6 scales. The input distribution for every
node of the generated tree is different at every block and scale because the inputs at a given scale
are the result of a finer partition of the inputs at the previous one. (a): Losses during training for
data set ∼ N (0.5, 0.25). We observe that the values of the losses are very similar. However, the
losses at first scales are a little bit larger than the others because the input distribution becomes more
symmetric as the partition gets finer. (b): Losses during training for data set ∼ Exp(µ = 0.1).
When training using the exponential distribution with mean µ = 0.1 as input, we observe that due
to it’s high non-symmetry, the losses at the first scale have a larger value. However, the difference
between losses shrinks during training. (c) and (d): The following tests are performed with the
architecture trained using the normal distribution and all the points are computed averaging over
100 examples. (c): Inversions Ratio (IR). The generalization test results are impressive. We test
from n = 100 to n = 14000 and the accuracy converges to a value of magnitude 10−6 − 10−7. If
there is no curve at the beginning of the test means that the number of inversions is 0. The results
show that the model performs better when the input distribution is normal because the resulting
input distributions at every block are easier to split into equal parts. Without regularization the
results are worse. (d): Average depths. We plot the average depths of the generated tree. The depth
is logarithmic with respect to the size of the input. The curve is independent of the test distribution
and the regularization term is key to make the complexity of the algorithm be close to the optimal.

It is important to prevent the model to learn the resulting convex hull just by the absolute position
of the points. For instance, if the points were drawn from a unit distribution on the unit square, then
the model could guess if a point belongs to the convex hull just using its absolute position. As the
loss in the weak supervision framework only discriminates between points belonging to the final
convex hull, using the absolute position can lead to a bad performance in the intermediate scales. In
order to get around this problem, our points were drawn from a uniform distribution on a half unit
square [0.5, 0.5]2 whose center is a random point in the square [0.25, 0.75]2. This way, we reduce
considerably the reliability of the absolute position to solve the task.
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We first train the model using strong supervision, i.e, every node of the tree will use the correct target
and all inputs at all nodes will be the correct convex hulls. We can think of strong supervision as
a sort of curriculum learning, but here, the block is simultaneously learning with different lengths.
At test time, we create the output mask by taking the mode of each output probability (can also try
with probabilities). To train using weak supervision, we must put a prior for the complexity of the
whole algorithm using αM . Its optimal value is unknown if just using input-output pairs, and in fact,

it depends on the scale and the data distribution. However, we estimate it by αM =
(
|Ωt|∑
i |Ωi|

)1/l

where Ωt is the target, Ωi is the i-th input and l is the number of scales.

At test time, we measure the accuracy of the model with the following quantity: Accuracy =
|Ωt∩Ω̂|
|Ωt∪Ω̂| . We adjusted the hyperparameter βM by making the gradient norms of the first part of
the loss 8 to be of the same magnitude of the gradient norms of the regularization term. We found
the optimal βM to be 10−2. We observed a much worse convergence using a βM larger than the
optimal in the case of 3 scales. We also confirmed the necessity of the regularization term for the
model to converge (see Figure 3). The average training time per epoch depends on the total number
of scales and the experimental αM . For instance, the model trained using WS takes about 1:30 min
and 2 min in average for 2 and 3 scales respectively. However, when training using WS for 3 scales
without regularization term, the probabilities get stuck at 1, producing an increase in complexity of
the model and a training time per epoch of 6 min.

6 DISCUSSION

We have presented a framework that has the ability to leverage an important smoothness prior present
in many discrete algorithmic tasks, namely the scale invariance or the ability to divide and conquer.
Similarly as the local translation invariance prior when learning with images using CNNs, exploit-
ing this inductive bias breaks the curse of dimensionality and provides a solid foundation to learn
complex functional dependencies.

Our approach is an attempt to mimic the behavior of dynamic programming algorithms with neural
networks. It is instantiated with two atomic operations – split an input into two, and merge two
outputs into a single one – that are recursively applied. This framework allows us to train the system
using weak supervision (that is, by only observing input-output pairs), and gives us another bullet:
the ability to optimize not only for accuracy but also for complexity, all in a fully differentiable
setup. Our numerical results are by all means preliminary, and much is still to be done before this
architecture becomes competitive. In particular, we are considering the following directions.

Current work: We are currently working in two major aspects. The first one is to generalize the
merge step so that it can not only perform the selection but also the concatenation in a fully learnt
manner. This operation can also be implemented with o(n) architectures since the partial order at
the output respects the partial order in each of the two inputs. The second one is to perform the joint
training of both split and merge blocks, which will allow us to learn with really weak supervision.
For that purpose, it is necessary to perform target propagation to provide suitable targets for the split
block. Lastly, we are in the process of comparing our results with standard baselines that do not
exploit the dynamic structure of the problem.

Future work: The number of extensions and applicability of this model is vast. In particular, we
want to extend split and merge architectures in graph problems such as shortest paths or spanning
trees. For that purpose, we will use Graph Neural Networks Scarselli et al. (2009); Sukhbaatar et al.
(2016) as atomic models to handle the data. We also want to explore more generic architectures for
the atomic split and merge, perhaps with Θ(n log n) complexity, to cover more territory between
linear and quadratic complexity, and to test the ability of the model to learn good approximations
in tasks that are NP-hard. Another question that this model raises is the consistency of weak super-
vision thanks to the scale invariance. A byproduct of our scale invariance seems to be the ability
to propagate and diffuse the available targets at the coarsest scale at all scales, leading to ‘self-
consistent’ supervision. We believe this is a profound question. Finally, we want to explore the links
between these ideas and that of the hierarchical Reinforcement learning, which is an extreme form
of very weak supervision. Designing intermediate rewards is akin to our setup of defining suitable
targets at intermediate scales, albeit with an extra degree of difficulty.
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(a) Test accuracies (b) Analysis of αM

(c) Example 1 test time (WS) (d) Example 2 test time (WS)

Figure 3: After every epoch, we test the model in a dataset of size 128. (a): Test accuracies. We
observe that the accuracy is lower for 3 scales. This is due to the tree structure and how the errors
propagate through it. In the case of SS, the merge block is not able to correct mistakes coming
from previous layers because the model is always trained with correct inputs. For WS, we also
observe a lower accuracy for 3 scales, however, the decrease is smaller than using strong supervision.
We claim that the reason for this is that the block is able to correct mistakes from previous layers
because the inputs of the blocks during training are not perfect convex hulls. We also show that
without regularization the model is not able to learn with WS. (b): Analysis of αM . We plot the
average number of masked elements at every scale over a batch of size 16. The theoretical masks are
computed using the correct dynamic algorithm, the estimate masks are the ones computed using the
prior αM used during training and the experimental corresponds to the masks when doing a forward
pass using the trained model. (c) and (d): Examples at test time (WS). In these two examples we
show how the model is able to correct mistakes at previous scales and producing the output convex
hull with good accuracy.
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A DETAILS ON SPLIT ARCHITECTURE

A.1 SPLIT

Let’s define for k = 1, . . . , r layers

F 0
i = xi, F ki = F ki (xi, z

k−1, F k−1
i , θ) ∈ Rd i = 1, . . . , n

where zk = 1
n

∑n
i=1 F

k
i is the empirical moment defined by Fi and θ is a set of parameters. Then,

p(x) = σ(F r) is the vector of probabilities, i.e, pi = P(xi ∈ Ω1). This is the most general
expression of our architecture. The idea is that the hidden units in layer k at position i depend on xi
(input at same index), zk−1 (average of all hidden states of previous layer) and F ki (previous hidden
unit at same index).

We reduce the covariate shift of the split architecture by normalizing the input sets by their empirical
mean and covariance:

x̃ =
x− µ̂
σ̂

.

Since both µ̂ and σ̂ are two empirical averages as the zk’s, they can be seamlessly integrated as extra
averages by concatenating them to zk.

We have parametrized the functions F ki in the following way:

F ki = φk0 × F k−1
i + φk1 × φk2

where φk0 , φ
k
1 and φk2 have the following form:

φk0 = σ(Ck0xi+W
k
0 z

(k−1)+bk0) , φk1 = σ(Ck1xi+W
k
1 z

(k−1)+bk1) , φk2 = tanh(Ck2xi+W
k
2 z

(k−1)+bk2) ,

and Cki ,W
k
i are d× d matrices and bki ∈ Rd a bias vector. Note that the total number of parameters

is r(3d2 + 3d) where r is the number of layers and d is the dimensionality of the input elements.
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