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ABSTRACT

Canonical Correlation Analysis (CCA) is a ubiquitous technique that shows promis-
ing performance in multi-view learning problems. Due to the conjugacy of the
prior and the likelihood, probabilistic CCA (PCCA) presents the posterior with
an analytic solution, which provides probabilistic interpretation for classic linear
CCA. As the multi-view data are usually complex in practice, nonlinear mappings
are adopted to capture nonlinear dependency among the views. However, the
interpretation provided in PCCA cannot be generalized to this nonlinear setting,
as the distribution assumptions on the prior and the likelihood makes it restrictive
to capture nonlinear dependency. To overcome this bottleneck, in this paper, we
provide a novel perspective for CCA based on implicit distributions. Specifically,
we present minimum Conditional Mutual Information (CMI) as a new criteria to
capture nonlinear dependency for multi-view learning problem. To eliminate the
explicit distribution requirement in direct estimation of CMI, we derive an objective
whose minimization implicitly leads to the proposed criteria. Based on this ob-
jective, we present an implicit probabilistic formulation for CCA, named Implicit
CCA (ICCA), which provides a flexible framework to design CCA extensions with
implicit distributions. As an instantiation, we present adversarial CCA (ACCA),
a nonlinear CCA variant which benefits from consistent encoding achieved by
adversarial learning. Quantitative correlation analysis and superior performance on
cross-view generation task demonstrate the superiority of the proposed ACCA.

1 INTRODUCTION

Canonical correlation analysis (CCA) (Hotelling, 1936) is a powerful technique which has been
widely adopted in a range of multi-view learning problems (Haghighi et al., 2008; Kim et al., 2007).
Generally, this technique aims at projecting two set of multivariate data into a subspace so that the
transformed data are maximally linear correlated. Since classical CCA captures correlations under
linear projections, it is represented as linear CCA.

Due to the conjugacy of the prior and the likelihood, probabilistic CCA (PCCA) (Bach & Jordan,
2005) presents analytic solution for the posterior, which provides probabilistic interpretation for
linear CCA. Specifically, let x ∈ Rdx and y ∈ Rdy be the random vectors in each view respectively,
z ∈ Rdz denotes the latent variable, then the posterior is given as

p(z|x,y) =
p(x,y|z)p(z)

p(x,y)
. (1)

To interpret linear CCA, PCCA adopts the following two assumptions: (1) The latent codes z follows
Gaussian distribution; (2) The data in each view are transformed through linear projection. As the
prior and the likelihood are conjugate, the posterior p(z|x,y) also follows Gaussian distribution,
which makes linear correlation an ideal criteria for the multi-view learning problem. In addition, as
the two views are both transformed through linear mapping, p(x, y|z) can be modeled with the joint
covariance matrix, with which the conditional independent assumption is satisfied.

p(x,y|z) = p(x|z)p(y|z). (2)

Consequently, as maximum likelihood estimation on the joint covariance matrix leads to an analytic
solution for the posterior, PCCA addresses the probabilistic interpretation for linear CCA, which
greatly deepens the understanding of CCA based models.

However, due to the linear projection, linear CCA can only capture the linear correlation among
the views, while the nonlinear dependency that commonly exists in practical multi-view learning
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Table 1: Comparison of existing CCA variants. Linear CCA methods are marked with gray, while others are
nonlinear CCA extensions. Our proposed ACCA is marked with blue. Column 2 indicates the mapping of the
involved variables. Column 3 indicates the adopted dependency criteria. Column 4 indicates whether the model
is generative. Column 5 indicates whether the method can handle the distribution with implicit form.

Methods Mapping Dependency criteria Generative Implicit
Nonlinear Nonlinear p(z) p(x,y|z) p(z|x,y)

CCA 7 7 7 7 7 7

PCCA 7 7 3 7 7 7

KCCA 3 7 7 7 7 7

DCCA 3 7 7 7 7 7

CIA 7 3 7 7 7 7

LSCDA 7 3 7 7 7 7

VCCA 3 - 3 7 3 7

Bi-VCCA 3 - 3 7 3 7

ACCA 3 3 3 3 3 3

problems cannot be properly captured. Recently, a stream of nonlinear CCA variants, such as Kernel
CCA (KCCA) (Lai & Fyfe, 2000) and Deep CCA (DCCA) (Andrew et al., 2013), were proposed
to capture the nonlinear dependency, but the probabilistic interpretation provided in PCCA fails to
generalize to these models for mainly two reasons:

1) As nonlinear dependency is to be captured, the Gaussian assumption made on the prior
distribution is restricted. Consequently, the linear correlation is no longer an ideal criteria,
as the high-order dependency in the latent space cannot be captured.

2) As the mappings to the latent space are complex in these nonlinear variants, conjugacy
between the prior and the likelihood is violated. Consequently, the posterior distributions
are intractable in these cases, making it restricted to be modelled with Gaussian assumption.
Furthermore, the intractability also makes it hard to validate the conditional independent
assumption in equation 2 for practical tasks.

To overcome the bottlenecks caused by the assumptions on the prior and the posterior distributions,
in this paper, we provide a novel perspective for CCA based on implicit distributions. Specifically,
we present minimum Conditional Mutual Information (CMI) as a new criteria for multi-view learning
problem, which overcomes the limitations of PCCA. To further eliminate the explicit distribution
requirement in the direct estimation of CMI, we derive an objective whose minimization implicitly
leads to the proposed criteria. Based on this objective, we present an implicit probabilistic formulation
for CCA, named Implicit CCA (ICCA). Proposed ICCA is presented to encompass most of the existing
probabilistic CCA variants. It also provides a flexible framework to design new CCA extensions
that can handle implicit distributions. As an instantiation, we design adversarial CCA (ACCA)
under the ICCA framework. Specifically, ACCA adopts holistic information for the encoding of the
data, and adopts adversarial learning scheme to achieve a consistent constraint for the incorporated
encodings. This elegant formulation of ACCA enables it to handle CCA problems with implicit
distributions. It also leads to the consistent encoding of the involved variables, which benefits ACCA’s
ability in capturing nonlinear dependency. Extensive experiments verify that ACCA outperforms
the baselines in capturing nonlinear dependency between the two views and consequently achieves
superior performance in the cross-view generation task.

2 RELATED WORK

Recently, various nonlinear CCA variants were proposed to improve the performance of CCA.
However, assumptions on the prior and posterior distributions in these models restrict their ability in
capturing the nonlinear dependency in real-world multi-view learning problems.

As shown in Table 1, considering the adopted extension strategy, most of the nonlinear CCA variants
can be grouped into two categories. For the first category, the nonlinear extension is conducted by
capturing linear correlations for nonlinear transformed data. The representative works are Kernel
CCA (KCCA) (Lai & Fyfe, 2000) and Deep CCA (DCCA) (Andrew et al., 2013). Although the
nonlinear mappings are complex, the common space is still assumed to be Gaussian distributed, as
they still adopt the linear correlation as the criteria. As the conjugacy of the prior and the likelihood is
violated, this distribution assumption restricted. For the other category, the extension is conducted by
capturing high-order dependency for linear transformed data. Most of the existing works adopt mutual
information or its variants as the nonlinear dependency measurement, corresponding representative
models are Canonical Information Analysis (CIA) (Vestergaard & Nielsen, 2015) and least-squares
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Figure 1: Graphical diagrams for generative nonlinear CCA variants. The solid lines in each diagram
denote the generative models pθ0(z)pθ∗(∗|z). The dashed lines denote the variational approximation
qφ∗(z|∗) to the intractable posterior pφ∗(z|∗).

canonical dependency analysis (LSCDA) (Karasuyama & Sugiyama, 2012), respectively. However,
explicit distributions are still required to estimate the adopted criteria in these methods. The estimation
would be extremely complicated for the high dimensional problem. This greatly restricts its ability in
handle high-dimensional multi-view learning problem for large datasets.

In (Wang et al., 2016), two generative nonlinear CCA variants, VCCA and Bi-VCCA were proposed,
which both can handle implicit likelihood distributions with variational inference. However, the
connection between its objective and that of CCA is not obvious. Furthermore, the prior p(z) and the
approximate posteriors q(z|x,y) are still required to be explicit distribution so that the KL-divergence
can be computed. However, as the data are usually complex in real-world applications, assumptions
on these two distributions restricts the power of these CCA models (Mescheder et al., 2017). For
example, if the data in the two views are from two separated clusters, the complex data structure in
each view makes it restrictive to make certain distribution assumptions for the latent space.

Drawbacks caused by the restricted distribution assumptions in the existing methods makes is
reasonable and promising to propose nonlinear CCA models which can handle implicit distributions.

3 IMPLICIT CCA - AN IMPLICIT PROBABILISTIC FORMULATION OF CCA
In this section, we propose an implicit probabilistic formulation for CCA, named Implicit CCA
(ICCA). First, we present PCCA and discuss its limitations as preliminary. Next, we present
minimum CMI as a new criteria to overcome the limitations of PCCA. Then, we present a general
probabilistic formulation of CCA (ICCA) based on the proposed criteria, which provides a flexible
framework to design CCA extensions with implicit distributions. Connections between ICCA and
existing probabilistic CCA variants are then presented.

3.1 PRELIMINARY- FORMULATION OF LINEAR CCA AND PCCA
Let X = {x(i)}Ni=1 and Y = {y(i)}Ni=1 be the inputs with pairwise correspondence in multi-view
scenario. Classic linear CCA aims to find linear projections for the two views, (W

′

xX,W
′

yY), such
that the linear correlation between the projections are mutually maximized.

(W∗
x,W

∗
y) = arg max

Wx,Wy

corr(W
′
xX,W

′
yY) = arg max

Wx,Wy

W
′
xΣxyWy√

W′
xΣxxWxW

′
yΣyyWy

(3)

Where Σxx and Σyy denote the covariance of X and Y respectively, and Σxy denotes the cross-
covariance of X and Y . Based on the graphical diagram depicted in Figure 1.(a), PCCA provides
probabilistic interpretation for linear CCA by proving that maximum likelihood estimation for the
parameters in equation 4 leads to the canonical correlation directions of linear CCA.

z ∼ N (0, Id), x|z ∼ N (Wxz + µx,Φx), y|z ∼ N (Wyz + µy,Φy), (4)

where Wx, Wy, Φx, Φy, µx and µy are the model parameters; d denotes the dimension of the
projected space. As discussed in the introduction, since nonlinear dependency is required to be
captured in nonlinear CCA models, PCCA cannot be generalized to these models for two reasons:

• The linear correlation criteria adopted in PCCA cannot capture the high-order dependency
between the variables.
• The conditional conditional independent assumption adopted in PCCA cannot be generalized

to nonlinear CCA variants.
Consequently, there are two points to consider in probabilistic interpretation of nonlinear CCA
variants: (1) a new criteria which can measure nonlinear dependency is required; (2) how to avoid the
conditional independent assumption to benefit the generalization ability of the proposed model.
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3.2 MINIMUM CMI - A NEW CRITERIA FOR MULTI-VIEW LEARNING PROBLEM

In this paper, we present minimum Conditional Mutual Information (CMI) as a new criteria for the
CCA-based models, which overcomes the aforementioned limitations of PCCA simultaneously.

Given three random variables X,Y and Z, CMI, defined in equation 5, measures the expected value
of the mutual information between X and Y given Z (Rahimzamani & Kannan, 2017).

I(X; Y|Z) =

∫∫∫
p(z)p(x,y|z) log

p(x,y|z)

p(x|z)p(y|z)
dzdxdy = H(X|Z)−H(X|Y,Z), (5)

where the entropy H(X|Z) quantifies the uncertainty of X when Z is known, and H(X|Y,Z)
quantifies the remaining uncertainty of X when Y, Z are both known. where the entropy H(X|∗)
quantifies the uncertainty of X when ∗ is known.

Obviously, CMI overcomes the limitations of PCCA from both the two aspects. First, mutual
information (MI) is a general correlation metric which can measure the nonlinear dependency
between two random variables (Cover & Thomas, 2012), it is a suitable statistic for interpreting
nonlinear CCA variants. Second, measuring CMI of the multi-view inputs given the common latent
space avoids the conditional independent assumption of PCCA.

Furthermore, for multi-view learning problem, as the mutual dependency of X and Y are maximumly
captured in the common latent space Z, further introducing Y as the condition has not much influence
on the uncertainty of X. Thus the difference between H(X|Z) and H(X|Y,Z) in equation 5, is to
be minimized. Consequently, minimum CMI can be adopted as a new criteria for CCA.

3.3 IMPLICIT CCA - AN IMPLICIT PROBABILISTIC FORMULATION OF CCA
Based on the proposed minimum CMI criteria, we present an implicit probabilistic formulation for the
CCA-based models, named Implicit CCA (ICCA). Specifically, to eliminate the explicit distribution
requirement for the estimation of CMI, we derive an objective whose minimization implicitly leads to
the proposed criteria. The obtained objective provides a general and flexible framework to instantiate
CCA models with implicit distributions.

Here we give the formulation of our model, more details are given in the appendix. Analogous to the
derivation of ELBO, the marginal log-likelihood can be rewritten as

log p(X,Y) = I(X; Y|Z)− Ex,y∼p(x,y)F(x,y), (6)

where the first RHS term is the proposed criteria. The second RHS term is the sum over the F(x,y)
for each data pairs. As the model evidence p(X,Y) is a constant with respect to the generative
parameters, the minimization of CMI can be achieved by minimizing

min F(x,y) = −Ez∼p(z|x,y)[log p(x|z) + log p(y|z)] +DKL(p(z|x,y) ‖ p(z)). (7)

As the proposed minimum CMI criteria can be implicitly achieved by the minimization of F(x,y) ,
equation 7 actually provides an implicit probabilistic formulation for CCA-based models, which is
named as Implicit CCA (ICCA) in our paper. Obviously, F(x,y) consists of two components: (1)
the reconstruction term, defined by the expectation of data log-likelihood of the two view; (2) the
prior regularization term, defined by the KL-divergence of the posterior p(z|x,y) and the prior p(z).

ICCA as a framework: Although proposed ICCA avoids the difficulties in the direct estimation of
CMI, the model is still hard to do inference, as the p(z|x,y) is unknown for practical problems. Thus,
efficient approximate inference methods, such as Variational Inference (VI), Bayes Moment Matching
(BMM), Generative Adversarial Networks (GANs) or Generative Moment Matching networks
(GMMDs) can be adopted to approximate the two terms of ICCA in implementation. Consequently,
ICCA provides a flexible framework for designing CCA models with implicit distributions.

3.4 CONNECTION BETWEEN EXISTING PROBABILISTIC CCA MODELS AND ICCA
The proposed ICCA provides a general framework for the probabilistic formulation of CCA, existing
probabilistic CCA variants can be connected to ICCA as follows.

PCCA: As illustrated in equation 4, PCCA provides probabilistic interpretation for linear CCA based
on two conditions: (1) x and y are transformed through a pair of linear projections; (2) both of
the likelihoods p(x|z) and p(y|z) follow Gaussian distributions. Based on these conditions, PCCA
proves that maximum likelihood estimation of the parameters of the model (Figure 1) leads to the
solution of the maximum correlation criteria in CCA. Consequently, the PCCA can be interpreted as
a special case of ICCA with the aforementioned conditions from the following two aspects:
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• Under the intrinsic conditional independent assumption ( equation 2) of PCCA, the minimum
CMI criteria of ICCA, is achieved by the solution of PCCA, I(X; Y|Z) = 0;
• PCCA adopts maximum likelihood estimation as the objective for CCA, which corresponds

to our formulation of ICCA (equation 7).
VCCA: As shown in the derivation of VCCA in the appendix B of (Wang et al., 2016), VCCA adopts
the approximated posterior from the test view, qφ(z|x) to approximate the true posterior p(z|x,y).
The objective of VCCA is given as

min Fqφ(z|x)(x,y) = −Ez∼qφ(z|x)[log p(x|z) + log p(y|z)] +DKL(qφ(z|x) ‖ p(z)), (8)

For Bi-VCCA, the objective, denoted as equation 9, is defined as a convex combination of the two
objectives derived with q(z|x) and q(z|y), denoted as

min Fqφ1 (z|x),qφ2 (z|y)(x,y) = µFqφ1 (z|x)(x,y) + (1− µ)Fqφ2 (z|y)(x,y). (9)

Obviously, VCCA and Bi-VCCA are both variational instantiations of ICCA, with different varia-
tional inference models to approximate p(z|x,y).

4 ADVERSARIAL CCA- AN INSTANTIATION OF IMPLICIT ENCODING

To overcome the restrictiveness caused by the assumptions for the incorporated distributions, we
specially instantiate Adversarial CCA (ACCA), which can handle CCA problems with implicit
distributions, within the proposed ICCA framework. In this section, we first state the motivation for
the design of ACCA. Next, we present the techniques adopted for the design of ACCA. Then, we
provide a detailed description on the formulation of ACCA.

4.1 MOTIVATION

Although VCCA and Bi-VCCA are both variational instantiations of ICCA, which can handle implicit
likelihood distributions for multi-view learning problem. Two limitations exist in these models that
affect their performance in capturing nonlinear dependency.

1) VCCA and Bi-VCCA assume the common latent space to be Gaussian distributed, which restricted
its power in handling complex multi-view learning problems.

Remark1: Both VCCA and Bi-VCCA require the prior and approximate posteriors to be explicit
Gaussian distributions so that the KL divergence can be computed. However, as the data usually
exhibits intractable distributions in real-world applications, assumptions on the data distributions
restrict the expressive power of the inference models (Mescheder et al., 2017).

2) VCCA and Bi-VCCA are proposed with inconsistent constraint, which would result in misaligned
encodings that affect the inter-view correspondence in the common latent space.

Remark2: VCCA adopts q(z|x) to approximate p(z|x,y), with the underling assumption that
q(z|x,y) = q(z|x). Similarly, Bi-VCCA is designed with the assumption that q(z|x,y) = q(z|x) =
q(z|y). However, the assumption is hard to be validated, as q(z|x,y) is not explicitly modeled.
Furthermore, as there is no consistent marginalization for the incorporated inference models, q(z|x)
and q(z|y), Bi-VCCA potentially suffers from misaligned encoding for the two views, which affects
the inter-view correspondence in the common latent space. Consequently, Bi-VCCA would be less
effective in cross-view structure output prediction task (Sohn et al., 2015), in which the inter-view
correspondence is critical for the performance.

To tackle the aforementioned problems, we specially instantiate Adversarial CCA (ACCA), which
achieves consistent encoding for the multi-view inputs, within ICCA framework.

4.2 MODEL

As in VCCA and Bi-VCCA, we adopt variational inference to handle implicit likelihood distribution
with ICCA. However, two schemes are adopted to overcome the limitations of these two methods.

Encoding with holistic information: We first introduce three inference models to provide holistic
information for the encoding, which also paves the way for the consistent encoding in ACCA.

Specifically, apart from the encodings, q(z|x) and q(z|y), incorporated in Bi-VCCA, we further
introduce q(z|x,y) that explicitly models the encoding of the joint data distribution pd(x,y) for the
auxiliary view XY. Graphical model of the proposed ACCA is shown in Figure 1.(d).
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Figure 2: Overall structure of ACCA. The left panel corresponds to the encoding with holistic information
scheme. For the right panel, the top panel represents the view reconstruction, while the bottom panel embodies
the adopted adversarial learning scheme, which corresponds to the consistent constraint designed for ACCA.

As the three views provide overall evidence for the inference of z, the three inference models lead to
holistic encoding, which benefits the expressiveness of the common latent space. Furthermore, explic-
itly model q(z|x,y) and then approximate all the three encodings avoids the idealistic assumption
(Remank 2) in Bi-VCCA, thus paving the way for the consistent encoding in ACCA.

Adversarial learning: We then adopt an adversarial learning scheme to set a consistent constraint
for the three encodings. This also enables ACCA to handle implicit prior and posterior distributions.

Specifically, adopting adversarial learning scheme, each of the three inference models in ACCA
defines an aggregated posteriors defined over z (Makhzani et al., 2015), which can be denoted as

qx(z) =

∫
x

qx(z|x) pd(x) dx, qy(z) =

∫
y

qy(z|y) pd(y) dy,

qx,y(z) =

∫∫
qx,y(z|x,y) pd(x,y)dxdy, (10)

As the posterior p(z|x,y) in equation 7 is approximated with these aggregated posteriors, we design
generative adversarial network (GAN) that adopts the three inference model as generator and one
shared discriminator to drive the approximation of the three aggregated posteriors, denoted as

qx(z) ≈ qy(z) ≈ qx,y(z) ≈ p(z). (11)

As the three aggregated posteriors are driven to match the prior p(z) simultaneously via the shared
discriminator, the adversarial learning scheme provides a consistent constraint for the three encodings,
thus overcomes the misaligned encoding problem in Bi-VCCA.

To conclude, ACCA overcomes the problems in Bi-VCCA from two aspects: 1) As the adversarial
learning scheme handles both the prior distribution and the posterior distribution implicitly, proposed
ACCA can handle CCA problem with implicit prior distributions. 2) As the holistic encoding
provides an overall model evidence for the inference of z, and the adversarial learning scheme drives
a consistent approximation of all the marginalized distribution of z, ACCA achieves a consistent
encoding for the three inference models, thus tackles the misaligned encoding problem in Bi-VCCA.

4.3 FORMULATION OF ACCA

Based on the aforementioned design, the formulation of ACCA within ICCA is given as
FACCA(x,y) = −Ez∼qx(z)[log p(x|z) + log p(y|z)]− Ez∼qy(z)[log p(x|z) + log p(y|z)]

−Ez∼qx,y(z)[log p(x|z) + log p(y|z)] + RGAN, (12)

where RGAN denotes the consistent constraint imposed by the adversarial learning.

Based on the formulation of ACCA, we designed the framework of ACCA. As shown in Figure 2,
the framework of ACCA consists of 6 subnetworks, including three encoders, Ex, Exy and Ey,
two decoders Dx and Dy, and one adversarial discriminatorD̂. Description for the role of each
subnetworks are summarized in Table 2. Based on the aforementioned architecture, the objective of
ACCA is a joint learning problem of the aforementioned components, which is given as

min
Ex,Ey,Exy,Dx,Dy

max
D̂
LRecons(Ex, Ey, Exy, Dx, Dy) +RGAN(Ex, Ey, Exy, D̂), (13)
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Table 2: Description for the roles of each set of subnetworks in ACCA.

Correspondences
in ICCA

Reconstruction Prior regularization

Networks {Ex, Dx, Dy} {Ey, Dx, Dy} {Exy, Dx, Dy} {Ex, Ey, Exy, D̂}

Description Cross-view reconstruction
from Ex(x)

Cross-view reconstruction
from Ey(y)

Cross-view reconstruction
from Exy(xy)

Consistent constraint
for the encoders

where LRecons = LEx(Ex, Dx, Dy) + LEy (Ey, Dx, Dy) + LExy (Exy, Dx, Dy), with each of the three
sub-objective corresponds to a variant for the reconstruction term of ICCA.

LEx(Ex, Dx, Dy) = −Ez∼qx(z|x) [log(x| z) + log(y| z)].

LEy (Ey, Dx, Dy) = −Ez∼qy(z|y) [log(x| z) + log(y| z)].

LExy (Exy, Dx, Dy) = −Ez∼qx,y(z|x,y) [log(x| z) + log(y| z)].

(14)

The RGAN term in equation 13 denotes the consistent constraint imposed by adversarial learning,
which corresponds to the prior regularization term in ICCA. The objective is given as
RGAN(Ex, Ey, Exy, D̂) = Ez′∼p(z) log (D̂(z′)) + Ezx∼qx(z|x) log (1− D̂(zx))

+ Ezy∼qy(z|y) log (1− D̂(zy)) + Ezxy∼qx,y(z|x,y) log (1− D̂(zxy)).
(15)

5 EXPERIMENT

In this section, we first demonstrate the superiority of ACCA in handling implicit distributions with
prior specification on artificial toy dataset. Then, we conduct correlation analysis on three real datasets
to demonstrate the performance of ACCA in capturing nonlinear dependency. Finally, we specifically
demonstrate the effectiveness of consistent encoding in ACCA through alignment verification and
cross-view structure output prediction.

Baselines: We compare ACCA with several state-of-the-art CCA variants in our experi-
ments. CCA (Hotelling, 1936): Linear CCA model that learns linear projections of the two views
that are maximally correlated. Bi-VCCA (Wang et al., 2016): Bi-deep variational CCA, represen-
tative generative nonlinear CCA variants with Gaussian prior on the common latent space. ACCA
without the complementary view (ACCA_NoCV), variants of ACCA that without the encoding of
the complementary view XY . Note that, since PCCA requires expensive inference for the posterior,
we do not compare with it in the experiment. To demonstrate the effectiveness of handling implicit
prior distribution, two versions of ACCA are compared: (1) ACCA(G), ACCA model with standard
Gaussian prior. (2) ACCA(GM), ACCA model with Gaussian mixture prior.

Network setting: For all the DNN based CCA variants, we model the encoding and decoding
functions of the incorporated views with MLP, with a specific number of neurons set in each layer
for different datasets. For the discriminatorD̂, we implement it with a 3layers MLP with the 1024
neurons in each layer. We set the learning rate = 0.001 and epoch = 100 for all the dataset, with the
batch size tuned over {32, 128, 256, 500, 512, 1000} and the dimension of the latent space d tuned
over {10, 30, 50, 70} for different datasets. Under the same dimension, the hyperparameters that
yield the best HSIC value on the projected tuning set are selected for each method.

Dependency metric: Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) is a
state-of-the-art measurement for the overall dependency among variables. In this paper, we adopt
the normalized empirical estimate of HSIC (nHSIC) (Wu et al., 2018) as the metric to evaluate the
nonlinear dependency captured in the common latent space. Specifically, we compute the nHSIC for
the normalized embedding of the test set obtained with each method. Results of the nHSIC computed
with linear kernel and RBF kernel (σ set with the F-H distance between the points) are both reported.

5.1 PRIOR SPECIFICATION

We first apply ACCA to an artificial dataset generated with specific prior distributions to show
that, handling implicit distributions, ACCA could uncover the intrinsics of the latent space which
contribute to a better performance in capturing nonlinear dependency.

Dataset: Following William (2000), we construct a 3 dimensional toy dataset which posses two
proprieties: (1) both the input views follow a complex non-Gaussian distribution; (2) nonlinear
dependency exists in these two views. Details for the construction of each dimension of the data are
presented in Table 3, where z is from a mixture of three Gaussian distributions, denoted as

z ∼ N (0, 1) + 0.8 ∗ N (2, 0.5) + 1.2 ∗ N (3, 1.5). (16)
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Table 3: Details for the design of the toy dataset. The numerals correspond to the coefficients for the linear
combination of each dimension in each view. For example, X1, the first dimension of view X is (z − 0.3z2).

X Y

X1 X2 X3 Y1 Y2 Y3
z 1 1 0 0 -1 1
z2 -0.3 0.3 1 0 0 0.3
z3 0 0 0 1 0.3 0

The constructed toy dataset totally contains 3000 data of pairs, where 2000 pairs are randomly
selected for training, 500 pairs for the validation, and the rest 500 pairs for testing.

We conduct correlation analysis on the embeddings obtained with each method. Note that, for
ACCA (GM), the prior is set as equation 16, the true distribution of z. As ACCA handles implicit
distributions, which benefits its ability to reveal the intrinsic of the latent space, higher nHSIC is
expected to achieve with this method.

Table 4 presents the correlation comparison results on the toy dataset. The table is revealing in several
ways: (1) As the embedding space of CCA is as the same dimension as the original space, it achieves
the highest nonlinear dependency among the two views. 2) Bi-VCCA obtains the smallest nHSIC
value compared with the other generative methods. This indicates that the consistent constraint
imposed by adversarial learning benefits the dependency captured in the common latent space. (3)
Among the three ACCA variants, ACCA (GM) archives the best result on both settings, which verifies
that generative CCA model that can handle implicit distributions can benefit from the flexibility in
capturing complex data dependencies.

5.2 CORRELATION ANALYSIS

We further test the performance of ACCA in capturing nonlinear dependency on three commonly
used real-world multi-view learning datasets.

MNIST handwritten digit dataset (MNIST) (LeCun, 1998) consists of 28 x 28 grayscale digit images
where 60,000 of them are for training and 10,000 are for testing. We conduct experiments on two
multi-view variants of the MNIST dataset.

MNIST left right halved dataset(MNIST_LR) We follow the setting in Andrew et al. (2013) to
construct two input views, where view X correspond to the left half of the images and view Y
corresponds to the right half of the images. We set the width of the hidden layers of the encoder
for X , Y and XY to be {2308,1024,1024}, {1608,1024,1024} and {3916,1024,1024}, respectively.
10% images from the training set are randomly sampled for hyperparameter tuning. The dimension
of the latent space is set to be 50.

MNIST noisy dataset (MNIST_Noisy) We follow the setting in Wang et al. (2016) to construct
two input views, where view X corresponds to randomly rotated images and view Y corresponds
to noised digits. We set the width of the hidden layers of the encoder X ,Y and XY to be the same,
{1024,1024,1024}. The dimension of the latent space is set to be 30.

Wisconsin X-ray Microbeam Database (XRMB) (Westbury, 1994) is a commonly used multi-view
speech dataset. We follow the setting in Wang et al. (2014), where view X corresponds to the 273-d
acoustic features and view Y corresponds to the 112-d articulation features. We use around 1.4M of
the utterances for training, 85K for tuning hyperparameters and 0.1M for testing. For the network
structure, we follow the setting in Andrew et al. (2013), and set the width of the hidden layers of the
encoder X ,Y and XY to be {1811,1811},{1280,1280} and {3091, 3091}. The dimension of the
latent space is set to be 112. Note that, due to the computational issues for the RBF kernel of XRMB,
we adopt random feature maps to approximate the original kernel for the computation of nHSIC.

Table 4 presents the correlation comparison for all the methods. We can see that, proposed ACCA,
both ACCA(G) and ACCA (GM) achieve superb performance among these methods. Specifically, the
dependency captured by ACCA is much better than that of CCA and Bi-VCCA, which indicate that
proposed ACCA benefit from consistent encoding and thus better capture the dependency between
the two views. In addition, ACCA(G) achieves better results than ACCA_NOCV on most of the
settings. This demonstrates that the adopted holistic encoding scheme contributes to the dependency
captured in the common latent space.
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Table 4: Correlation analysis results on the experimental datasets. The best ones are marked in bold.
Metric Datasets CCA Bi-VCCA ACCA_NoCV ACCA (G) ACCA (GM)

nHSIC
(linear kernel)

toy 0.9999 0.9296 0.9683 0.9581 0.9745
MNIST_LR 0.4210 0.4612 0.5233 0.5423 0.5739

MNIST_Noisy 0.0817 0.1912 0.3343 0.3285 0.3978
XRMB 0.1735 0.2049 0.2537 0.2703 0.2748

nHSIC
(RBF kernel)

toy 0.9999 0.9544 0.9702 0.9759 0.9765
MNIST_LR 0.4416 0.3804 0.5799 0.6318 0.7387

MNIST_Noisy 0.0948 0.2076 0.2697 0.3099 0.3261
XRMB 0.0022 0.0027 0.0031 0.0044 0.0056

Figure 3: Visualization of the embeddings obtained for the two views, with each row represents the embeddings
obtained with view X and view Y , respectively. (zx, zy) denote a pair of correspondent embedding. δ indicates
the misalignment degree of each method. Methods with smaller value of δ are better.

5.3 VERIFICATION OF CONSISTENT ENCODING

To testify the consistent encoding achieved in the ACCA, we specifically conduct two sets of
experiments on the MNIST_LR dataset.

5.3.1 ALIGNMENT VERIFICATION

We first embed the data into two-dimensional space to verify the alignment of the multi-view.
Specifically, projecting the paired testing data into a Gaussian distributed space, we take the origin
O as the reference and adopt the angular difference as the distance measurement for the paired
embeddings, which can be denoted as φ(zx, zy) = ∠zxOzy (illustrated with Figure 3.(b)). The
degree of the misalignment between the multi-views is measured by

δ =

∑N
1 ψ(zx, zy)

N ∗Ψ
, (17)

Where Ψ denotes the maximum angle of all the embeddings and N is the number of data pairs.

We compare ACCA with Bi-VCCA and ACCA_NoCV as they have the encodings for both the two
views. The results of the experiment are presented in Figure 3, in which a larger value of δ represent
a higher degree of misalignment and a inferior performance of the corresponding embedding method.

Obviously, Bi-VCCA suffers from the misaligned encoding problem as regions of this two sets
of embeddings are even not overlapped. In addition, the misalignment degree of Bi-VCCA is
δ = 2.3182, which is much higher than that of ACCA_NoCV and ACCA. This clearly demonstrates
the effectiveness of the consistent constraint imposed by the adversarial learning scheme in ACCA.
In addition, the embeddings of ACCA are uniformly distributed in the latent space compared with
that of ACCA_NoCV, indicating that the complementary view, XY provide additional information
for the holistic encoding, which benefits the effectiveness of the common latent space. Additional
experiments for the alignment verification are given in the Appendix.

5.3.2 CROSS-VIEW STRUCTURED OUTPUT PREDICTION

To further testify the efficacy of consistent encoding in ACCA, we apply our model to the cross-view
structured output prediction task. Specifically, this task aims at whole-image recovery given the
partial input image in one of the views. To verify the robustness of ACCA, we divide the test data
in each view into four quadrants , and add noise to one, two or three quadrants of the input by

9
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overlapping gray color. Performance of the experiment is evaluated with similarity analysis from
both qualitative and quantitative aspects. Since Bi-VCCA is the only baseline method that supports
cross-view generation, we compare ACCA with Bi-VCCA in this task.

Qualitative analysis: We first evaluate the performance of each method regarding the reality and
recognizability of the generated images. Figure 4 presents the visualization of the generated samples
for each digit. The figure clearly illustrate that, ACCA generates more realistic images compared
to Bi-VCCA, with different levels of noise in the input. For example, given left-half image with 1
quadrant gray color overlaid as input (left subfigure, column 2-4), the generated images by Bi-VCCA
are much more blurred and less recognizable than the ones by ACCA (especially in case (a) and
(b)). In addition, ACCA can successfully recover the noisy half images which are even confusing for
human to recognize. For example, in case (b), the left-half image of digit “5” in the left subfigure
looks similar to the digit “4”, ACCA succeeds in recovering its true digit. Consequently, overall,
ACCA outperforms Bi-VCCA in cross-view structured output prediction task from this perspective.

Figure 4: Generated samples given input images with (left) 1 quadrant and (right) 2 quadrants gray color
overlaid. In each subfigure, the first column is the ground truth. The next three columns show the input for view
X and the corresponding generated image using Bi-VCCA and ACCA, respectively. The last three columns are
the input image from view Y and the corresponding generation results of the two methods.

Quantitative evidence: We further provide the quantitative evidence by computing the pixel-level
accuracy of the generated images to their corresponding original image in Table 5. It clearly
demonstrates that our ACCA consistently outperforms Bi-VCCA given input images from different
views with different level of noise. What is also interesting in this table is that, using the left-half
images as the input tends to generate images more similar to the original images than using the
right-half images. It might be because the right-half images contain more information than the
left-half images, which will result in a better network training for a more accurate image generation.
Table 5: Pixel-level accuracy for full image recovery given gray color overlaid halved images for different input
views on the MNIST_LR dataset.

Input
(halved image)

Methods Gray color overlaid
1 quadrant 2 quadrants 3 quadrants

Left Bi-VCCA 72.83 62.36 56.52
ACCA 76.85 68.95 57.63

Right Bi-VCCA 72.91 66.78 60.32
ACCA 78.31 71.30 62.77

6 CONCLUSION

In this paper, we present a theoretical study for CCA based on implicit distributions. Our study
discusses the restrictive assumptions of PCCA on nonlinear mappings and provides a general implicit
probabilistic formulation for CCA. The proposed framework reveals the connections among different
CCA variants and enables flexible design of nonlinear CCA variants with implicit distributions for
practical applications. We also propose a consistent encoding strategy in an instantiation of ICCA,
which overcomes the misalignment problem in existing generative CCA models. Experiment results
verify the superb ability of ACCA in capturing nonlinear dependency, which also contributes to
the superior performance of ACCA in cross-view generation task. Furthermore, due to the flexible
architecture designed in equation 12, proposed ACCA can be easily extended to multi-view task of n
views, with (n+ 1) generators and (n) decoders.
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7 APPENDIX

7.1 DERIVATION OF ICCA

Analogous to the derivation of ELBO, the expection of the marginal log-likelihood can be rewritten
as

Ex,y∼p(x,y) log(x,y) =

∫∫
p(x,y) log p(x,y)dxdy (18)

=

∫∫
[

∫
z

p(x,y, z) log p(x,y)dz]dxdy

=

∫∫
[

∫
z

p(z)p(x,y|z) log
p(x,y|z)p(z)

p(z|x,y)
dz]dxdy

=

∫∫
[

∫
z

p(z)p(x,y|z) log (
p(x,y|z)p(z)

p(z|x,y)
· p(z|x)p(z|y)

p(z|x)p(z|y)
)dz]dxdy

=

∫∫
[

∫
z

p(z)p(x,y|z) log (
p(x,y|z)p(z)

p(z|x,y)
· p(z|x)p(z|y)
p(x|z)p(z)
p(x)

· p(y|z)p(z)
p(y)

)dz]dxdy

=

∫∫
[

∫
z

p(z)p(x,y|z) log (
p(x,y|z)

p(x|z)p(y|z)
· p(z|x)p(z|y)p(x)p(y)

p(z|x,y)p(z)
)dz]dxdy

=

∫∫
[

∫
z

p(z)p(x,y|z) log
p(x,y|z)

p(x|z)p(y|z)
dz]dxdy

+

∫∫
[

∫
z

p(z)p(x,y|z) log
p(z|x)p(z|y)p(x)p(y)

p(z|x,y)p(z)
dz]dxdy

= I(X,Y)|Z + T,

Where

T =

∫∫
[

∫
z

p(z)p(x,y|z) log
p(z|x)p(z|y)p(x)p(y)

p(z|x,y)p(z)
dz]dxdy (19)

=

∫∫
[

∫
z

p(x,y)p(z|x,y) log (
p(z|x)p(z|y)p(x)p(y)

p(z|x,y)p(z)
)dz]dxdy

=

∫∫
p(x,y) [

∫
z

p(z|x,y) log
p(x|z)p(z)p(y|z)p(z)

p(z|x,y)p(z)
dz]dxdy

=

∫∫
p(x,y) [

∫
z

p(z|x,y)[log p(x|z) + log p(y|z)]dz]dxdy

−
∫∫

p(x,y) [

∫
z

p(z|x,y) log
p(z|x,y)

p(z)
dz]dxdy

= E(x,y)∼p(x,y)[Ez∼p(z|x,y)[ log p(x|z) + log p(y|z)]−DKL(p(z|x,y) ‖ p(z))],

Consequently,

Ex,y∼p(x,y) log p(x,y) = I(X; Y|Z) (20)
+ Ex,y∼p(x,y)[Ez∼p(z|x,y)[ log p(x|z) + log p(y|z)]]

−DKL(p(z|x,y) ‖ p(z))

Thus,

I(X; Y|Z) = E(x,y)∼p(x,y) log p(x,y) + E(x,y)∼p(x,y)F (x,y), (21)

As the p(X,Y) is a constant with respect to the generative parameters, the minimum CMI criteria
can be achieved by the minimization of equation 22.

F (x,y) = −Ez∼p(z|x,y)[log p(x|z) + log p(y|z)] +DKL(p(z|x,y) ‖ p(z)), (22)

7.2 T-SNE VISUALIZATION FOR THE EMBEDDING OF ACCA AND BI-VCCA

Figure 5, Figure 6 and Figure 7 present the embeddings obtained with each inference model of Bi-
VCCA, ACCA_NoCV and ACCA, for MNIST_LR dataset respectively. The results are explainable
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from the following aspects: (1) For Bi-VCCA, it is obvious that zy fails to show good clustering
results. The comparison between that of zx indicates that Bi-VCCA suffers from a misalignment
encoding for the incorporated two views. (2) For ACCA_NoCV, the cluster results present better
alignment for the two views compared with that of Bi-VCCA, which indicates that the adopted
adversarial learning scheme benefits the consistent encoding for the two views. 3) For ACCA, we
can see that, all the three embeddings show clear clustering structures, and the boundaries are much
more clear than that of ACCA_NoCV. This indicates that the adopted holistic encoding scheme
also contribute a consistent encoding of the two views, as the incorporated q(z|x,y) are forced to
reconstruct both the two views.

Figure 5: t-SNE visualization of the embeddings of VCCA. Left.zx; Right. zy .

Figure 6: t-SNE visualization of the embeddings of ACCA_NoCV. Left.zx; Right. zy .

Figure 7: t-SNE visualization of the embeddings of ACCA. Left.zx; Middle. zy; Right. zxy .
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