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Abstract

In this paper, we investigate the robustness of traffic sign recognition algorithms1

under challenging conditions. Existing datasets are limited in terms of their size and2

challenging condition coverage, which motivated us to generate the Challenging3

Unreal and Real Environments for Traffic Sign Recognition (CURE-TSR) dataset.4

It includes more than two million traffic sign images that are based on real-world5

and simulator data. We benchmark the performance of existing solutions in real-6

world scenarios and analyze the performance variation with respect to challenging7

conditions. We show that challenging conditions can decrease the performance8

of baseline methods significantly, especially if these challenging conditions result9

in loss or misplacement of spatial information. We also investigate the utilization10

of simulator data along with real-world data and show that hybrid training can11

enhance the average recognition performance in real-world scenarios.12

1 Introduction13

Autonomous vehicles are transforming existing transportation systems. As we step up the ladder of14

autonomy, more critical functions are performed by algorithms, which demands more robustness.15

In case of following traffic rules, robust sign recognition systems are essential unless we have prior16

information about traffic sign types and locations. It is a common practice to test the robustness17

of these systems with traffic datasets (1; 2; 3; 4; 5; 6; 7; 8; 9; 10). However, majority of these18

datasets are limited in terms of challenging environmental conditions. There is usually no metadata19

corresponding to challenge conditions or levels in these datasets, which are also limited in terms of20

dataset size. Moreover, the relationship between challenging conditions and algorithmic performance21

is not analyzed in these studies. Lu et al. (11) investigated the traffic sign detection performance22

with respect to challenging adversarial examples and showed that adversarial perturbations are23

effective only in specific situations. Das et al. (12) showed the vulnerabilities of existing systems24

and suggested JPEG compression to eliminate adversarial effects. Even though both of these studies25

analyze algorithmic performance variation with respect to specific challenging situations, adversarial26

examples are inherently different from realistic challenging scenarios.27

In this paper, we investigate the traffic sign recognition performance of commonly used methods under28

realistic challenging conditions. To eliminate the shortcomings of existing datasets, we introduce the29

Challenging Unreal and Real Environments for Traffic Sign Recognition (CURE-TSR) dataset. The30

contributions of this paper are 5 folds. First, we introduce the most comprehensive publicly-available31

traffic sign recognition dataset with controlled challenging conditions. Second, we provide real-world32

data as well as simulator data, which can enable investigating transfer learning problem between real33

and simulated environments. Understanding the relationship between real and simulated environments34

can lead to realistic dataset design, which may eventually eliminate the need for real-world data35

collection. Third, we provide a benchmark of commonly used methods in the introduced dataset.36
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Forth, we provide a comprehensive analysis of algorithmic performance with respect to challenging37

environmental conditions. Fifth, we utilize simulator data along with real-world data to enhance the38

performance of baseline methods in real-world scenarios.39

2 Dataset40

Timofte et al. (3) introduced the Belgium traffic sign classification (BelgiumTSC) dataset whose41

images were acquired with a van that had 8 roof-mounted cameras. Acquisition vehicle cruised in42

streets of Belgium and images were captured every meter. A subset of these images were selected43

and traffic signs were cropped to obtain the BelgiumTSC dataset. Stallkamp et al. (6; 7) introduced44

the German traffic sign recognition benchmark (GTSRB) dataset, which was acquired during daytime45

in Germany. Each traffic sign instance in the dataset is adjusted to have 30 images. BelgiumTSC and46

GTSRB datasets are limited in terms of challenging environmental conditions and they do not include47

metadata related to the type of challenging conditions or their levels. Because of limited control in data48

acquisition setup, it is not possible to perform controlled experiments with these datasets. The total49

number of annotated signs including BelgiumTSC and GTSRB datasets is around 60, 000, which may50

not be sufficient to test the robustness of recognition algorithms comprehensively. To compensate51

the shortcomings in the literature, we introduce the CURE-TSR dataset. Main characteristics of52

BelgiumTSC, GTSRB, and CURE-TSR datasets are summarized in Table 1.53

Table 1: Main characteristics of BelgiumTSC, GTSRB, and CURE-TSR datasets.

Dataset Number of
images

Number of
annotated

images

Number of
sign types

Sign
size

Origin of
the videos

Acquisition
device

BelgiumTSC
(13)

7,095 -
7,125

All
images 62 11x10 to

562x438

Captured
in

Belgium

Color
cameras

GTSRB
(14)

133,000 -
144,769 51,840 43 15x15 to

250x250

Captured
in

Germany

Prosilica GC
1380CH

color camera

CURE-TSR 2,206,106 All
images 14 3x7 to

206x277

Captured in
Belgium and
Generated in

Unreal Engine 4

Color
cameras

54

(a) Real-world (real) image (b) Simulator (unreal) image

Figure 1: Real and unreal environments.

55

Traffic sign images in the CURE-TSR dataset were cropped from the CURE-TSD dataset (15), which56

includes around 1.7 million real-world and simulator images. Real-world images were obtained from57

the BelgiumTS video sequences and simulated images were generated with the Unreal Engine 458
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game development tool. In Fig. 1, we show a sample real-world image and a simulator image. In the59

rest of this paper, we refer to simulator generated images as unreal images and real-world images60

as real images. As observed in sample images, both real and unreal images are usually from urban61

environments. There are 14 traffic signs with annotations in both environments, which are shown in62

Fig. 2. Sign types include speed limit, goods vehicles, no overtaking, no stopping, no parking, stop,63

bicycle, hump, no left, no right, priority to, no entry, yield, and parking.64

speed goods no no no stop bicycle hump no no priority no yield parkinglimit vehicles overtaking stopping parking left right to entry

Figure 2: Traffic signs in real (1st row) and unreal (2nd row) environments.

65

Unreal and real sequences were processed with state-of-the-art visual effect software Adobe(c)66

After Effects to simulate challenging conditions, which include rain, snow, haze, shadow, darkness,67

brightness, blurriness, dirtiness, colorlessness, sensor and codec errors. In Fig. 3, we show sample68

stop sign images under challenging conditions in both real and unreal environments.69

No Decolor- Lens Codec Darkening Dirty Exposure Gaussian Noise Rain Shadow Snow HazeChallenge ization Blur Error Lens Blur

Figure 3: Stop signs under challenging conditions in real (1st row) and unreal (2nd row) environments.

70

3 Experiments71

3.1 Baseline Methods, Dataset, and Performance Metric72

In the German traffic sign recognition benchmark (GTSRB) (6), histogram of oriented gradient73

(HOG) features were utilized to report the baseline results. In the Belgium traffic sign classification74

(BelgiumTSC) benchmark, cropped traffic sign images were converted into grayscale and rescaled to75

28× 28 patches, which were included in the baseline. Moreover, HoG features were also used as a76

baseline method. They classified traffic sign images with methods including support vector machines77

(SVMs). Similar to GTSRB and BelgiumTS datasets, we use rescaled grayscale and color images as78

well as HoG features as baseline. In the final classification stage, we utilize one-vs-all SVMs with79

radial basis kernels and softmax classifiers. In addition to aforementioned techniques, we also use a80

shallow convolutional neural network, which consists of two convolutional layers followed by two81

fully connected layers, and a softmax classifier. We preprocessed images using l2 normalization,82

mean subtraction, and division by standard deviation.83

Traffic sign images originate from 49 video sequences, which were split into approximately 70%84

training set and 30% test set. Video sequences were split one sign at a time, starting from the least85

common sign. Once video sequences were assigned to training or testing sets, splitting continued86

from the remaining sequences until all the sequences were classified. In the first experiment set, we87

utilized 7, 292 traffic sign images in the training stage obtained from challenge-free real training88

sequences. In the testing, we utilized 3, 334 images from each challenge category and level, which89

adds up to 200, 040 images (3, 334 images ×12 challenge types ×5 levels). As performance metric,90

we utilized classification accuracy, which corresponds to the percentage of traffic signs that are91

correctly classified.92

93
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(l) Haze

Figure 4: Performance versus challenge levels.
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3.2 Experiment 1: Recognition in Real Environments under Challenging Conditions94

We analyzed the accuracy of baseline methods with respect to challenge levels for each challenge95

type and report the results in Fig. 4. Severe decolorization (Fig. 4(a)) leads to at least 10% decrease96

in accuracy, which is less compared to majority of other challenge categories because remaining97

information is still sufficient for shape-based recognition. Among all the challenges, codec error is98

the most effective category that significantly degrades the classification accuracy even with challenge99

level 1 as shown in Fig. 4(c). We can observe that there is at least 30% decrease for each method after100

challenge level 1 and at least 46% decrease after challenge level 5. Lens blur (Fig. 4(b)), exposure101

(Fig. 4(f)), and Guassian blur (Fig. 4(g)) result in significant performance decrease under severe102

challenging conditions, at least 36% for each baseline method. However, classification accuracy103

decreases more linearly in these categories compared to codec error because of its steep decrease in104

level 1. In darkening category (Fig. 4(d)), classification accuracy decreases at least 5% in challenge105

level 1 for all the methods other than CNN. The normalization operation in convolutional model makes106

it less sensitive to darkening challenge. When challenge level becomes more severe, performance of107

baseline methods degrades a few percent at most.108

In dirty lens category (Fig. 4(e)), new dirty lens images were overlayed on entire images to increase109

the challenge level. And, the new dirt patterns do not necessarily occlude traffic signs. Therefore,110

performance of baseline methods do not always change when challenge level increases. In noise111

category (Fig. 4(h)), HoG and CNN correspond to a more linear performance decrease compared to112

intensity and color-based methods, whose performance decreases are steeper for level 1 challenge. In113

rain category (Fig. 4(i)), particle models are all around the scene, which result in significant occlusion114

even in level 1 challenge. Therefore, degradation while going from challenge-free to level 1 challenge115

is steeper than any further relative changes. In shadow category (Fig. 4(j)), vertical shadow lines116

are all over the images, which lead to relatively steep performance decrease for challenge level 1.117

We observe slight degradation as challenge level increases because areas under shadow become less118

visible. In case of snow challenge (Fig. 4(k)), intensity-based methods result in a more significant119

decrease compared to other methods for level 1 challenge but all methods converge to a similar120

classification accuracy under severe snow challenge. In haze category (Fig. 4(l)), performance of121

intensity-based models decrease steeply for level 1 challenge whereas decrease in HoG-based models122

follow a more linear behavior. Color image-based classifiers and CNN are less sensitive to haze123

challenge compared to other methods. Haze challenge was generated as a combination of radial124

gradient operator with partial opacity, a smoothing operator, an exposure operator, a brightness125

operator, and a contrast operator. Moreover, the location of the operator was adjusted manually per126

frame to simulate a sense of depth. Because of the complexity of haze model, it is less intuitive to127

explain the behavior of baseline methods. However, the higher tolerance of CNN model with respect128

to haze challenge can be explained with its capability to directly learn spatial patterns from visual129

representations.130

3.3 Experiment 2: Recognition in Real Environments under Challenging Conditions with131

the Help of Challenging Unreal Environments132

In Section 3.2, we analyzed the performance of baseline methods with respect to challenging133

conditions and level. Baseline methods were trained with 7, 292 real-world images and a total of134

200, 040 images were used in testing. In this section, we investigate the performance of baseline135

methods when unreal images are used in the training in addition to real images. Test set is same136

as experiment 1 but we extended the training set with 20 unreal images for each traffic sign from137

challenge level 5 sequences. We selected the traffic signs with maximum area to obtain highest138

resolution samples. Overall, training set includes 3, 084 unreal images (20 images ×11 challenge139

types ×14 traffic signs) and 7, 292 real-world images. We compared the performance of baseline140

methods that are trained with and without unreal images and report the performance change in Table141

2. Each entry in the table other than the last row and the last column was obtained by calculating142

the performance change for a baseline method over all the challenge levels for a specific challenge143

type. Entries in the last row were calculated by averaging the performance change of each baseline144

method over all challenge types. Finally, entries in the last column were calculated by averaging the145

performance change over all baseline methods for each challenge type.146

147
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Table 2: Classification accuracy change (%) when additional unreal images used in the training.

Challenge Types
Baseline Methods

Intensity Color HoG CNN AverageSoftmax SVM Softmax SVM Softmax SVM
Decolorization +2.86 +3.32 +1.46 -0.53 +1.43 -0.01 +3.23 +1.68

Lens Blur +3.98 +2.71 +4.45 +6.60 +3.34 +1.81 -1.78 +3.02
Codec Error +0.47 -1.21 +1.51 -0.82 -1.55 -1.61 +2.40 -0.12
Darkening +2.83 +2.98 +2.87 +1.44 +1.68 +0.44 +2.58 +2.12
Dirty lens +3.14 +2.86 +2.68 +1.63 +2.00 +0.62 +3.11 +2.29
Exposure +2.54 +1.77 +1.34 +1.97 -0.66 -2.23 +0.54 +0.75

Gaussian Blur +5.89 +3.98 +4.24 +7.06 +2.03 +1.77 +2.78 +3.97
Noise +1.62 +1.58 +1.89 +0.58 +1.41 -0.90 +2.25 +1.21
Rain +2.30 +1.28 +4.73 +2.75 +5.48 +2.34 +0.69 +2.80

Shadow +2.95 +3.38 +3.27 +1.62 +1.73 +0.64 +3.01 +2.37
Snow +3.19 +2.81 +2.09 +0.48 +2.63 +0.92 +4.34 +2.35
Haze +3.28 +3.22 +3.22 +1.41 +2.26 -1.35 +3.51 +2.22

All (average) +2.92 +2.39 +2.81 +2.02 +1.81 +0.20 +2.22 -

We tested 7 baseline methods over 12 challenge types and report the performance change of each148

baseline method for each challenge type. Out of 84 result categories (7 baseline methods ×12149

challenge types), classification performance increased in 72 of them. On average, classification150

performance increased for all challenge types other than a slight decrease in codec error. Moreover,151

average classification performance increased for each baseline method, which is a slight increase152

for HoG-SVM (0.2%) and more for other methods (at least 1.81%). Additional unreal images153

in the training set were obtained from all the challenge types except haze category. However,154

classification accuracy increased for all the baseline methods at least 1.41% other than HoG-SVM155

in haze category. The performance enhancement in haze can be understood by analyzing the156

computational model of haze and its perceptual similarity to other challenges. Haze model includes157

a smoothing operator, an exposure filter, a brightness operator, and a contrast operator. Exposure158

filter is used in the exposure (overexposure) model and smoothing operator is utilized in blur models.159

Moreover, perceptually, we can observe similarities between haze and blur challenges in terms of160

smoothness and similarities between haze and exposure in terms of washed out details. Therefore,161

perceptually and computationally similar challenges in the training stage can affect the performance162

of each other in the testing stage.163

4 Conclusion164

We introduced the CURE-TSR dataset, which is the most comprehensive traffic sign recognition165

dataset in the literature that includes controlled challenging conditions. We provided a benchmark of166

commonly used methods in the CURE-TSR dataset and reported that challenging conditions leads to167

severe performance degradation for all baseline methods. We have shown that lens blur, exposure,168

Gaussian blur, and codec error degrade recognition performance more significantly compared to169

other challenge types because these challenge categories directly result in losing or misplacing170

shape-related information. In addition to training and testing data-driven methods with real-world171

data, we also utilized simulator images in the training and reported performance enhancement for172

most of the baseline methods and challenge categories in real-world scenarios.173
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